• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 21
  • 21
  • 21
  • 19
  • 17
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 73
  • 34
  • 28
  • 27
  • 21
  • 21
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Efficient modularity density heuristics in graph clustering and their applications

Santiago, Rafael de January 2017 (has links)
Modularity Density Maximization is a graph clustering problem which avoids the resolution limit degeneracy of the Modularity Maximization problem. This thesis aims at solving larger instances than current Modularity Density heuristics do, and show how close the obtained solutions are to the expected clustering. Three main contributions arise from this objective. The first one is about the theoretical contributions about properties of Modularity Density based prioritizers. The second one is the development of eight Modularity Density Maximization heuristics. Our heuristics are compared with optimal results from the literature, and with GAOD, iMeme-Net, HAIN, BMD- heuristics. Our results are also compared with CNM and Louvain which are heuristics for Modularity Maximization that solve instances with thousands of nodes. The tests were carried out by using graphs from the “Stanford Large Network Dataset Collection”. The experiments have shown that our eight heuristics found solutions for graphs with hundreds of thousands of nodes. Our results have also shown that five of our heuristics surpassed the current state-of-the-art Modularity Density Maximization heuristic solvers for large graphs. A third contribution is the proposal of six column generation methods. These methods use exact and heuristic auxiliary solvers and an initial variable generator. Comparisons among our proposed column generations and state-of-the-art algorithms were also carried out. The results showed that: (i) two of our methods surpassed the state-of-the-art algorithms in terms of time, and (ii) our methods proved the optimal value for larger instances than current approaches can tackle. Our results suggest clear improvements to the state-of-the-art results for the Modularity Density Maximization problem.
62

Métodos intervalares para a resolução de sistemas de equações lineares / Interval methods for resolution of linear equation systems

Holbig, Carlos Amaral January 1996 (has links)
O estudo dos métodos intervalares é importante para a resolução de sistemas de equações lineares, pois os métodos intervalares produzem resultados dentro de limites confiáveis (do intervalo solução) e provam a existência ou não existência de soluções, portanto produzem resultados confiáveis, o que os métodos pontuais podem não proporcionar. Outro aspecto a destacar é o campo de utilizando de sistemas de equações lineares em problemas das engenharias e outras ciências, o que mostra a aplicabilidade desses métodos e por conseguinte a necessidade de elaboração de ferramentas que possibilitem a implementação desses métodos intervalares. O objetivo deste trabalho não é a elaboração de novos métodos intervalares, mas sim o de realizar uma descrição e implementação de alguns dos métodos intervalares encontrados na bibliografia pesquisada. A versão intervalar dos métodos pontuais não é simples e o calculo por métodos intervalares pode ser dispendioso, uma vez que se está tratando com vetores e matrizes de intervalos. A implementação dos métodos intervalares são foi possível graças a existência de ferramentas, como o compilador Pascal-XSC, que incorpora as suas características aspectos importantes como a aritmética intervalar, a verificação automática do resultado, o produto escalar Ótimo e a aritmética de alta exatidão. Este trabalho é dividido em duas etapas. A primeira apresenta um estudo dos métodos intervalares para a resolução de sistemas de equações lineares. São caracterizadas as metodologias de desenvolvimento desses métodos. Metodologias estas, que foram divididas em três grupos de métodos: métodos intervalares baseados em operações algébricas intervalares ou métodos diretos, métodos intervalares baseados em refinamento ou métodos híbridos e métodos intervalares baseados em interacões. São definidas as características, os métodos que as compõe e a aplicabilidade desses métodos na resolução de sistemas de equações lineares. A segunda etapa é caracterizada pela elaboração dos algoritmos referentes aos métodos intervalares estudados e sua respectiva implementação, dando origem a uma biblioteca aplicativa intervalar para a resolução de sistemas de equações lineares, implementada no PC-486 e utilizando o compilador Pascal-XSC. Para este desenvolvimento foi realizado, previamente, um estudo sobre este compilador e sobre bibliotecas disponíveis que são utilizadas na implementação da biblioteca aplicativa intervalar. A biblioteca selintp é organizada em quatro módulos: o módulo dirint (referente aos métodos diretos); o modulo refint (referente aos métodos baseados em refinamento); o módulo itrint (referente aos métodos iterativos) e o modulo equalg (para sistemas de equações de ordem 1). Por fim, através daquela biblioteca foram realizadas comparações entre os resultados obtidos (resultados pontuais, intervalares, seqüenciais e vetoriais) a rim de se realizar uma analise de desempenho quantitativa (exatidão) e uma comparação entre os resultados obtidos. Esses resultados sendo comparados com os obtidos com a biblioteca biblioteca esta que esta sendo desenvolvida para o ambiente do supercomputador Cray Y-MP do CESUP/UFRGS, como parte do projeto de Aritmética Vetorial Intervalar do Grupo de Matemática Computacional da UFRGS. / The study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
63

O teorema fundamental da aritmética: jogos e problemas com alunos do sexto ano do ensino fundamental

Barbosa, Gabriela dos Santos 16 December 2008 (has links)
Made available in DSpace on 2016-04-27T16:58:49Z (GMT). No. of bitstreams: 1 Gabriela dos Santos Barbosa.pdf: 4377226 bytes, checksum: 1fa1ce1a13b0a16668f868acafcd63ef (MD5) Previous issue date: 2008-12-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present thesis has the purpose of carrying out an interventionist study for the introduction of the Fundamental Theorem of Arithmetic (FTA) and main concepts associated to it to students of the 6th Grade of Basic Education. In the research we intend to answer the following question: What are the arguments used by students in the significance process of the Fundamental Theorem of Arithmetic? For that purpose, we carried out a study with 22 students of a private school situated in the north zone of Rio de Janeiro. The group had already been in touch, according to the school s formal point of view, with the concepts related to the Fundamental Theorem of Arithmetic: multiples, divisors, prime and compound numbers and prime factors decomposition. The research has as theoretical fundamental, the Conceptual Fields Theory proposed by Vergnaud (1983, 2001) and the ideas of Campbell and Zazquis (2002) related to the learning process of concepts associated with the Basic Number Theory, which TFA belongs to. The method used a study divided into three stages. The first stage was the collective use of an initial evaluation. The second addressed the intervention stage, which was divided into three activity groups, and inserted into them, there were two intermediary evaluations. And, at last, the third corresponds to the use, also collective, of a final evaluation, with the same questions as the initial evaluation. Data was analysed from two perspectives, one directed to quantitative analysis, where we tried to relate the percentages of rights, with the help of the statistic package SPSS (Statistical Package for Social Sciences). The second perspective was data analysis from the qualitative point of view, aiming at identifying the type of mistakes made by students, as well as their strategies to solve problem-situations. The results showed that students had developed their own scheme to deal with concepts in construction. In this process, even if implicitly, a series of mathematic concepts present in students actions; is the teacher s function to create favourable conditions for the students to explain them / A presente tese teve por objetivo realizar um estudo intervencionista para a introdução do Teorema Fundamental da Aritmética (TFA) e dos principais conceitos associados a ele com alunos do 6º ano do Ensino Fundamental. Na pesquisa, propomo-nos a responder a seguinte questão: De que argumentos os alunos se valem no processo de significação do Teorema Fundamental da Aritmética? Para tanto, realizamos um estudo com 22 alunos, advindos de uma turma de uma escola particular da zona norte do Rio de Janeiro. O grupo já havia tido contato, do ponto de vista formal da escola, com conceitos associados ao Teorema Fundamental da Aritmética: múltiplo, divisor, números primos e compostos e decomposição em fatores primos. A fundamentação teórica da pesquisa contou com a Teoria dos Campos Conceituais proposta por Vergnaud (1983, 2001) e as idéias de Campbell e Zazquis (2002) com relação à aprendizagem dos conceitos associados à Teoria Elementar dos Números, de que o TFA é parte integrante. O método constou de um estudo dividido em três etapas. A primeira referiu-se a aplicação coletiva de uma avaliação inicial. A segunda voltou-se para a fase de intervenção, que foi divida em três grupos de atividades intercalados por duas avaliações intermediárias. E, por fim, a terceira corresponde à aplicação, também coletiva, de uma avaliação final, com as mesmas questões da avaliação inicial. Os dados foram analisados em duas perspectivas: uma voltada à análise quantitativa, em que se buscou relacionar os percentuais de acerto, com a ajuda do pacote estatístico SPSS (Statistical Package for Social Science). A segunda perspectiva referiu-se à análise dos dados do ponto de vista qualitativo, visando identificar os tipos de erros cometidos pelos alunos, bem como suas estratégias na resolução de situações-problema. Os resultados mostraram que os alunos desenvolvem esquemas próprios para lidar com os conceitos em construção. Nesse processo, uma série de conceitos matemáticos está presente, ainda que implicitamente, em suas ações. É função do professor criar condições que favoreçam aos alunos explicitá-los
64

Métodos intervalares para a resolução de sistemas de equações lineares / Interval methods for resolution of linear equation systems

Holbig, Carlos Amaral January 1996 (has links)
O estudo dos métodos intervalares é importante para a resolução de sistemas de equações lineares, pois os métodos intervalares produzem resultados dentro de limites confiáveis (do intervalo solução) e provam a existência ou não existência de soluções, portanto produzem resultados confiáveis, o que os métodos pontuais podem não proporcionar. Outro aspecto a destacar é o campo de utilizando de sistemas de equações lineares em problemas das engenharias e outras ciências, o que mostra a aplicabilidade desses métodos e por conseguinte a necessidade de elaboração de ferramentas que possibilitem a implementação desses métodos intervalares. O objetivo deste trabalho não é a elaboração de novos métodos intervalares, mas sim o de realizar uma descrição e implementação de alguns dos métodos intervalares encontrados na bibliografia pesquisada. A versão intervalar dos métodos pontuais não é simples e o calculo por métodos intervalares pode ser dispendioso, uma vez que se está tratando com vetores e matrizes de intervalos. A implementação dos métodos intervalares são foi possível graças a existência de ferramentas, como o compilador Pascal-XSC, que incorpora as suas características aspectos importantes como a aritmética intervalar, a verificação automática do resultado, o produto escalar Ótimo e a aritmética de alta exatidão. Este trabalho é dividido em duas etapas. A primeira apresenta um estudo dos métodos intervalares para a resolução de sistemas de equações lineares. São caracterizadas as metodologias de desenvolvimento desses métodos. Metodologias estas, que foram divididas em três grupos de métodos: métodos intervalares baseados em operações algébricas intervalares ou métodos diretos, métodos intervalares baseados em refinamento ou métodos híbridos e métodos intervalares baseados em interacões. São definidas as características, os métodos que as compõe e a aplicabilidade desses métodos na resolução de sistemas de equações lineares. A segunda etapa é caracterizada pela elaboração dos algoritmos referentes aos métodos intervalares estudados e sua respectiva implementação, dando origem a uma biblioteca aplicativa intervalar para a resolução de sistemas de equações lineares, implementada no PC-486 e utilizando o compilador Pascal-XSC. Para este desenvolvimento foi realizado, previamente, um estudo sobre este compilador e sobre bibliotecas disponíveis que são utilizadas na implementação da biblioteca aplicativa intervalar. A biblioteca selintp é organizada em quatro módulos: o módulo dirint (referente aos métodos diretos); o modulo refint (referente aos métodos baseados em refinamento); o módulo itrint (referente aos métodos iterativos) e o modulo equalg (para sistemas de equações de ordem 1). Por fim, através daquela biblioteca foram realizadas comparações entre os resultados obtidos (resultados pontuais, intervalares, seqüenciais e vetoriais) a rim de se realizar uma analise de desempenho quantitativa (exatidão) e uma comparação entre os resultados obtidos. Esses resultados sendo comparados com os obtidos com a biblioteca biblioteca esta que esta sendo desenvolvida para o ambiente do supercomputador Cray Y-MP do CESUP/UFRGS, como parte do projeto de Aritmética Vetorial Intervalar do Grupo de Matemática Computacional da UFRGS. / The study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
65

Métodos intervalares para a resolução de sistemas de equações lineares / Interval methods for resolution of linear equation systems

Holbig, Carlos Amaral January 1996 (has links)
O estudo dos métodos intervalares é importante para a resolução de sistemas de equações lineares, pois os métodos intervalares produzem resultados dentro de limites confiáveis (do intervalo solução) e provam a existência ou não existência de soluções, portanto produzem resultados confiáveis, o que os métodos pontuais podem não proporcionar. Outro aspecto a destacar é o campo de utilizando de sistemas de equações lineares em problemas das engenharias e outras ciências, o que mostra a aplicabilidade desses métodos e por conseguinte a necessidade de elaboração de ferramentas que possibilitem a implementação desses métodos intervalares. O objetivo deste trabalho não é a elaboração de novos métodos intervalares, mas sim o de realizar uma descrição e implementação de alguns dos métodos intervalares encontrados na bibliografia pesquisada. A versão intervalar dos métodos pontuais não é simples e o calculo por métodos intervalares pode ser dispendioso, uma vez que se está tratando com vetores e matrizes de intervalos. A implementação dos métodos intervalares são foi possível graças a existência de ferramentas, como o compilador Pascal-XSC, que incorpora as suas características aspectos importantes como a aritmética intervalar, a verificação automática do resultado, o produto escalar Ótimo e a aritmética de alta exatidão. Este trabalho é dividido em duas etapas. A primeira apresenta um estudo dos métodos intervalares para a resolução de sistemas de equações lineares. São caracterizadas as metodologias de desenvolvimento desses métodos. Metodologias estas, que foram divididas em três grupos de métodos: métodos intervalares baseados em operações algébricas intervalares ou métodos diretos, métodos intervalares baseados em refinamento ou métodos híbridos e métodos intervalares baseados em interacões. São definidas as características, os métodos que as compõe e a aplicabilidade desses métodos na resolução de sistemas de equações lineares. A segunda etapa é caracterizada pela elaboração dos algoritmos referentes aos métodos intervalares estudados e sua respectiva implementação, dando origem a uma biblioteca aplicativa intervalar para a resolução de sistemas de equações lineares, implementada no PC-486 e utilizando o compilador Pascal-XSC. Para este desenvolvimento foi realizado, previamente, um estudo sobre este compilador e sobre bibliotecas disponíveis que são utilizadas na implementação da biblioteca aplicativa intervalar. A biblioteca selintp é organizada em quatro módulos: o módulo dirint (referente aos métodos diretos); o modulo refint (referente aos métodos baseados em refinamento); o módulo itrint (referente aos métodos iterativos) e o modulo equalg (para sistemas de equações de ordem 1). Por fim, através daquela biblioteca foram realizadas comparações entre os resultados obtidos (resultados pontuais, intervalares, seqüenciais e vetoriais) a rim de se realizar uma analise de desempenho quantitativa (exatidão) e uma comparação entre os resultados obtidos. Esses resultados sendo comparados com os obtidos com a biblioteca biblioteca esta que esta sendo desenvolvida para o ambiente do supercomputador Cray Y-MP do CESUP/UFRGS, como parte do projeto de Aritmética Vetorial Intervalar do Grupo de Matemática Computacional da UFRGS. / The study of interval methods is important for resolution of linear equation systems, because such methods produce results into reliable bounds and prove the existence or not existence of solutions, therefore they produce reliable results that, the punctual methods can non present,save that there is an exhaustive analysis of errors. Another aspect to emphasize is the field of utilization of linear equation systems in engineering problems and other sciences, in which is showed the applicability of that methods and, consequently, the necessity of tools elaboration that make possible the implementation of that interval methods. The goal of this work is not the elaboration of new interval methods, but to accomplish a description and implementation of some interval methods found in the searched bibliography. The interval version of punctual methods is not simple, and the calculus by interval methods can be expensive, respecting is treats of vectors and matrices of intervals. The implementation of interval methods was only possible due to the existence of tools, as the Pascal-XSC compiler, which incorporates to their features, important aspects such as the interval arithmetic, the automatic verification of the result, the optimal scalar product and arithmetic of high accuracy. This work is divided in two stages. The first presents a study of the interval methods for resolution of linear equation systems, in which are characterized the methodologies of development of that methods. These methodologies were divided in three method groups: interval methods based in interval algebraic operations or direct methods, interval methods based in refinament or hybrid methods, and interval methods based in iterations, in which are determined the features, the methods that compose them, and the applicability of those methods in the resolution of linear equation systems. The second stage is characterized for the elaboration of the algorithms relating to the interval methods studied and their respective implementation, originating a interval applied library for resolution of linear equation systems, selintp, implemented in PC-486 and making use of Pascal-XSC compiler. For this development was previously accomplished a study about compiler and avaiable libraries that are used in the inplementation of the interval applied library. The library selintp is organized in four modules: the dirint module (regarding to the direct methods); the refint module (regarding to the methods based in refinament); the itrint module (regarding to the iterative methods) and equalg module(for equation systems of order 1). At last, throu gh this library, comparisons were developed among the results obtained (punctual, interval, sequential and vectorial results) in order to be accomplished an analysis of quantitative performance (accuracy) and a comparison among the results obtained with libselint a library, that is been developed for the Cray Y-MP supercomputer environment of CESUP/UFRGS, as part of the Interval Vectorial Arithmetic project of Group of Computational Mathematics of UFRGS.
66

Efficient modularity density heuristics in graph clustering and their applications

Santiago, Rafael de January 2017 (has links)
Modularity Density Maximization is a graph clustering problem which avoids the resolution limit degeneracy of the Modularity Maximization problem. This thesis aims at solving larger instances than current Modularity Density heuristics do, and show how close the obtained solutions are to the expected clustering. Three main contributions arise from this objective. The first one is about the theoretical contributions about properties of Modularity Density based prioritizers. The second one is the development of eight Modularity Density Maximization heuristics. Our heuristics are compared with optimal results from the literature, and with GAOD, iMeme-Net, HAIN, BMD- heuristics. Our results are also compared with CNM and Louvain which are heuristics for Modularity Maximization that solve instances with thousands of nodes. The tests were carried out by using graphs from the “Stanford Large Network Dataset Collection”. The experiments have shown that our eight heuristics found solutions for graphs with hundreds of thousands of nodes. Our results have also shown that five of our heuristics surpassed the current state-of-the-art Modularity Density Maximization heuristic solvers for large graphs. A third contribution is the proposal of six column generation methods. These methods use exact and heuristic auxiliary solvers and an initial variable generator. Comparisons among our proposed column generations and state-of-the-art algorithms were also carried out. The results showed that: (i) two of our methods surpassed the state-of-the-art algorithms in terms of time, and (ii) our methods proved the optimal value for larger instances than current approaches can tackle. Our results suggest clear improvements to the state-of-the-art results for the Modularity Density Maximization problem.
67

Efficient modularity density heuristics in graph clustering and their applications

Santiago, Rafael de January 2017 (has links)
Modularity Density Maximization is a graph clustering problem which avoids the resolution limit degeneracy of the Modularity Maximization problem. This thesis aims at solving larger instances than current Modularity Density heuristics do, and show how close the obtained solutions are to the expected clustering. Three main contributions arise from this objective. The first one is about the theoretical contributions about properties of Modularity Density based prioritizers. The second one is the development of eight Modularity Density Maximization heuristics. Our heuristics are compared with optimal results from the literature, and with GAOD, iMeme-Net, HAIN, BMD- heuristics. Our results are also compared with CNM and Louvain which are heuristics for Modularity Maximization that solve instances with thousands of nodes. The tests were carried out by using graphs from the “Stanford Large Network Dataset Collection”. The experiments have shown that our eight heuristics found solutions for graphs with hundreds of thousands of nodes. Our results have also shown that five of our heuristics surpassed the current state-of-the-art Modularity Density Maximization heuristic solvers for large graphs. A third contribution is the proposal of six column generation methods. These methods use exact and heuristic auxiliary solvers and an initial variable generator. Comparisons among our proposed column generations and state-of-the-art algorithms were also carried out. The results showed that: (i) two of our methods surpassed the state-of-the-art algorithms in terms of time, and (ii) our methods proved the optimal value for larger instances than current approaches can tackle. Our results suggest clear improvements to the state-of-the-art results for the Modularity Density Maximization problem.
68

[en] MODIFIED CAPITAL BUDGETING METHODS UNDER UNCERTAINTIES: AN APPROACH BASED ON FUZZY NUMBERS / [pt] MÉTODOS MODIFICADOS DE AVALIAÇÃO DE INVESTIMENTOS EM CONDIÇÕES DE INCERTEZA: UMA ABORDAGEM BASEADA EM NÚMEROS FUZZY

ANTONIO CARLOS DE SOUZA SAMPAIO FILHO 22 February 2019 (has links)
[pt] Essa tese apresenta uma abordagem alternativa para orçamento de capital, denominada Métodos Modificados de Avaliação de Projetos de Investimentos em Ambiente Fuzzy, para avaliação de projetos em condições de incerteza. O desenvolvimento da abordagem proposta está dividido em duas fases: na primeira fase, é estabelecido um modelo determinístico generalizado que prevê explicitamente a utilização dos custos de oportunidade associados com os fluxos de caixa intermediários de um projeto de investimento empresarial. Os pressupostos implícitos dos métodos modificados da taxa interna de retorno e do valor presente líquido são incluídos nos métodos do índice de lucratividade e do tempo de retorno do investimento total. Os indicadores resultantes são o índice de lucratividade modificado e o tempo de retorno do investimento modificado. Essa abordagem unificada tem a propriedade de coincidir as decisões de aceitação / rejeição de projetos de investimentos de mesmos horizontes de vida e escalas com as do valor presente líquido modificado e, portanto, maximizam a riqueza do acionista. Na segunda fase, números fuzzy triangulares são utilizados para representar as incertezas das variáveis de um projeto de investimento: os fluxos de caixa, as taxas de financiamento e de reinvestimento e a taxa de desconto ajustada ao risco. Os indicadores fuzzy resultantes são o valor presente líquido modificado, a taxa interna de retorno modificada, o índice de lucratividade modificado e o tempo de retorno do investimento modificado. A aplicação de custos de oportunidades e de critérios difusos para a atribuição dos valores das variáveis permite obter resultados mais realistas e compatíveis com as condições de mercado. Devido à complexidade dos cálculos envolvidos, novas funções financeiras de uso amigável são desenvolvidas utilizando Visual Basic for Applications do MS-Excel: três, para avaliação de projetos em condições de certeza (MVPL, MIL e MTRI) e quatro para avaliação em condições de incerteza (MVPLfuzzy, MTIRfuzzy, MILfuzzy e MTRIfuzzy). A principal contribuição dessa tese é a elaboração de uma nova abordagem unificada para orçamento de capital em condições de incerteza que enfatiza os pontos fortes dos métodos modificados do valor presente líquido e da taxa interna de retorno, enquanto contorna os conflitos e as desvantagens individuais dos métodos convencionais. Os resultados mostram que os métodos propostos são mais vantajosos e mais simples de se utilizar que outros métodos de avaliação de investimentos em condições de incerteza. / [en] This thesis presents an alternative approach to capital budgeting, named Fuzzy Modified Methods of Capital Budgeting, for evaluating investment projects under uncertainties. The development of the proposed approach is divided into two phases: in the first stage, a general deterministic model that explicitly provides for the use of the opportunity costs associated with the interim cash flows of a project is established. The implicit assumptions of the modified internal rate of return and modified net present value methods are included in the index of profitability and in the total payback period. The resulting indicators are the modified index of profitability and the modified total payback period. This unified approach has the property to match the decisions of acceptance / rejection of investment projects with same horizons of life and same scales with the decisions of the modified net present value method and therefore maximize shareholder wealth. In the second phase, triangular fuzzy numbers are used to represent the uncertainties of the project variables: cash flows and reinvestment, financing and risk-adjusted discount rates. The resulting indicators are the fuzzy modified net present value, the fuzzy modified internal rate of return, the fuzzy modified index of profitability and the fuzzy modified total payback period. The application of opportunity costs and fuzzy criteria for determining the variables allows obtaining more realists and consistent results with the market conditions. Due to the complexity of the calculations involved, new MS-Excel financial functions are developed by using Visual Basic for Applications: three functions for evaluating projects under conditions of certainty (MVPL, MIL and MTRI) and four functions for evaluating projects under uncertainties (MVPLfuzzy, MTIRfuzzy, MILfuzzy and MTRIfuzzy). The main contribution of this thesis is to develop a unifying approach to capital budgeting under uncertainty that emphasizes the strengths of the methods of modified net present value and modified internal rate of return, while bypassing the individual conflicts and drawbacks of the conventional methods. Results show that the proposed methods are more advantageous and simpler to use than other methods of investment appraisal under uncertainties.
69

A axiomatização da aritmética e a contribuição de Hermann Günther Grabmann

Servidoni, Maria do Carmo Pereira 07 November 2006 (has links)
Made available in DSpace on 2016-04-27T16:57:50Z (GMT). No. of bitstreams: 1 EDM - Maria do Carmo P Servidoni.pdf: 866161 bytes, checksum: 8e9e034ec8ba50f2872318b1cea8c98d (MD5) Previous issue date: 2006-11-07 / Secretaria da Educação do Estado de São Paulo / This research had as purpose the epistemology development of the knowledge object, number, in its formation as mathematical entity. It became evident that, in the end of the XIX century, the need of this formation caused many controversies, because number was understood as gift by God and consequently, considered something perfect. To the development of this research, we had as references Gramanns works, the first mathematician to consider, even if, in an unconscious form, the Axiomatization of Arithmetic. The main reference was the article entitled: The debate about the Axiomatization of Arithmetic: Otto Hölder against Robert Gramann by Mircea Radu (2003), in which, there is a debate about Axiomatization of Arithmetic under two points of view, on the other hand, we have Otto Hölder who believed in the synthetic nature of Mathematics, in such case, he rejected the axiomatical method as base for itself, and otherwise, Hermann Gramann and Robert Gramann that agree with the same idea, but they reject the axiomatical method. However, Gramann didnt understand so well his treatment of Arithmetic, because the laws that would define the natural numbers belonged to Algebra, another discipline that Grassmann considered as originated for all the other ones. In the development of this research, we indicated that the bases of the Axiomatization of Arithmetic were in the salience of big transformations occurred in Mathematics in the time of XIX century and beginning of XX one: the appearing of the non-Euclidean Geometries, the Algebra s release of Arithmetics veins and the intricate process of Arithmetization of Analysis. In this period, it also developed the relevancy or not of the use of axiomatic method as a basis of Arithmetic. We concluded that, in spite of all controversies of this period, 11 the possibility of Axiomatization of Arithmetic and the adoption of the axiomatical source in formal sciences contributed for the exact sciences / Esta pesquisa teve como objetivo o desenvolvimento epistemológico do objeto de conhecimento número em sua constituição como entidade matemática. Ficou evidenciado que, no final do século XIX, a necessidade dessa constituição gerou muitas controvérsias, porque número era concebido como presente de Deus e, conseqüentemente, considerado algo perfeito. Para o desenvolvimento dessa pesquisa, tivemos como referência os trabalhos de Grassmann, o primeiro matemático a propor, mesmo que, de forma inconsciente, a Axiomatização da Aritmética. A referência principal foi o artigo intitulado: A debate about the axiomatization of arithmetic: Otto Hölder against Robert Gramann de Mircea Radu (2003), no qual se encontra um debate a respeito da Axiomatização da Aritmética sob dois pontos de vista; por um lado, temos Otto Hölder que acreditava na natureza sintética da Matemática, sendo assim rejeitava o método axiomático como base para a mesma; por outro lado, Robert Grassmann e Hermann Grassmann que, também, concordam com a idéia de Hölder, pois rejeitam o método axiomático. No entanto, apresentaram uma abordagem da Aritmética, aparentemente, axiomática. Na verdade, Grassmann não entendia assim seu tratamento da Aritmética, pois as leis que definiriam os números naturais pertenciam à Álgebra, outra disciplina que Grassmann considerou como geradora de todas as outras. No desenvolvimento dessa pesquisa, indicamos que as bases da axiomatização da Aritmética estavam no bojo das grandes transformações ocorridas na Matemática durante o século XIX e início do XX: o aparecimento das Geometrias não-euclidianas, a libertação da Álgebra das veias da Aritmética e o processo intrincado da Aritmetização da Análise. Nesse período, também, desenvolveu-se a discussão da pertinência ou não do uso do método 9 axiomático, como um fundamento da Aritmética. Concluiu-se que apesar de toda a polêmica desse período, a possibilidade da axiomatização da Aritmética e a adoção do princípio axiomático nas ciências formais contribuíram para o avanço das ciências exatas
70

Introduzindo o conceito de Média Aritmética na 4ª série do Ensino Fundamental, usando o ambiente computacional

Lima, Rosana Catarina Rodrigues de 15 March 2005 (has links)
Made available in DSpace on 2016-04-27T16:57:50Z (GMT). No. of bitstreams: 1 dissertacao_rosana_catarina_lima.pdf: 2534416 bytes, checksum: 869010040ed841f3ed56b18fbe50afba (MD5) Previous issue date: 2005-03-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The purpose of this study was to investigate the introduction of arithmetic mean concept based on the use of graphic representations, and with the assistance of computational environement by using the software Tabletop. To reach this purpose, a nearly experimental study has been accomplished with two groups of students, the experimental group GE and the control group GC both fourth graders of a Sao Paulo public school. The research was divided into three phases, namely: Pre-Test, Teaching Interference (experimental factor) and Post-Test. The activities composing the Teaching Interference have been adjusted to the Conceptual Fields Theory proposed by Vergnaud. To develop these activities we based on graphics understanding levels proposed by Curcio and on arithmetic mean properties proposed by Straus & Bichler. The GE has taken part in the three phases of the study seeing that the teaching interference activities, developed within computacional environment, aimed at both, the introduction of arithmetic mean concept and the graphics reading and interpretation development. The GC has also taken part in tests application, but it was left out the experimental factor. The study has intended to answer the following question: Which teaching interference contributions are proposed for the introduction of arithmetic mean concept into fourth graders , by making use of computational environment? To answer this research question, we based ourselves on qualified and quantified analysis of the results obtained from the tests in both groups and on the answers given by GE students to the activities cards of the intervention. By comparing the intergroups post-test results, one verify that the GE students have presented a better performance than the GC one s, specially regarding arithmetic mean concept. On the other hand, the analisys of the results within the groups pointed to an improvement in the post-test performed by the Experimental Group in respect to the pre-test, regarding the reading and interpretation of bar graphics, as well as in arithmetic mean concept. These data permit us to conclude that the introduction to arithmetic mean concept based on graphic representation has been favoured by the use of Tabletop software, since it allows the students to catch the proprieties and relations envolved in Conceptual Field formed by graphic reading and interpretation as well as arithmetic mean / O objetivo do estudo foi investigar a introdução do conceito de média aritmética com base no uso das representações gráficas e com o auxílio do ambiente computacional, dentro do qual foi empregado o software Tabletop. Para se atingir este objetivo, foi feito um estudo quase-experimental com dois grupos de alunos: o grupo experimental GE - e o grupo de controle GC - ambos da 4ª série Ensino Fundamental de uma escola da rede pública estadual da cidade de São Paulo. A pesquisa dividiu-se em três fases, a saber: Pré-teste, Intervenção de Ensino (fator experimental) e Pós-teste. As atividades constituintes da Intervenção de Ensino ajustaram-se à Teoria dos Campos Conceituais proposta por Vergnaud. Para elaboração das atividades tomou-se como base os níveis de compreensão de gráficos propostos por Curcio e as propriedades de média aritmética propostas por Strauss e Bichler. O GE participou das três fases do estudo, sendo as atividades de intervenção de ensino desenvolvidas em ambiente computacional, visando à introdução do conceito de média aritmética e o desenvolvimento da leitura e interpretação de gráficos. O GC também participou da aplicação dos testes, porém permaneceu isento da aplicação do fator experimental. O estudo propôs-se a responder à seguinte questão: Quais as contribuições da intervenção de ensino proposta para a introdução do conceito de média aritmética em alunos da 4ª série do Ensino Fundamental, com o uso do ambiente computacional? Para responder a esta questão de pesquisa, tomamos por base as análises quantitativa e qualitativa dos resultados obtidos nos testes em ambos os grupos e as respostas dadas pelos alunos do GE às fichas de atividades da intervenção. Na comparação intergrupos dos resultados do pós-teste, constatou-se que os alunos do GE mostraram um desempenho superior aos do GC, sobretudo, quanto ao conceito de média aritmética. Já a análise dos resultados intragrupos apontou uma melhora no desempenho dos alunos do GE no pós-teste em relação ao pré-teste, no que se refere à leitura e interpretação do gráfico de barras, assim como no conceito de média aritmética. Estes dados permitem concluir que a introdução ao conceito de média aritmética baseada na representação gráfica foi favorecida pelo emprego do software Tabletop, visto que este possibilitou ao aluno a descoberta de propriedades e relações envolvidas no Campo Conceitual constituído pela leitura e interpretação de gráficos e média aritmética

Page generated in 0.0709 seconds