• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anticrossing-Spektroskopie schnell bewegter Heliumatome nach Elektroneneinfang in 10 bis 50 keV HE+-He-Stößen

Ludwig, Thorsten. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Berlin.
2

Strain-tuning of single semiconductor quantum dots

Plumhof, Johannes David 06 February 2012 (has links) (PDF)
Polarization entangled photon pairs on demand are considered to be an important building block of quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a certain spatial symmetry, can be used as a triggered, on-chip source of polarization entangled photon pairs. Due to limitations of the growth, the as-grown QDs usually do not exhibit the required symmetry, making the availability of post-growth tuning techniques essential. In this work first the QD-morphology of hundreds of QDs is correlated with the optical emission of neutral excitons confined in GaAs/AlGaAs QDs. It is presented how elastic anisotropic stress can be used to partially restore the symmetry of self-assembled GaAs/AlGaAs and InGaAs/GaAs QDs, making them as candidate sources of entangled photon pairs. As a consequence of the tuning of the QD-anisotropy we observe a rotation of the polarization of the emitted light. The joint modification of polarization orientation and QD anisotropy can be described by an anticrossing of the so-called bright excitonic states. Furthermore, it is demonstrated that anisotropic stress can be used to tune the purity of the hole states of the QDs by modifying the degree of heavy and light hole mixing. This ability might be interesting for applications using the hole spin as a so-called quantum bit.
3

Strain-tuning of single semiconductor quantum dots

Plumhof, Johannes David 03 February 2012 (has links)
Polarization entangled photon pairs on demand are considered to be an important building block of quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a certain spatial symmetry, can be used as a triggered, on-chip source of polarization entangled photon pairs. Due to limitations of the growth, the as-grown QDs usually do not exhibit the required symmetry, making the availability of post-growth tuning techniques essential. In this work first the QD-morphology of hundreds of QDs is correlated with the optical emission of neutral excitons confined in GaAs/AlGaAs QDs. It is presented how elastic anisotropic stress can be used to partially restore the symmetry of self-assembled GaAs/AlGaAs and InGaAs/GaAs QDs, making them as candidate sources of entangled photon pairs. As a consequence of the tuning of the QD-anisotropy we observe a rotation of the polarization of the emitted light. The joint modification of polarization orientation and QD anisotropy can be described by an anticrossing of the so-called bright excitonic states. Furthermore, it is demonstrated that anisotropic stress can be used to tune the purity of the hole states of the QDs by modifying the degree of heavy and light hole mixing. This ability might be interesting for applications using the hole spin as a so-called quantum bit.
4

Ultraschnelle optoelektronische und Materialeigenschaften von Stickstoff-haltigem GaAs

Sinning, Steffen 03 March 2006 (has links) (PDF)
This work summarizes properties of nitrogen containing GaAs, which are relevant for optoelectronic application and allow a deeper insight in the physics of this material. In the first part the dependence of the banggap energy of nitrogen implanted GaAs on several process parameters (implanted nitrogen concentration, implantation temperature, annealing duration and temperature) is investigated. The second part focuses on the relaxation dynamics of highly excited carriers. For this, the carrier relaxation dynamics in nitrogen implanted GaAs, in epitaxially grown GaAsN and in (pure) GaAs are investigated by means of pump probe measurements on a femtosecond time scale. The comparision of experimental results to calculated scattering rates leads to relevant informations of scattering mechanisms and electronic properties. / Diese Arbeit widmet sich Eigenschaften von Stickstoff-haltigem Gallium-Arsenid, die sowohl für das physikalische Verständnis als auch für optoelektronische Anwendungen dieses Materials relevant sind. Im ersten Teil dieser Arbeit wird die Abhängigkeit der Bandlücken-Energie von verschiedenen Prozess-Parametern (Stickstoffkonzentration, Implantationstemperatur, Ausheildauer und -temperatur) in Stickstoff-implantiertem GaAs untersucht. Der zweite Teil konzentriert sich auf die Relaxationsdynamik hoch angeregter Ladungsträger. Neben dem oben bereits angesprochenen Material wird in Anrege-Abfrage-Experimenten mit Femtosekunden-Zeitauflösung zusätzlich epitaktisch gewachsenes GaAsN und (Stickstoff-freies) GaAs untersucht. Die Berechnung der Streuraten und der Vergleich mit experimentell gewonnenen Daten liefert wesentliche Informationen über beteiligte Steumechanismen und elektronische Eigenschaften.
5

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
6

Ultraschnelle optoelektronische und Materialeigenschaften von Stickstoff-haltigem GaAs

Sinning, Steffen 04 January 2006 (has links)
This work summarizes properties of nitrogen containing GaAs, which are relevant for optoelectronic application and allow a deeper insight in the physics of this material. In the first part the dependence of the banggap energy of nitrogen implanted GaAs on several process parameters (implanted nitrogen concentration, implantation temperature, annealing duration and temperature) is investigated. The second part focuses on the relaxation dynamics of highly excited carriers. For this, the carrier relaxation dynamics in nitrogen implanted GaAs, in epitaxially grown GaAsN and in (pure) GaAs are investigated by means of pump probe measurements on a femtosecond time scale. The comparision of experimental results to calculated scattering rates leads to relevant informations of scattering mechanisms and electronic properties. / Diese Arbeit widmet sich Eigenschaften von Stickstoff-haltigem Gallium-Arsenid, die sowohl für das physikalische Verständnis als auch für optoelektronische Anwendungen dieses Materials relevant sind. Im ersten Teil dieser Arbeit wird die Abhängigkeit der Bandlücken-Energie von verschiedenen Prozess-Parametern (Stickstoffkonzentration, Implantationstemperatur, Ausheildauer und -temperatur) in Stickstoff-implantiertem GaAs untersucht. Der zweite Teil konzentriert sich auf die Relaxationsdynamik hoch angeregter Ladungsträger. Neben dem oben bereits angesprochenen Material wird in Anrege-Abfrage-Experimenten mit Femtosekunden-Zeitauflösung zusätzlich epitaktisch gewachsenes GaAsN und (Stickstoff-freies) GaAs untersucht. Die Berechnung der Streuraten und der Vergleich mit experimentell gewonnenen Daten liefert wesentliche Informationen über beteiligte Steumechanismen und elektronische Eigenschaften.
7

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 12 March 2015 (has links)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.

Page generated in 0.0669 seconds