• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 21
  • 10
  • 8
  • 6
  • 6
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 133
  • 133
  • 67
  • 31
  • 31
  • 27
  • 24
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design of a low power 8-bit A/D converter for wireless neural recorder applications

Yang, Jiao 10 July 2017 (has links)
Human brain and related topics like neuron spikes and their active potentials have become more and more attractive to people these days, as these issues are extremely helpful for curing many neural injuries and cognitive diseases. One method to discover this field is by designing a chip embedded in brains with probes to actual neurons. It is obvious that batteries are not practical for these applications and thereby RF radiation is used as power sources, revealing that chips should operate under a very low power supply. Since neural signals are analog waveforms, analog-to-digital converter (A/D converter, ADC) is the key component in a neural recorder chip. This thesis proposes the complete design of a low power 8-bit successive approximation register (SAR) A/D converter for use in a wireless neural recorder chip, realizing the function of digitizing a sampled neural signal with a frequency distribution of 10Hz to 10kHz. A modified energy-saving capacitor array in the SAR structure is provided to help save power dissipation. Therefore, the ADC shall operate within a power budget of 20­μW maximum from a 1­V power source, at a clock frequency of 500kHz corresponding to a conversion rate of 55.5-kS/s. All the circuits are designed and implemented based on the IBM/Global Foundries 8HP 130nm BiCMOS technology. Simulations of schematic and layout versions are done respectively to verify the functionality, linearity and power consumption of the ADC. Key words: Successive approximation register analog-to-digital converter (SAR-ADC), low power design, energy-saving capacitor array, neural recorder applications
72

Investigations of time-interpolated single-slope analog-to-digital converters for CMOS image sensors

Levski, Deyan January 2018 (has links)
This thesis presents a study on solutions to high-speed analog-to-digital conversion in CMOS image sensors using time-interpolation methods. Data conversion is one of the few remaining speed bottlenecks in conventional 2D imagers. At the same time, as pixel dark current continues to improve, the resolution requirements on imaging data converters impose very high system-level design challenges. The focus of the presented investigations here is to shed light on methods in Time-to-Digital Converter interpolation of single-slope ADCs. By using high-factor time-interpolation, the resolution of single-slope converters can be increased without sacrificing conversion time or power. This work emphasizes on solutions for improvement of multiphase clock interpolation schemes, following an all-digital design paradigm. Presented is a digital calibration scheme which allows a complete elimination of analog clock generation blocks, such as PLL or DLL in Flash TDC-interpolated single-slope converters. To match the multiphase clocks in time-interpolated single-slope ADCs, the latter are generated by a conventional open-loop delay line. In order to correct the process voltage and temperature drift of the delay line, a digital backend calibration has been developed. It is also executed online, in-column, and at the end of each sample conversion. The introduced concept has been tested in silicon, and has showed promising results for its introduction in practical mass-production scenarios. Methods for reference voltage generation in single-slope ADCs have also been looked at. The origins of error and noise phenomenona, which occur during both the discrete and continuous-time conversion phases in a single-slope ADC have been mathematically formalized. A method for practical measurement of noise on the ramp reference voltage has also been presented. Multiphase clock interpolation schemes are difficult for implementation when high interpolation factors are used, due to their quadratic clock phase growth with resolution. To allow high interpolation factors a time-domain binary search concept with error calibration has been introduced. Although the study being conceptual, it shows promising results for highly efficient implementations, if a solution to stable column-level unit delays can be found. The latter is listed as a matter of future investigations.
73

Architecture, Modeling, and Analysis of a Plasma Impedance Probe

Jayaram, Magathi 01 December 2010 (has links)
Variations in ionospheric plasma density can cause large amplitude and phase changes in the radio waves passing through this region. Ionospheric weather can have detrimental effects on several communication systems, including radars, navigation systems such as the Global Positioning Sytem (GPS), and high-frequency communications. As a result, creating models of the ionospheric density is of paramount interest to scientists working in the field of satellite communication. Numerous empirical and theoretical models have been developed to study the upper atmosphere climatology and weather. Multiple measurements of plasma density over a region are of marked importance while creating these models. The lack of spatially distributed observations in the upper atmosphere is currently a major limitation in space weather research. A constellation of CubeSat platforms would be ideal to take such distributed measurements. The use of miniaturized instruments that can be accommodated on small satellites, such as CubeSats, would be key to acheiving these science goals for space weather. The accepted instrumentation techniques for measuring the electron density are the Langmuir probes and the Plasma Impedance Probe (PIP). While Langmuir probes are able to provide higher resolution measurements of relative electron density, the Plasma Impedance Probes provide absolute electron density measurements irrespective of spacecraft charging. The central goal of this dissertation is to develop an integrated architecture for the PIP that will enable space weather research from CubeSat platforms. The proposed PIP chip integrates all of the major analog and mixed-signal components needed to perform swept-frequency impedance measurements. The design's primary innovation is the integration of matched Analog-to-Digital Converters (ADC) on a single chip for sampling the probes current and voltage signals. A Fast Fourier Transform (FFT) is performed by an off-chip Field-Programmable Gate Array (FPGA) to compute the probes impedance. This provides a robust solution for determining the plasma impedance accurately. The major analog errors and parametric variations affecting the PIP instrument and its effect on the accuracy and precision of the impedance measurement are also studied. The system clock is optimized in order to have a high performance ADC. In this research, an alternative clock generation scheme using C-elements is described to reduce the timing jitter and reference spurs in phase locked loops. While the jitter performance and reference spur reduction is comparable with prior state-of-the-art work, the proposed Phase Locked Loop (PLL) consumes less power with smaller area than previous designs.
74

Implementation of Flash Analog-to-Digital Converters in Silicon-on-Insulator Technology

Säll, Erik January 2005 (has links)
<p>High speed analog-to-digital converters (ADCs) used in, e.g., read channel and ultra wideband (UWB) applications are often based on a flash topology. The read channel applications is the intended application of this work, where a part of the work covers the design of two different types of 6-bit flash ADCs. Another field of application is UWB receivers.</p><p>To optimize the performance of the whole system and derive the specifications for the sub-blocks of the system it is often desired to use a topdown design methodology. To facilitate the top-down design methodology the ADCs are modeled on behavioral level. The models are simulated in MATLAB®. The results are used to verify the functionality of the proposed circuit topologies and serve as a base to the circuit design phase.</p><p>The first flash ADC has a conventional topology. It has a resistor net connected to a number of latched comparators, but its thermometer-tobinary encoder is based on 2-to-1 multiplexers buffered with inverters. This gives a compact encoder with a regular structure and short critical path. The main disadvantage is the code dependent timing difference between the encoder outputs introduced by this topology. The ADC was simulated on schematic level in Cadence® using the foundry provided transistor models. The design obtained a maximum sampling frequency of 1 GHz, an effective resolution bandwidth of 390 MHz, and a power consumption of 170 mW.</p><p>The purpose of the second ADC is to demonstrate the concept of introducing dynamic element matching (DEM) into the reference net of a flash ADC. This design yields information about the performance improvements the DEM gives, and what the trade-offs are when introducing DEM. Behavioral level simulations indicate that the SFDR is improved by 11 dB when introducing DEM, but the settling time of the reference net with DEM will now limit the conversion speed of the converter. Further, the maximum input frequency is limited by the total resistance in the reference net, which gets increased in this topology. The total resistance is the total switch on-resistance plus the total resistance of the resistors. To increase the conversion speed and the maximum input frequency a new DEM topology is proposed in this work, which reduces the number of switches introduced into the reference net compared with earlier proposed DEM topologies. The transistor level simulations in Cadence® of the flash ADC with DEM indicates that the SFDR improves by 6 dB compared with when not using DEM, and is expected to improve more if more samples are used in the simulation. This was not possible in the current simulations due to the long simulation time. The improved SFDR is however traded for an increased chip area and a reduction of the maximum sampling frequency to 550 MHzfor this converter. The average power consumption is 92 mW.</p><p>A goal of this work is to evaluate a 130 nm partially depleted silicon-oninsulator (SOI) complementary metal oxide semiconductor (CMOS) technology with respect to analog circuit implementation. The converters are therefore implemented in this technology. When writing this the ADCs are still being manufactured. Since the technology evaluation will be based on the measurement results the final results of the evaluation are not included in this thesis. The conclusions regarding the SOI CMOS technology are therefore based on a literature study of published scientific papers in the SOI area, information extracted during the design phase of the ADCs, and from the transistor level circuit simulations. These inputs indicate that to fully utilize the potential performance advantages of the SOI CMOS technology the partially depleted SOI CMOS technology should be exchanged for a fully depleted SOI CMOS technology. The manufacturing difficulties regarding the control of the thin-film thickness must however first be solved before the exchange can be done.</p> / Report code: LiU-Tek-Lic-2005:68.
75

Design of a parallel A/D converter system on PCB : For high-speed sampling and timing error correction / Kretskortskonstruktion av system med parallella A/D omvandlare : För höghastighetssampling och korrigering av tidsfel.

Alfredsson, Jon January 2002 (has links)
The goals for most of today’s receiver system are sampling at high-speed, with high resolution and with as few errors as possible. This master thesis describes the design of a high-speed sampling system with"state-of-the-art"components available on the market. The system is designed with a parallel Analog-to-digital converter (ADC) architecture, also called time interleaving. It aims to increase the sampling speed of the system. The system described in this report uses four 12-bits ADCs in parallel. Each ADC can sample at 125 MHz and the total sampling speed will then theoretically become 500 Ms/s. The system has been implemented and manufactured on a printed circuit board (PCB). Up to four boards can be connected in parallel to get 2 Gs/s theoretically. In an approach to increase the systems performance even further, a timing error estimation algorithm will be used on the sampled data. This algorithm estimates the timing errors that occur when sampling with non-uniform time interval between samples. After the estimations, the sampling clocks can be adjusted to correct the errors. This thesis is concerning some ADC theory, system design and PCB implementation. It also describes how to test and measure the system’s performance. No measurement results are presented in this thesis because measurements will be done after this project. The last part of the thesis discusses future improvementsto achieve even higher performance.
76

Low power design techniques for high speed pipelined ADCs

Lingam, Naga Sasidhar 12 January 2009 (has links)
Real world is analog but the processing of signals can best be done in digital domain. So the need for Analog to Digital Converters(ADCs) is ever rising as more and more applications set in. With the advent of mobile technology, power in electronic equipment is being driven down to get more battery life. Because of their ubiquitous nature, ADCs are prime blocks in the signal chain in which power is intended to be reduced. In this thesis, four techniques to reduce power in high speed pipelined ADCs have been proposed. The first is a capacitor and opamp sharing technique that reduces the load on the first stage opamp by three fold. The second is a capacitor reset technique that aids removing the sample and hold block to reduce power. The third is a modified MDAC which can take rail-to-rail input swing to get an extra bit thus getting rid of a power hungry opamp. The fourth is a hybrid architecture which makes use of an asynchronous SAR ADC as the backend of a pipelined ADC to save power. Measurement and simulation results that prove the efficiency of the proposed techniques are presented. / Graduation date: 2009
77

Jitter-Tolerance and Blocker-Tolerance of Delta-Sigma Analog-to-Digital Converters for Saw-Less Multi-Standard Receivers

Ahmed, Ramy 1981- 14 March 2013 (has links)
The quest for multi-standard and software-defined radio (SDR) receivers calls for high flexibility in the receiver building-blocks so that to accommodate several wireless services using a single receiver chain in mobile handsets. A potential approach to achieve flexibility in the receiver is to move the analog-to-digital converter (ADC) closer to the antenna so that to exploit the enormous advances in digital signal processing, in terms of technology scaling, speed, and programmability. In this context, continuous-time (CT) delta-sigma (ΔƩ) ADCs show up as an attractive option. CT ΔƩ ADCs have gained significant attention in wideband receivers, owing to their amenability to operate at a higher-speed with lower power consumption compared to discrete-time (DT) implementations, inherent anti-aliasing, and robustness to sampling errors in the loop quantizer. However, as the ADC moves closer to the antenna, several blockers and interferers are present at the ADC input. Thus, it is important to investigate the sensitivities of CT ΔƩ ADCs to out-of-band (OOB) blockers and find the design considerations and solutions needed to maintain the performance of CT ΔƩ modulators in presence of OOB blockers. Also, CT ΔƩ modulators suffer from a critical limitation due to their high sensitivity to the clock-jitter in the feedback digital-to-analog converter (DAC) sampling-clock. In this context, the research work presented in this thesis is divided into two main parts. First, the effects of OOB blockers on the performance of CT ΔƩ modulators are investigated and analyzed through a detailed study. A potential solution is proposed to alleviate the effect of noise folding caused by intermodulation between OOB blockers and shaped quantization noise at the modulator input stage through current-mode integration. Second, a novel DAC solution that achieves tolerance to pulse-width jitter by spectrally shaping the jitter induced errors is presented. This jitter-tolerant DAC doesn’t add extra requirements on the slew-rate or the gain-bandwidth product of the loop filter amplifiers. The proposed DAC was implemented in a 90nm CMOS prototype chip and provided a measured attenuation for in-band jitter induced noise by 26.7dB and in-band DAC noise by 5dB, compared to conventional current-steering DAC, and consumes 719µwatts from 1.3V supply.
78

Design Considerations for Wide Bandwidth Continuous-Time Low-Pass Delta-Sigma Analog-to-Digital Converters

Padyana, Aravind 1983- 14 March 2013 (has links)
Continuous-time (CT) delta-sigma (ΔΣ) analog-to-digital converters (ADC) have emerged as the popular choice to achieve high resolution and large bandwidth due to their low cost, power efficiency, inherent anti-alias filtering and digital post processing capabilities. This work presents a detailed system-level design methodology for a low-power CT ΔΣ ADC. Design considerations and trade-offs at the system-level are presented. A novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced feedback charge variations by employing a hybrid digital-to-analog converter (DAC) based on switched-capacitor circuits is also presented. The proposed technique provides a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology. A novel technique to improve the linearity of the feedback digital-to-analog converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling frequency CT ΔΣ ADC is also presented in this work. DAC linearity is improved by combining dynamic element matching and automatic background calibration to achieve up to 18dB improvement in the SNR. Transistor-level circuit implementation of the proposed technique was done in a 1.8V, 0.18μm BiCMOS process.
79

Multi-gigabit CMOS analog-to-digital converter and mixed-signal demodulator for low-power millimeter-wave communication systems

Chuang, Kevin 05 1900 (has links)
The objective of the research is to develop high-speed ADCs and mixed-signal demodulator for multi-gigabit communication systems using millimeter-wave frequency bands in standard CMOS technology. With rapid advancements in semiconductor technologies, mobile communication devices have become more versatile, portable, and inexpensive over the last few decades. However, plagued by the short lifetime of batteries, low power consumption has become an extremely important specification in developing mobile communication devices. The ever-expanding demand of consumers to access and share information ubiquitously at faster speeds requires higher throughputs, increased signal-processing functionalities at lower power and lower costs. In today’s technology, high-speed signal processing and data converters are incorporated in almost all modern multi-gigabit communication systems. They are key enabling technologies for scalable digital design and implementation of baseband signal processors. Ultimately, the merits of a high performance mixed-signal receiver, such as data rate, sensitivity, signal dynamic range, bit-error rate, and power consumption, are directly related to the quality of the embedded ADCs. Therefore, this dissertation focuses on the analysis and design of high-speed ADCs and a novel broadband mixed-signal demodulator with a fully-integrated DSP composed of low-cost CMOS circuitry. The proposed system features a novel dual-mode solution to demodulate multi-gigabit BPSK and ASK signals. This approach reduces the resolution requirement of high-speed ADCs, while dramatically reducing its power consumption for multi-gigabit wireless communication systems.
80

Design of Pipelined Analog-to-Digital Converter with SI Technique in 65 nm CMOS Technology

Rajendran, Dinesh Babu January 2011 (has links)
Analog-to-digital converter (ADC) plays an important role in mixed signal processingsystems. It serves as an interface between analog and digital signal processingsystems. In the last two decades, circuits implemented in current-modetechnique have drawn lots of interest for sensory systems and integrated circuits.Current-mode circuits have a few vital advantages such as low voltage operation,high speed and wide dynamic ranges. These circuits have wide applications in lowvoltage, high speed-mixed signal processing systems. In this thesis work, a 9-bitpipelined ADC with switch-current (SI) technique is designed and implemented in65 nm CMOS technology. The main focus of the thesis work is to implement thepipelined ADC in SI technique and to optimize the pipelined ADC for low power.The ADC has a stage resolution of 3 bits. The proposed architectures combine adifferential sample-and-hold amplifier, current comparator, binary-to-thermometerdecoder, a differential current-steering digital-to-analog converter, delay logic anddigital error correction block. The circuits are implemented at transistor level in 65nm CMOS technology. The static and dynamic performance metrics of pipelinedADC are evaluated. The simulations are carried out by Cadence Virtuoso SpectreCircuit Simulator 5.10. Matlab is used to determine the performance metrics ofADC.

Page generated in 0.0968 seconds