• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 26
  • 17
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modified earthquake Olami-Feder-Christensen model with low noise and asperities

Gu, Xuan 12 August 2016 (has links)
An important class of physical systems is those that are driven and dissipative. One such system is the Olami-Feder-Christensen (OFC) model which was proposed as a model for earthquake faults. Previous investigations have shown that the OFC model can be described by equilibrium methods under certain circumstances. This observation has explained several aspects of the OFC model and earthquake faults. However, these studies were done at a relatively high level of noise and for systems with a high degree of homogeneity. But real earthquake faults have a very low level of noise and a large degree of inhomogeneity. In this work, a careful study of the noise and its relation to the stress transfer range, dissipation parameter, and system size is performed. In addition, a modified form of the OFC model is studied, where we added asperities. We carefully examined the effect of the asperities on various statistical properties of the model.
12

Development and Demonstration of Thermal Contact Conductance (TCC) Models for Contact Between Metallic Surfaces

Verma, Navni 09 July 2019 (has links)
No description available.
13

On the asperity point load mechanism for rolling contact fatigue

Dahlberg, Johan January 2007 (has links)
Rolling contact fatigue is a damage process that may arise in mechanical applications with repeated rolling contacts. Some examples are: gears; cams; bearings; rail/wheel contacts. The resulting damage is often visible with the naked eye as millimeter sized surface craters. The surface craters are here denoted spalls and the gear contact served as a case study. The work focused on the asperity point load mechanism for initiation of spalls. It was found that the stresses at asperity level may be large enough to initiate surface cracking, especially if the complete stress cycle was accounted for. The gear contact is often treated as a cylindrical contact. The thesis contains experimental and numerical results connected to rolling contact fatigue of cylindrical contacts. At the outset a stationary cylindrical contact was studied experimentally. The stationary test procedure was used instead of a rolling contact. In this way the number of contact parameters was minimized. The cylindrical contact resulted in four different contact fatigue cracks. The two cracks that appeared first initiated below the contact. The other two cracks developed at the contact surface when the number of load cycles and the contact load increased. The influence of a surface irregularity (asperity) was studied numerically with the Finite Element Method (FEM). Firstly, the stationary contact was modelled and investigated numerically. At the cylindrical contact boundary a single axisymmetric was included. The partially loaded asperity introduced a tensile surface stress, which seen from the asperity centre was radially directed. Secondly, FE simulations were performed where a single axisymmetric asperity was over-rolled by a cylindrical contact. The simulations were performed for pure rolling and rolling with slip. For both situations, tensile forward directed stresses in front of the asperity were found. The presence of slip and a surface traction greatly increased the stresses in front of the asperity. Finally, when rolling started from rest with applied slip, the distance to steady-state rolling was determined for elastic similar cylindrical rollers. / QC 20100702
14

On Modeling Three-Phase Flow in Discretely Fractured Porous Rock

Walton, Kenneth Mark January 2013 (has links)
Numerical modeling of fluid flow and dissolved species transport in the subsurface is a challenging task, given variability and measurement uncertainty in the physical properties of the rock, the complexities of multi-fluid interaction, and limited computational resources. Nonetheless, this thesis seeks to expand our modeling capabilities in the context of contaminant hydrogeology. We describe the numerical simulator CompFlow Bio and use it to model invasion of a nonaqueous phase liquid (NAPL) contaminant through the vadose zone and below the water table in a fractured porous rock. CompFlow Bio is a three-phase, multicomponent, deterministic numerical model for fluid flow and dissolved species transport; it includes capillary pressure and equilibrium partitioning relationships. We have augmented the model to include randomly generated, axis-aligned, discrete fracture networks (DFNs). The DFN is coupled with the porous medium (PM) to form a single continuum. The domain is discretized using a finite-volume scheme in an unstructured mesh of rectilinear control volumes (CVs). Herein we present the governing equations, unstructured mesh creation scheme, algebraic development of fracture intersection CV elimination, and coupling of PM CVs over a fracture plane to permit asperity contact bridged flow. We include: small scale two-phase water-air and NAPL-water simulations to validate the practice of intersection CV elimination; small scale simulations with water-air, NAPL-water, and NAPL-water-air systems in a grid refinement exercise and to demonstrate the effect of asperity contact bridged flow; intermediate scale 3D simulations of NAPL invading the saturated zone, based on the Smithville, Ontario, site; intermediate scale 2D and 3D simulations of NAPL invading the vadose zone and saturated zone with transient recharge, based on the Santa Susana Field Laboratory site, California. Our findings indicate that: the formulation provides a practical and satisfactory way of modeling three-phase flow in discretely fractured porous rock; numerical error caused by spatial discretization manifests itself as several biases in physical flow processes; that asperity contact is important in establishing target water saturation conditions in the vadose zone; and simulation results are sensitive to relative permeability-saturation-capillary pressure relationships. We suggest a number of enhancements to CompFlow Bio to overcome certain computational limitations.
15

On Modeling Three-Phase Flow in Discretely Fractured Porous Rock

Walton, Kenneth Mark January 2013 (has links)
Numerical modeling of fluid flow and dissolved species transport in the subsurface is a challenging task, given variability and measurement uncertainty in the physical properties of the rock, the complexities of multi-fluid interaction, and limited computational resources. Nonetheless, this thesis seeks to expand our modeling capabilities in the context of contaminant hydrogeology. We describe the numerical simulator CompFlow Bio and use it to model invasion of a nonaqueous phase liquid (NAPL) contaminant through the vadose zone and below the water table in a fractured porous rock. CompFlow Bio is a three-phase, multicomponent, deterministic numerical model for fluid flow and dissolved species transport; it includes capillary pressure and equilibrium partitioning relationships. We have augmented the model to include randomly generated, axis-aligned, discrete fracture networks (DFNs). The DFN is coupled with the porous medium (PM) to form a single continuum. The domain is discretized using a finite-volume scheme in an unstructured mesh of rectilinear control volumes (CVs). Herein we present the governing equations, unstructured mesh creation scheme, algebraic development of fracture intersection CV elimination, and coupling of PM CVs over a fracture plane to permit asperity contact bridged flow. We include: small scale two-phase water-air and NAPL-water simulations to validate the practice of intersection CV elimination; small scale simulations with water-air, NAPL-water, and NAPL-water-air systems in a grid refinement exercise and to demonstrate the effect of asperity contact bridged flow; intermediate scale 3D simulations of NAPL invading the saturated zone, based on the Smithville, Ontario, site; intermediate scale 2D and 3D simulations of NAPL invading the vadose zone and saturated zone with transient recharge, based on the Santa Susana Field Laboratory site, California. Our findings indicate that: the formulation provides a practical and satisfactory way of modeling three-phase flow in discretely fractured porous rock; numerical error caused by spatial discretization manifests itself as several biases in physical flow processes; that asperity contact is important in establishing target water saturation conditions in the vadose zone; and simulation results are sensitive to relative permeability-saturation-capillary pressure relationships. We suggest a number of enhancements to CompFlow Bio to overcome certain computational limitations.
16

Multibody dynamics model of a full human body for simulating walking

Khakpour, Zahra 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Khakpour, Zahra M.S.M.E., Purdue University, May 2017. Multibody Dynamics Model of A Full Human Body For Simulating Walking, Major Professor: Hazim El-Mounayri. Bipedal robotics is a relatively new research area which is concerned with creating walking robots which have mobility and agility characteristics approaching those of humans. Also, in general, simulation of bipedal walking is important in many other applications such as: design and testing of orthopedic implants; testing human walking rehabilitation strategies and devices; design of equipment and facilities for human/robot use/interaction; design of sports equipment; and improving sports performance & reducing injury. One of the main technical challenges in that bipedal robotics area is developing a walking control strategy which results in a stable and balanced upright walking gait of the robot on level as well as non-level (sloped/rough) terrains. In this thesis the following aspects of the walking control strategy are developed and tested in a high-fidelity multibody dynamics model of a humanoid body model: 1. Kinematic design of a walking gait using cubic Hermite splines to specify the motion of the center of the foot. 2. Inverse kinematics to compute the legs joint angles necessary to generate the walking gait. 3. Inverse dynamics using rotary actuators at the joints with PD (Proportional-Derivative) controllers to control the motion of the leg links. The thee-dimensional multibody dynamics model is built using the DIS (Dynamic Interactions Simulator) code. It consists of 42 rigid bodies representing the legs, hip, spine, ribs, neck, arms, and head. The bodies are connected using 42 revolute joints with a rotational actuator along with a PD controller at each joint. A penalty normal contact force model along with a polygonal contact surface representing the bottom of each foot is used to model contact between the foot and the terrain. Friction is modeled using an asperity-based friction model which approximates Coulomb friction using a variable anchor-point spring in parallel with a velocity dependent friction law. In this thesis, it is assumed in the model that a balance controller already exists to ensure that the walking motion is balanced (i.e. that the robot does not tip over). A multi-body dynamic model of the full human body is developed and the controllers are designed to simulate the walking motion. This includes the design of the geometric model, development of the control system in kinematics approach, and the simulation setup.
17

Dry Static Friction in Metals: Experiments and Micro-Asperity Based Modeling

Sista, Sri Narasimha Bhargava January 2014 (has links)
No description available.
18

MICROMECHANICS OF DEBOND GROWTH AND INTERFACIAL WEAR UNDER FATIGUE LOADING IN A TRANSPARENT CERAMIC COMPOSITE

Varadarajan, Bhadri Narayanan January 2000 (has links)
No description available.
19

The Asperity-deformation Model Improvements and Its Applications to Velocity Inversion

Bui, Hoa Q. 16 January 2010 (has links)
Quantifying the influence of pressure on the effective elastic rock properties is important for applications in rock physics and reservoir characterization. Here I investigate the relationship between effective pressure and seismic velocities by performing inversion on the laboratory-measured data from a suite of clastic, carbonate and igneous rocks, using different analytic and discrete inversion schemes. I explore the utility of a physical model that models a natural fracture as supported by asperities of varying heights, when an effective pressure deforms the tallest asperities, bringing the shorter ones into contact while increasing the overall fracture stiffness. Thus, the model is known as the ?asperity-deformation? (ADM) or ?bed-of-nails? (BNM) model. Existing analytic solutions include one that assumes the host rock is infinitely more rigid than the fractures, and one that takes the host-rock compliance into account. Inversion results indicate that although both solutions can fit the data to within first-order approximation, some systematic misfits exist as a result of using the rigid-host solution, whereas compliant-host inversion returns smaller and random misfits, yet out-of-range parameter estimates. These problems indicate the effects of nonlinear elastic deformation whose degree varies from rock to rock. Consequently, I extend the model to allow for the pressure dependence of the host rock, thereby physically interpreting the nonlinear behaviors of deformation. Furthermore, I apply a discrete grid-search inversion scheme that generalizes the distribution of asperity heights, thus accurately reproduces velocity profiles, significantly improves the fit and helps to visualize the distribution of asperities. I compare the analytic and numerical asperity-deformation models with the existing physical model of elliptical ?pennyshape? cracks with a pore-aspect-ratio (PAR) spectrum in terms of physical meaning and data-fitting ability. The comparison results provide a link and demonstrate the consistency between the use of the two physical models, making a better understanding of the microstructure as well as the contact mechanism and physical behaviors of rocks under pressure. ADM-based solutions, therefore, have the potential to facilitate modeling and interpretation of applications such as time-lapse seismic investigations of fractured reservoirs.
20

Modelling of surface initiated rolling contact fatigue crack growth using the asperity point load mechanism

Hannes, Dave January 2011 (has links)
<p>QC 20110523</p>

Page generated in 0.0815 seconds