• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 28
  • 17
  • Tagged with
  • 212
  • 212
  • 186
  • 184
  • 120
  • 96
  • 94
  • 94
  • 82
  • 79
  • 79
  • 75
  • 75
  • 74
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimisation d'hyper-paramètres en apprentissage profond et apprentissage par transfert : applications en imagerie médicale / Hyper-parameter optimization in deep learning and transfer learning : applications to medical imaging

Bertrand, Hadrien 15 January 2019 (has links)
Ces dernières années, l'apprentissage profond a complètement changé le domaine de vision par ordinateur. Plus rapide, donnant de meilleurs résultats, et nécessitant une expertise moindre pour être utilisé que les méthodes classiques de vision par ordinateur, l'apprentissage profond est devenu omniprésent dans tous les problèmes d'imagerie, y compris l'imagerie médicale.Au début de cette thèse, la construction de réseaux de neurones adaptés à des tâches spécifiques ne bénéficiait pas encore de suffisamment d'outils ni d'une compréhension approfondie. Afin de trouver automatiquement des réseaux de neurones adaptés à des tâches spécifiques, nous avons ainsi apporté des contributions à l’optimisation d’hyper-paramètres de réseaux de neurones. Cette thèse propose une comparaison de certaines méthodes d'optimisation, une amélioration en performance d'une de ces méthodes, l'optimisation bayésienne, et une nouvelle méthode d'optimisation d'hyper-paramètres basé sur la combinaison de deux méthodes existantes : l'optimisation bayésienne et hyperband.Une fois équipés de ces outils, nous les avons utilisés pour des problèmes d'imagerie médicale : la classification de champs de vue en IRM, et la segmentation du rein en échographie 3D pour deux groupes de patients. Cette dernière tâche a nécessité le développement d'une nouvelle méthode d'apprentissage par transfert reposant sur la modification du réseau de neurones source par l'ajout de nouvelles couches de transformations géométrique et d'intensité.En dernière partie, cette thèse revient vers les méthodes classiques de vision par ordinateur, et nous proposons un nouvel algorithme de segmentation qui combine les méthodes de déformations de modèles et l'apprentissage profond. Nous montrons comment utiliser un réseau de neurones pour prédire des transformations globales et locales sans accès aux vérités-terrains de ces transformations. Cette méthode est validé sur la tâche de la segmentation du rein en échographie 3D. / In the last few years, deep learning has changed irrevocably the field of computer vision. Faster, giving better results, and requiring a lower degree of expertise to use than traditional computer vision methods, deep learning has become ubiquitous in every imaging application. This includes medical imaging applications. At the beginning of this thesis, there was still a strong lack of tools and understanding of how to build efficient neural networks for specific tasks. Thus this thesis first focused on the topic of hyper-parameter optimization for deep neural networks, i.e. methods for automatically finding efficient neural networks on specific tasks. The thesis includes a comparison of different methods, a performance improvement of one of these methods, Bayesian optimization, and the proposal of a new method of hyper-parameter optimization by combining two existing methods: Bayesian optimization and Hyperband.From there, we used these methods for medical imaging applications such as the classification of field-of-view in MRI, and the segmentation of the kidney in 3D ultrasound images across two populations of patients. This last task required the development of a new transfer learning method based on the modification of the source network by adding new geometric and intensity transformation layers.Finally this thesis loops back to older computer vision methods, and we propose a new segmentation algorithm combining template deformation and deep learning. We show how to use a neural network to predict global and local transformations without requiring the ground-truth of these transformations. The method is validated on the task of kidney segmentation in 3D US images.
42

Approche basées sur l'apprentissage en profondeur pour la segmentation des organes à risques dans les tomodensitométries thoraciques. / Deep learning based approaches for the segmentation of Organs at Risk in Thoracic Computed Tomography Scans

Trullo Ramirez, Roger 12 November 2018 (has links)
La radiothérapie est un traitement de choix pour le cancer thoracique, l’une des principales causes de décès dans le monde. La planification de la radiothérapie nécessite de contourer non seulement la tumeur, mais également les organes à risque (OAR) situés près de la tumeur dans le thorax, tels que le coeur, les poumons, l’oesophage, etc. Cette segmentation permet de minimiser la quantité d’irradiation reçue pendant le traitement. Aujourd’hui, la segmentation de OAR est réalisée principalement manuellement par des cliniciens sur des images scanner (CT), malgré une prise en charge logicielle partielle. C’est une tâche complexe, sujette à la variabilité intra et interobservateur. Dans ce travail, nous présentons plusieurs méthodologies utilisant des techniques d’apprentissage profond pour segmenter automatiquement le coeur, la trachée, l’aorte et l’oesophage. En particulier, l’oesophage est particulièrement difficile à segmenter, en raison de l’absence de contraste et de variabilité de forme entre différents patients. Les réseaux profonds convolutionnels offrent aujourd’hui des performances de pointe en matière desegmentation sémantique, nous montrons d’abord comment un type spécifique d’architecture basée sur des skip connections peut améliorer la précision des résultats, par rapport à un réseau pleinement convolutionnel (FCN) standard. Dans une deuxième contribution, nous avons intégré des informations de contexte spatial au processus de segmentation, par le biais de réseaux collaboratifs, permettant les segmentations de chaque organe individuellement. Troisièmement, nous proposons une représentation différente des données, basée sur une carte de distance, utilisée en conjointement avec des réseaux adversariaux (GAN), comme un autre moyen de contraindre le contexte anatomique. Les méthodes proposées ont été évaluées sur une base d’images scanner de 60 patients. Les résultats montrent des résultats encourageants pour l’application clinique et souligne le potentiel des méthodes prenant en compte le contexte spatial dans la segmentation. / Radiotherapy is one of the options for treatment currently available for patients affected by cancer, one of the leading cause of deaths worldwide. Before radiotherapy, organs at risk (OAR) located near the target tumor, such as the heart, the lungs, the esophagus, etc. in thoracic cancer, must be outlined, in order to minimize the quantity of irradiation that they receive during treatment. Today, segmentation of the OAR is performed mainly manually by clinicians on Computed Tomography (CT) images, despite some partial software support. It is a tedious task, prone to intra and inter-observer variability. In this work, we present several frameworks using deep learning techniques to automatically segment the heart, trachea, aorta and esophagus. In particular, the esophagus is notably challenging to segment, due to the lack of surrounding contrast and shape variability across different patients. As deep networks and in particular fully convolutional networks offer now state of the art performance for semantic segmentation, we first show how a specific type of architecture based on skip connections can improve the accuracy of the results. As a second contribution, we demonstrate that context information can be of vital importance in the segmentation task, where we propose the use of two collaborative networks. Third, we propose a different, distance aware representation of the data, which is then used in junction with adversarial networks, as another way to constrain the anatomical context. All the proposed methods have been tested on 60 patients with 3D-CT scans, showing good performance compared with other methods.
43

Processing and learning deep neural networks on chip / Traitement et apprentissage des réseaux de neurones profonds sur puce

Boukli Hacene, Ghouthi 03 October 2019 (has links)
Dans le domaine de l'apprentissage machine, les réseaux de neurones profonds sont devenus la référence incontournable pour un très grand nombre de problèmes. Ces systèmes sont constitués par un assemblage de couches, lesquelles réalisent des traitements élémentaires, paramétrés par un grand nombre de variables. À l'aide de données disponibles pendant une phase d'apprentissage, ces variables sont ajustées de façon à ce que le réseau de neurones réponde à la tâche donnée. Il est ensuite possible de traiter de nouvelles données. Si ces méthodes atteignent les performances à l'état de l'art dans bien des cas, ils reposent pour cela sur un très grand nombre de paramètres, et donc des complexités en mémoire et en calculs importantes. De fait, ils sont souvent peu adaptés à l'implémentation matérielle sur des systèmes contraints en ressources. Par ailleurs, l'apprentissage requiert de repasser sur les données d'entraînement plusieurs fois, et s'adapte donc difficilement à des scénarios où de nouvelles informations apparaissent au fil de l'eau. Dans cette thèse, nous nous intéressons dans un premier temps aux méthodes permettant de réduire l'impact en calculs et en mémoire des réseaux de neurones profonds. Nous proposons dans un second temps des techniques permettant d'effectuer l'apprentissage au fil de l'eau, dans un contexte embarqué. / In the field of machine learning, deep neural networks have become the inescapablereference for a very large number of problems. These systems are made of an assembly of layers,performing elementary operations, and using a large number of tunable variables. Using dataavailable during a learning phase, these variables are adjusted such that the neural networkaddresses the given task. It is then possible to process new data.To achieve state-of-the-art performance, in many cases these methods rely on a very largenumber of parameters, and thus large memory and computational costs. Therefore, they are oftennot very adapted to a hardware implementation on constrained resources systems. Moreover, thelearning process requires to reuse the training data several times, making it difficult to adapt toscenarios where new information appears on the fly.In this thesis, we are first interested in methods allowing to reduce the impact of computations andmemory required by deep neural networks. Secondly, we propose techniques for learning on thefly, in an embedded context.
44

Learning representations of speech from the raw waveform / Apprentissage de représentations de la parole à partir du signal brut

Zeghidour, Neil 13 March 2019 (has links)
Bien que les réseaux de neurones soient à présent utilisés dans la quasi-totalité des composants d’un système de reconnaissance de la parole, du modèle acoustique au modèle de langue, l’entrée de ces systèmes reste une représentation analytique et fixée de la parole dans le domaine temps-fréquence, telle que les mel-filterbanks. Cela se distingue de la vision par ordinateur, un domaine où les réseaux de neurones prennent en entrée les pixels bruts. Les mel-filterbanks sont le produit d’une connaissance précieuse et documentée du système auditif humain, ainsi que du traitement du signal, et sont utilisées dans les systèmes de reconnaissance de la parole les plus en pointe, systèmes qui rivalisent désormais avec les humains dans certaines conditions. Cependant, les mel-filterbanks, comme toute représentation fixée, sont fondamentalement limitées par le fait qu’elles ne soient pas affinées par apprentissage pour la tâche considérée. Nous formulons l’hypothèse qu’apprendre ces représentations de bas niveau de la parole, conjontement avec le modèle, permettrait de faire avancer davantage l’état de l’art. Nous explorons tout d’abord des approches d’apprentissage faiblement supervisé et montrons que nous pouvons entraîner un unique réseau de neurones à séparer l’information phonétique de celle du locuteur à partir de descripteurs spectraux ou du signal brut et que ces représentations se transfèrent à travers les langues. De plus, apprendre à partir du signal brut produit des représentations du locuteur significativement meilleures que celles d’un modèle entraîné sur des mel-filterbanks. Ces résultats encourageants nous mènent par la suite à développer une alternative aux mel-filterbanks qui peut être entraînée à partir des données. Dans la seconde partie de cette thèse, nous proposons les Time-Domain filterbanks, une architecture neuronale légère prenant en entrée la forme d’onde, dont on peut initialiser les poids pour répliquer les mel-filterbanks et qui peut, par la suite, être entraînée par rétro-propagation avec le reste du réseau de neurones. Au cours d’expériences systématiques et approfondies, nous montrons que les Time-Domain filterbanks surclassent systématiquement les melfilterbanks, et peuvent être intégrées dans le premier système de reconnaissance de la parole purement convolutif et entraîné à partir du signal brut, qui constitue actuellement un nouvel état de l’art. Les descripteurs fixes étant également utilisés pour des tâches de classification non-linguistique, pour lesquelles elles sont d’autant moins optimales, nous entraînons un système de détection de dysarthrie à partir du signal brut, qui surclasse significativement un système équivalent entraîné sur des mel-filterbanks ou sur des descripteurs de bas niveau. Enfin, nous concluons cette thèse en expliquant en quoi nos contributions s’inscrivent dans une transition plus large vers des systèmes de compréhension du son qui pourront être appris de bout en bout. / While deep neural networks are now used in almost every component of a speech recognition system, from acoustic to language modeling, the input to such systems are still fixed, handcrafted, spectral features such as mel-filterbanks. This contrasts with computer vision, in which a deep neural network is now trained on raw pixels. Mel-filterbanks contain valuable and documented prior knowledge from human auditory perception as well as signal processing, and are the input to state-of-the-art speech recognition systems that are now on par with human performance in certain conditions. However, mel-filterbanks, as any fixed representation, are inherently limited by the fact that they are not fine-tuned for the task at hand. We hypothesize that learning the low-level representation of speech with the rest of the model, rather than using fixed features, could push the state-of-the art even further. We first explore a weakly-supervised setting and show that a single neural network can learn to separate phonetic information and speaker identity from mel-filterbanks or the raw waveform, and that these representations are robust across languages. Moreover, learning from the raw waveform provides significantly better speaker embeddings than learning from mel-filterbanks. These encouraging results lead us to develop a learnable alternative to mel-filterbanks, that can be directly used in replacement of these features. In the second part of this thesis we introduce Time-Domain filterbanks, a lightweight neural network that takes the waveform as input, can be initialized as an approximation of mel-filterbanks, and then learned with the rest of the neural architecture. Across extensive and systematic experiments, we show that Time-Domain filterbanks consistently outperform melfilterbanks and can be integrated into a new state-of-the-art speech recognition system, trained directly from the raw audio signal. Fixed speech features being also used for non-linguistic classification tasks for which they are even less optimal, we perform dysarthria detection from the waveform with Time-Domain filterbanks and show that it significantly improves over mel-filterbanks or low-level descriptors. Finally, we discuss how our contributions fall within a broader shift towards fully learnable audio understanding systems.
45

Adéquation algorithme-architecture de réseaux de neurones à spikes pour les architectures matérielles massivement parallèles / Algorithm-architecture adequacy of spiking neural networks for massively parallel processing hardware

Ferré, Paul 11 July 2018 (has links)
Cette dernière décennie a donné lieu à la réémergence des méthodes d'apprentissage machine basées sur les réseaux de neurones formels sous le nom d'apprentissage profond. Bien que ces méthodes aient permis des avancées majeures dans le domaine de l'apprentissage machine, plusieurs obstacles à la possibilité d'industrialiser ces méthodes persistent, notamment la nécessité de collecter et d'étiqueter une très grande quantité de données ainsi que la puissance de calcul nécessaire pour effectuer l'apprentissage et l'inférence avec ce type de réseau neuronal. Dans cette thèse, nous proposons d'étudier l'adéquation entre des algorithmes d'inférence et d'apprentissage issus des réseaux de neurones biologiques pour des architectures matérielles massivement parallèles. Nous montrons avec trois contributions que de telles adéquations permettent d'accélérer drastiquement les temps de calculs inhérents au réseaux de neurones. Dans notre premier axe, nous réalisons l'étude d'adéquation du moteur BCVision de Brainchip SAS pour les plate-formes GPU. Nous proposons également l'introduction d'une architecture hiérarchique basée sur des cellules complexes. Nous montrons que l'adéquation pour GPU accélère les traitements par un facteur sept, tandis que l'architecture hiérarchique atteint un facteur mille. La deuxième contribution présente trois algorithmes de propagation de décharges neuronales adaptés aux architectures parallèles. Nous réalisons une étude complète des modèles computationels de ces algorithmes, permettant de sélectionner ou de concevoir un système matériel adapté aux paramètres du réseau souhaité. Dans notre troisième axe nous présentons une méthode pour appliquer la règle Spike-Timing-Dependent-Plasticity à des données images afin d'apprendre de manière non-supervisée des représentations visuelles. Nous montrons que notre approche permet l'apprentissage d'une hiérarchie de représentations pertinente pour des problématiques de classification d'images, tout en nécessitant dix fois moins de données que les autres approches de la littérature. / The last decade has seen the re-emergence of machine learning methods based on formal neural networks under the name of deep learning. Although these methods have enabled a major breakthrough in machine learning, several obstacles to the possibility of industrializing these methods persist, notably the need to collect and label a very large amount of data as well as the computing power necessary to perform learning and inference with this type of neural network. In this thesis, we propose to study the adequacy between inference and learning algorithms derived from biological neural networks and massively parallel hardware architectures. We show with three contribution that such adequacy drastically accelerates computation times inherent to neural networks. In our first axis, we study the adequacy of the BCVision software engine developed by Brainchip SAS for GPU platforms. We also propose the introduction of a coarse-to-fine architecture based on complex cells. We show that GPU portage accelerates processing by a factor of seven, while the coarse-to-fine architecture reaches a factor of one thousand. The second contribution presents three algorithms for spike propagation adapted to parallel architectures. We study exhaustively the computational models of these algorithms, allowing the selection or design of the hardware system adapted to the parameters of the desired network. In our third axis we present a method to apply the Spike-Timing-Dependent-Plasticity rule to image data in order to learn visual representations in an unsupervised manner. We show that our approach allows the effective learning a hierarchy of representations relevant to image classification issues, while requiring ten times less data than other approaches in the literature.
46

Real-Time Reinforcement Learning

Ramstedt, Simon 09 1900 (has links)
Les processus de décision markovien (MDP), le cadre mathématiques sous-jacent à la plupart des algorithmes de l'apprentissage par renforcement (RL) est souvent utilisé d'une manière qui suppose, à tort, que l'état de l'environnement d'un agent ne change pas pendant la sélection des actions. Puisque les systèmes RL basés sur les MDP classiques commencent à être appliqués dans les situations critiques pour la sécurité du monde réel, ce décalage entre les hypothèses sous-jacentes aux MDP classiques et la réalité du calcul en temps réel peut entraîner des résultats indésirables. Dans cette thèse, nous introduirons un nouveau cadre dans lequel les états et les actions évoluent simultanément, nous montrerons comment il est lié à la formulation MDP classique. Nous analyserons des algorithmes existants selon la nouvelle formulation en temps réel et montrerons pourquoi ils sont inférieurs, lorsqu'ils sont utilisés en temps réel. Par la suite, nous utiliserons ces perspectives pour créer un nouveau algorithme Real-Time Actor Critic qui est supérieur au Soft Actor Critic contrôle continu de l'état de l'art actuel, aussi bien en temps réel qu'en temps non réel. / Markov Decision Processes (MDPs), the mathematical framework underlying most algorithms in Reinforcement Learning (RL), are often used in a way that wrongfully assumes that the state of an agent's environment does not change during action selection. As RL systems based on MDPs begin to find application in real-world safety critical situations, this mismatch between the assumptions underlying classical MDPs and the reality of real-time computation may lead to undesirable outcomes. In this thesis, we introduce a new framework, in which states and actions evolve simultaneously, we show how it is related to the classical MDP formulation. We analyze existing algorithms under the new real-time formulation and show why they are suboptimal when used in real-time. We then use those insights to create a new algorithm, Real-Time Actor Critic (RTAC) that outperforms the existing state-of-the-art continuous control algorithm Soft Actor Critic both in real-time and non-real-time settings.
47

Vers l’universalité des représentations visuelle et multimodales / On The Universality of Visual and Multimodal Representations

Tamaazousti, Youssef 01 June 2018 (has links)
En raison de ses enjeux sociétaux, économiques et culturels, l’intelligence artificielle (dénotée IA) est aujourd’hui un sujet d’actualité très populaire. L’un de ses principaux objectifs est de développer des systèmes qui facilitent la vie quotidienne de l’homme, par le biais d’applications telles que les robots domestiques, les robots industriels, les véhicules autonomes et bien plus encore. La montée en popularité de l’IA est fortement due à l’émergence d’outils basés sur des réseaux de neurones profonds qui permettent d’apprendre simultanément, la représentation des données (qui était traditionnellement conçue à la main), et la tâche à résoudre (qui était traditionnellement apprise à l’aide de modèles d’apprentissage automatique). Ceci résulte de la conjonction des avancées théoriques, de la capacité de calcul croissante ainsi que de la disponibilité de nombreuses données annotées. Un objectif de longue date de l’IA est de concevoir des machines inspirées des humains, capables de percevoir le monde, d’interagir avec les humains, et tout ceci de manière évolutive (c’est `a dire en améliorant constamment la capacité de perception du monde et d’interaction avec les humains). Bien que l’IA soit un domaine beaucoup plus vaste, nous nous intéressons dans cette thèse, uniquement à l’IA basée apprentissage (qui est l’une des plus performante, à ce jour). Celle-ci consiste `a l’apprentissage d’un modèle qui une fois appris résoud une certaine tâche, et est généralement composée de deux sous-modules, l’un représentant la donnée (nommé ”représentation”) et l’autre prenant des décisions (nommé ”résolution de tâche”). Nous catégorisons, dans cette thèse, les travaux autour de l’IA, dans les deux approches d’apprentissage suivantes : (i) Spécialisation : apprendre des représentations à partir de quelques tâches spécifiques dans le but de pouvoir effectuer des tâches très spécifiques (spécialisées dans un certain domaine) avec un très bon niveau de performance; ii) Universalité : apprendre des représentations à partir de plusieurs tâches générales dans le but d’accomplir autant de tâches que possible dansdifférents contextes. Alors que la spécialisation a été largement explorée par la communauté de l’apprentissage profond, seules quelques tentatives implicites ont été réalisée vers la seconde catégorie, à savoir, l’universalité. Ainsi, le but de cette thèse est d’aborder explicitement le problème de l’amélioration de l’universalité des représentations avec des méthodes d’apprentissage profond, pour les données d’image et de texte. [...] / Because of its key societal, economic and cultural stakes, Artificial Intelligence (AI) is a hot topic. One of its main goal, is to develop systems that facilitates the daily life of humans, with applications such as household robots, industrial robots, autonomous vehicle and much more. The rise of AI is highly due to the emergence of tools based on deep neural-networks which make it possible to simultaneously learn, the representation of the data (which were traditionally hand-crafted), and the task to solve (traditionally learned with statistical models). This resulted from the conjunction of theoretical advances, the growing computational capacity as well as the availability of many annotated data. A long standing goal of AI is to design machines inspired humans, capable of perceiving the world, interacting with humans, in an evolutionary way. We categorize, in this Thesis, the works around AI, in the two following learning-approaches: (i) Specialization: learn representations from few specific tasks with the goal to be able to carry out very specific tasks (specialized in a certain field) with a very good level of performance; (ii) Universality: learn representations from several general tasks with the goal to perform as many tasks as possible in different contexts. While specialization was extensively explored by the deep-learning community, only a few implicit attempts were made towards universality. Thus, the goal of this Thesis is to explicitly address the problem of improving universality with deep-learning methods, for image and text data. We have addressed this topic of universality in two different forms: through the implementation of methods to improve universality (“universalizing methods”); and through the establishment of a protocol to quantify its universality. Concerning universalizing methods, we proposed three technical contributions: (i) in a context of large semantic representations, we proposed a method to reduce redundancy between the detectors through, an adaptive thresholding and the relations between concepts; (ii) in the context of neural-network representations, we proposed an approach that increases the number of detectors without increasing the amount of annotated data; (iii) in a context of multimodal representations, we proposed a method to preserve the semantics of unimodal representations in multimodal ones. Regarding the quantification of universality, we proposed to evaluate universalizing methods in a Transferlearning scheme. Indeed, this technical scheme is relevant to assess the universal ability of representations. This also led us to propose a new framework as well as new quantitative evaluation criteria for universalizing methods.
48

Apprentissage faiblement supervisé appliqué à la segmentation d'images de protéines neuronales

Bilodeau, Anthony 20 July 2020 (has links)
Titre de l'écran-titre (visionné le 9 juillet 2020) / Thèse ou mémoire avec insertion d'articles / Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2020-2021 / En biologie cellulaire, la microscopie optique est couramment utilisée pour visualiser et caractériser la présence et la morphologie des structures biologiques. Suite à l’acquisition, un expert devra effectuer l’annotation des structures pour quantification. Cette tâche est ardue, requiert de nombreuses heures de travail, parfois répétitif, qui peut résulter en erreurs d’annotations causées par la fatigue d’étiquetage. L’apprentissage machine promet l’automatisation de tâches complexes à partir d’un grand lot de données exemples annotés. Mon projet de maîtrise propose d’utiliser des techniques faiblement supervisées, où les annotations requises pour l’entraînement sont réduites et/ou moins précises, pour la segmentation de structures neuronales. J’ai d’abord testé l’utilisation de polygones délimitant la structure d’intérêt pour la tâche complexe de segmentation de la protéine neuronale F-actine dans des images de microscopie à super-résolution. La complexité de la tâche est supportée par la morphologie hétérogène des neurones, le nombre élevé d’instances à segmenter dans une image et la présence de nombreux distracteurs. Malgré ces difficultés, l’utilisation d’annotations faibles a permis de quantifier un changement novateur de la conformation de la protéine F-actine en fonction de l’activité neuronale. J’ai simplifié davantage la tâche d’annotation en requérant seulement des étiquettes binaires renseignant sur la présence des structures dans l’image réduisant d’un facteur 30 le temps d’annotation. De cette façon, l’algorithme est entraîné à prédire le contenu d’une image et extrait ensuite les caractéristiques sémantiques importantes pour la reconnaissance de la structure d’intérêt à l’aide de mécanismes d’attention. La précision de segmentation obtenue sur les images de F-actine est supérieure à celle des annotations polygonales et équivalente à celle des annotations précises d’un expert. Cette nouvelle approche devrait faciliter la quantification des changements dynamiques qui se produisent sous le microscope dans des cellules vivantes et réduire les erreurs causées par l’inattention ou le biais de sélection des régions d’intérêt dans les images de microscopie. / In cell biology, optical microscopy is commonly used to visualize and characterize the presenceand morphology of biological structures. Following the acquisition, an expert will have toannotate the structures for quantification. This is a difficult task, requiring many hours ofwork, sometimes repetitive, which can result in annotation errors caused by labelling fatigue.Machine learning promises to automate complex tasks from a large set of annotated sampledata. My master’s project consists of using weakly supervised techniques, where the anno-tations required for training are reduced and/or less precise, for the segmentation of neuralstructures.I first tested the use of polygons delimiting the structure of interest for the complex taskof segmentation of the neuronal protein F-actin in super-resolution microscopy images. Thecomplexity of the task is supported by the heterogeneous morphology of neurons, the highnumber of instances to segment in an image and the presence of many distractors. Despitethese difficulties, the use of weak annotations has made it possible to quantify an innovativechange in the conformation of the F-actin protein as a function of neuronal activity. I furthersimplified the annotation task by requiring only binary labels that indicate the presence ofstructures in the image, reducing annotation time by a factor of 30. In this way, the algorithmis trained to predict the content of an image and then extract the semantic characteristicsimportant for recognizing the structure of interest using attention mechanisms. The segmen-tation accuracy obtained on F-actin images is higher than that of polygonal annotations andequivalent to that of an expert’s precise annotations. This new approach should facilitate thequantification of dynamic changes that occur under the microscope in living cells and reduceerrors caused by inattention or bias in the selection of regions of interest in microscopy images.
49

Towards combining deep learning and statistical relational learning for reasoning on graphs

Qu, Meng 12 1900 (has links)
Cette thèse se focalise sur l'analyse de données structurées en graphes, un format de données répandu dans le monde réel. Le raisonnement dans ces données est un enjeu clé en apprentissage automatique, avec des applications allant de la classification de nœuds à la prédiction de liens. On distingue deux approches majeures pour le raisonnement dans les données en graphes : l'apprentissage relationnel statistique et l'apprentissage profond. L'apprentissage relationnel statistique construit des modèles graphiques probabilistes, efficaces pour capturer des dépendances complexes et intégrer des connaissances préexistantes, comme les règles logiques. Des méthodes notables incluent les réseaux logiques de Markov et les champs aléatoires conditionnels. L'apprentissage profond, quant à lui, se base sur l'apprentissage de représentations pertinentes des données observées pour une compréhension et un raisonnement rapides. Les réseaux neuronaux pour graphes (GNN) représentent un outil de pointe dans ce domaine. La combinaison de l'apprentissage relationnel statistique et de l'apprentissage profond offre une perspective enrichie sur le raisonnement, promettant un cadre plus robuste et efficace. Cette thèse explore cette combinaison, en développant des méthodes qui intègrent les deux approches. L'apprentissage profond renforce l'efficacité de l'apprentissage et de l'inférence dans l'apprentissage relationnel statistique, tandis que ce dernier affine les prédictions de l'apprentissage profond. Ce cadre intégré est appliqué à un éventail de tâches de raisonnement sur les graphes, démontrant son efficacité et ouvrant la voie à des recherches futures pour des cadres de raisonnement encore plus robustes. / This thesis centers on the analysis of graph-structured data, a ubiquitous data format in the real world. Reasoning within graph-structured data has long been a fundamental problem in machine learning, with applications spanning from node classification to link prediction. There are two principal approaches to tackle reasoning within graph-structured data: statistical relational learning and deep learning. Statistical relational learning techniques construct probabilistic graphical models based on observed data, excelling at capturing intricate dependencies of available evidence while accommodating prior knowledge, such as logic rules. Notable methods include Markov logic networks (MLNs) and conditional random fields (CRFs). In contrast, deep learning models harness the capability to learn meaningful representations from observed data, using these representations to rapidly comprehend and reason over the data. Graph neural networks (GNNs) have emerged as prominent tools in the realm of deep learning, achieving state-of-the-art results across a spectrum of tasks. Statistical relational learning and deep learning offer distinct perspectives on reasoning. Intuitively, combining these paradigms promises to create a more robust framework that inherits expressive power, efficiency, and the ability to model joint dependencies while simultaneously acquiring representations for more effective reasoning. In pursuit of this vision, this thesis explores the concept, developing methods that seamlessly integrate deep learning and statistical relational learning. Specifically, deep learning enhances the efficiency of learning and inference within statistical relational learning, while statistical relational learning, in turn, refines the predictions generated by deep learning to improve the accuracy. This integrated paradigm is applied across a diverse range of reasoning tasks on graphs. Empirical results demonstrate the effectiveness of this paradigm, encouraging further exploration to yield more robust reasoning frameworks.
50

Small batch deep reinforcement learning

Obando-Ceron, Johan Samir 11 1900 (has links)
Dans l'apprentissage par renforcement profond basé sur la valeur avec des mémoires de relecture, le paramètre de taille de lot joue un rôle crucial en déterminant le nombre de transitions échantillonnées pour chaque mise à jour de gradient. Étonnamment, malgré son importance, ce paramètre n'est généralement pas ajusté lors de la proposition de nouveaux algorithmes. Dans ce travail, nous menons une vaste étude empirique qui suggère que la réduction de la taille des lots peut entraîner un certain nombre de gains de performances significatifs ; ceci est surprenant et contraire à la pratique courante consistant à utiliser de plus grandes tailles de lots pour améliorer la formation du réseau neuronal. Ce résultat inattendu défie la sagesse conventionnelle et appelle à une compréhension plus approfondie des gains de performances observés associés à des tailles de lots plus petites. Pour faire la lumière sur les facteurs sous-jacents, nous complétons nos résultats expérimentaux par une série d'analyses empiriques. Ces analyses approfondissent divers aspects du processus d'apprentissage, tels que l'analyse de la dynamique d'optimisation du réseau, la vitesse de convergence, la stabilité et les capacités d'exploration. Le chapitre 1 présente les concepts nécessaires pour comprendre le travail présenté, notamment des aperçus de l'Apprentissage Profond (Deep Learning) et de l'Apprentissage par Renforcement (Reinforcement Learning). Le chapitre 2 contient une description détaillée de nos contributions visant à comprendre les gains de performance observés associés à des tailles de lots plus petites lors de l'utilisation d'algorithmes d'apprentissage par renforcement profond basés sur la valeur. À la fin, des conclusions tirées de ce travail sont fournies, incluant des suggestions pour des travaux futurs. Le chapitre 3 aborde ce travail dans le contexte plus large de la recherche en apprentissage par renforcement. / In value-based deep reinforcement learning with replay memories, the batch size parameter plays a crucial role by determining the number of transitions sampled for each gradient update. Surprisingly, despite its importance, this parameter is typically not adjusted when proposing new algorithms. In this work, we conduct a broad empirical study that suggests {\em reducing} the batch size can result in a number of significant performance gains; this is surprising and contrary to the prevailing practice of using larger batch sizes to enhance neural network training. This unexpected result challenges the conventional wisdom and calls for a deeper understanding of the observed performance gains associated with smaller batch sizes. To shed light on the underlying factors, we complement our experimental findings with a series of empirical analyses such as analysis of network optimization dynamics, convergence speed, stability, and exploration capabilities. Chapter 1 introduces concepts necessary to understand the work presented, including overviews of Deep Learning and Reinforcement Learning. Chapter 2 contains a detailed description of our contributions towards understanding the observed performance gains associated with smaller batch sizes when using value based deep reinforcement learning algorithms. At the end, some conclusions drawn from this work are provided, including some exciting suggestion as future work. Chapter 3 talks about this work in the broader context of reinforcement learning research.

Page generated in 0.1135 seconds