• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 16
  • 9
  • 1
  • Tagged with
  • 75
  • 36
  • 36
  • 35
  • 35
  • 23
  • 21
  • 19
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Double optical gating

Gilbertson, Steve January 1900 (has links)
Doctor of Philosophy / Department of Physics / Zenghu Chang / The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10[superscript]-18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or “gate” a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.
22

Génération d'Impulsions Attosecondes dans les Atomes et les Molécules

Haessler, Stefan 03 December 2009 (has links) (PDF)
Dans plusieurs expériences, nous démontrons le potentiel du processus de génération d'harmoniques d'ordre élevé pour observer des dynamiques électroniques et nucléaires intra-moléculaires ultrarapides. La plus grande partie de cette thèse traite d'expériences où les molécules constituent le milieu de génération et le paquet d'ondes électronique recollisionnant joue le rôle d'une 'auto-sonde'. Les mesures de phase et amplitude de l'émission harmonique des molécules de CO2 et N2 alignées dans le référentiel du laboratoire nous permettent d'extraire l'élément de matrice du dipole de recombinaison. Ce dernier contient la signature d'une interférence quantique entre les parties libre et liée de la fonction d'onde électronique totale. L'utilisation de cette interférence quantique pour la mise-en-forme de l'émission XUV attoseconde (1as=10−18s) sera démontrée. De plus, nous étudions théoriquement la tomographie d'orbitales moléculaires à partir des éléments de matrice du dipole de recombinaison et nous démontrons sa faisabilité expérimentale. Ceci ouvre la perspective d'imager les distorsions ultra-rapides d'une orbitale frontière lors d'une réaction chimique. Dans une deuxième partie de cette thèse, nous utilisons la lumière XUV cohérente émise par des atomes d'argon pour photoioniser des molécules de N2 et mesurons comment une résonance auto-ionisante modifie la phase spectrale du paquet d'ondes de photoélectrons émis. Le dernier chapitre de ce manuscrit décrit des études de génération d'impulsions XUV attosecondes dans un milieu différent: des plasmas d'ablation. La première caractérisation temporelle d'une telle source démontre sa structure femtoseconde et attoseconde.
23

Ultra-intense laser-plasma interaction for applied and fundamental physics

Gonoskov, Arkady January 2013 (has links)
Rapid progress in ultra-intense laser technology has resulted in intensity levels surpassing 1022 W/cm2, reaching the highest possible density of electromagnetic energy amongst all controlled sources available in the laboratory. During recent decades, fast growth in available intensity has stimulated numerous studies based on the use of high intensity lasers as a unique tool for the initiation of nonlinear behavior in various basic systems: first molecules and atoms, then plasma resulting from the ionization of gases and solids, and, finally, pure vacuum. Apart from their fundamental importance, these studies reveal various mechanisms for the conversion of a laser pulse's energy into other forms, opening up new possibilities for generating beams of energetic particles and radiation with tailored properties. In particular, the cheapness and compactness of laser based sources of energetic protons are expected to make a revolution in medicine and industry.   In this thesis we study nonlinear phenomena in the process of laser radiation interacting with plasmas of ionized targets. We develop advanced numerical tools and use them for the simulation of laser-plasma interactions in various configurations relating to both current and proposed experiments. Phenomenological analysis of numerical results helps us to reveal several new effects, understand the physics behind them and develop related theoretical models capable of making general conclusions and predictions. We develop target designs to use studied effects for charged particle acceleration and for the generation of attosecond pulses of unprecedented intensity. Finally, we analyze prospects for experimental activity at the upcoming international high intensity laser facilities and uncover a basic effect of anomalous radiative trapping, which opens up new possibilities for fundamental science.
24

Classical mechanisms of recollision and high harmonic generation / Mécanismes classiques de recollisions et génération d'harmoniques d'ordres élevés

Berman, Simon 03 December 2018 (has links)
Trente ans après la démonstration de la production d'harmoniques laser par interaction laser-gaz non linéaire, la génération d'harmoniques d’ordre élevées (HHG) est utilisée pour sonder la dynamique moléculaire et réalise son potentiel technologique comme source compacte d'impulsions attosecondes XUV à la gamme de rayons X. Malgré les progrès expérimentaux, le coût de calcul excessif des simulations fondées sur les premiers principes et la difficulté de dériver systématiquement des modèles réduits pour l'interaction non perturbatif et à échelles multiples d'une impulsion laser intense avec un gaz macroscopique d'atomes ont entravé les efforts théoriques. Dans cette thèse, nous étudions des modèles réduits de premier principe pour HHG utilisant la mécanique classique. En utilisant la dynamique non linéaire, nous élucidons le rôle indispensable joué par le potentiel ionique lors des recollisions dans la limite du champ fort. Ensuite, en empruntant une technique de la physique des plasmas, nous dérivons systématiquement une hiérarchie de modèles hamiltoniens réduits pour l’interaction cohérente entre le laser et les atomes lors de la propagation des impulsions. Les modèles réduits permettent une dynamique électronique soit classique, soit quantique. Nous construisons un modèle classique qui concorde quantitativement avec le modèle quantique pour la propagation des composantes dominantes du champ laser. Dans une géométrie simplifiée, nous montrons que le rayonnement à fréquence anormalement élevée observé dans les simulations résulte de l’interaction délicate entre le piégeage d’électrons et les recollisions de plus grande énergie provoqués par les effets de propagation. / Thirty years after the demonstration of the production of high laser harmonics through nonlinear laser-gas interaction, high harmonic generation (HHG) is being used to probe molecular dynamics in real time and is realizing its technological potential as a tabletop source of attosecond pulses in the XUV to soft X-ray range. Despite experimental progress, theoretical efforts have been stymied by the excessive computational cost of first-principles simulations and the difficulty of systematically deriving reduced models for the non-perturbative, multiscale interaction of an intense laser pulse with a macroscopic gas of atoms. In this thesis, we investigate first-principles reduced models for HHG using classical mechanics. Using nonlinear dynamics, we elucidate the indispensable role played by the ionic potential during recollisions in the strong-field limit. Then, borrowing a technique from plasma physics, we systematically derive a hierarchy of reduced Hamiltonian models for the self-consistent interaction between the laser and the atoms during pulse propagation. The reduced models can accommodate either classical or quantum electron dynamics. We build a classical model which agrees quantitatively with the quantum model for the propagation of the dominant components of the laser field. In a simplified geometry, we show that the anomalously high frequency radiation seen in simulations results from the delicate interplay between electron trapping and higher energy recollisions brought on by propagation effects.
25

Generation and Application of Attosecond Pulses / Génération et application des impulsions Attosecondes

Diveki, Zsolt 13 December 2011 (has links)
En vue de la capture de réearrangements électroniques au sein d’une molécule ou au cours de réactions chimiques il est indispensable de développer un dispositif dont la résolution temporelle est attoseconde (as 1 as = 10−18 s). La voie naturelle est de rechercher des impulsions lumineuses dans cette gamme de durée. Leur fréquence centrale doit alors être dans la gamme UVX et couvrir plusieurs dizaines d’eVs. De plus, ses composantes fréquencielles doivent être synchronisées. Le processus de génération d’harmoniques d’ordre élevé (GHE) dans les gaz remplit ces exigences. Pendant ce processus, une impulsion laser de haute intensité est focalisée dans un jet de gaz, où son champ électrique courbe la barrière de potentiel d’un atome et permet l’ionisation tunnel d’un paquet d’ondes électronique (POE). Entrainé par le champ électrique du laser, le POE accélére et acquiert une énergie cinétique élevée. Dans le cas où il repasse au voisinage du coeur ionique cette énergie cinétique peut être émise sous la forme d’un photon UVX. Ces POE explorent la structure et la dynamique de l’ion dans un schéma d’auto-sonde: le POE émis à un instant donné revient lui même ultérieurement sonder l’ion. Plus précisément ce processus d’autosonde donne accès à la valeur complexe du dipôle de recombinaison moléculaire (DRM), lui-même determiné par les structures nucléaire et électronique de l’ion. Le dipôle de recombinaison, en rayonnant des harmoniques, encode ces caractéristiques dans l’amplitude, la phase et l’état de polarisation de l’émission harmonique. Grâce à la nature cohérente de la GHE nous pouvons mesurer ces trois paramètres.L’objectif de ma thèse de doctorat était double. En mettant en oeuvre des techniques avancées de caractérisation de l’amplitude, de la phase et de la polarisation des harmoniques nous avons dans un premier temps étudié la structure électronique de N2 et l’ionisation tunnel multi-canaux induite par le laser. Nous avons montré les reconstructions des plusieurs orbitals moléculaires et révélé la vibration nucléaire ultra-rapide en fonction des canaux d’ionisations. Dans un deuxième temps nous avons étudié la réflectivité et la dispersion de miroirs UVX à compensation de dérive de fréquence, fabriqués sur mesure. Ces miroirs autorisent la mise en forme temporelle d’une impulsion attoseconde, compriment la durée de l’impulsions où introduisent un TOD. Nous avons aussi proposé un nouveau façonneur d’impulsions. / To capture electronic rearrangements inside a molecule or during chemical reactions, attosecond (as, 1 as =10−18 s) time resolution is needed. To create a light pulse with this duration, the central frequency has to be in the XUV range and cover several tens of eVs. Moreover, the frequency components have to be synchronized. The so called High Harmonic Generation (HHG) in gases well suits this task. During this process a high intensity laser pulse is focused in a gas jet, where its electric field bends the potential barrier of an atom allowing an electron wave packet (EWP) to tunnel ionize. Following the electric field of the laser the EWP gets accelerated, gaining a large kinetic energy that may be released as a high energy (XUV) photon in the event of a re-collision with the ionic core. These recolliding EWP probe the structure and dynamics of the core in a self-probing scheme: the EWP, that is emitted by the molecule at a certain time, probes itself later. More precisely, this ”self-probing” scheme gives access to the complex valued recombination dipole moment (RDM) of the molecule which is determined by both the nuclear and electronic structure. The recombination encodes these characteristics into the spectral amplitude, phase and polarization state of the harmonic radiation emitted by the dipole. Due to the coherent nature of HHG it is possible to measure all these three parameters. Moreover, it is in principle possible through a tomographic procedure to reconstruct the radiating orbital.The objective of my thesis was two-fold. By implementing advanced characterization techniques of the harmonic amplitude, phase and polarization we studied i) the electronic structure of N2 and laser induced multi-channel tunnel ionization. We presented the reconstruction of molecular orbitals and revealed the ionization channel dependent ultrafast nuclear vibration. We also studied ii) the reflectivity and dispersion of recently designed chirped XUV mirrors that can shape the temporal profile of attosecond pulses. With these mirrors we could control the spectral phase over 20 eV and compensate the GDD of the harmonics or introduce a TOD. We also proposed a novel attosecond pulse shaper.
26

Contrôle et métrologie de la génération d'harmoniques sur miroir plasma / Control and metrology of high harmonic generation on plasma mirror

Monchocé, Sylvain 21 November 2014 (has links)
Lorsqu'on focalise une impulsion laser femtoseconde ultraintense à très haut contraste sur une cible solide, le champ laser au foyer est suffisamment important pour ioniser la surface durant le front montant de l'impulsion et former un plasma. Au sein de ce plasma s'établit un gradient de densité résultant de l'expansion hydrodynamique du plasma. Ce plasma très dense, réfléchit le faisceau laser incident dans la direction spéculaire: on parle alors de miroir plasma. Comme l'interaction entre le laser et le miroir plasma est fortement non-linéaire, cela conduit à la génération d'harmoniques d'ordre élevé dans le faisceau réfléchi. Dans le domaine temporel, ce spectre d'harmonique est associé à un train d'impulsions attosecondes. Les objectifs de ma thèse étaient de contrôler expérimentalement cette génération d'harmoniques et d'en mesurer toutes les propriétés. Nous nous sommes intéressés dans un premier temps, à l'optimisation du signal harmonique, puis à la caractérisation spatiale en champ lointain du faisceau harmonique (divergence des harmoniques).Si la caractérisation et le contrôle de ces propriétés sont des points importants pour le développement de la source, ces résultats permettent également une meilleure compréhension de l'interaction laser-plasma à ultra-haute intensité. Ils nous ont notamment permis d'obtenir des informations cruciales sur les dynamiques électronique et ionique du plasma, démontrant ainsi qu'il est possible d'utiliser les harmoniques comme un diagnostic de l'interaction laser-plasma.Nous introduisons également une méthode complètement optique permettant de structurer un plasma in-situ. En tirant partie des propriétés de l'expansion d'un plasma, nous avons pu créer in-situ des réseaux plasmas transitoires, que nous avons ensuite exploités pour réaliser les premières mesures ptychographiques à des intensités de 10^19W/cm^2, permettant de mesurer entièrement, pour la première fois, les propriétés spatiales des harmoniques (taille de source et phase) dans le plan de leur génération. / When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of attosecond pulses.The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/attosecond light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction.We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultraintense laser pulse to establish their usability atrelativistically high intensities. We then show how these gratings can be used as a `spatial ruler' to determine the source size of the high-order harmonic beams roduced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh intensity plasmonics.
27

Ultrafast XUV Spectroscopy: Unveiling the Nature of Electronic Couplings in Molecular Dynamics

Timmers, Henry Robert January 2014 (has links)
Molecules are traditionally treated quantum mechanically using the Born-Oppenheimer formalism. In this formalism, different electronic states of the molecule are treated independently. However, most photo-initiated phenomena occurring in nature are driven by the couplings between different electronic states in both isolated molecules and molecular aggregates, and therefore occur beyond the Born-Oppenheimer formalism. These couplings are relevant in reactions relating to the perception of vision in the human eye, the oxidative damage and repair of DNA, the harvesting of light in photosynthesis, and the transfer of charge across large chains of molecules. While these reaction dynamics have traditionally been studied with visible and ultraviolet spectroscopy, attosecond XUV pulses formed through the process of high harmonic generation form a perfect tool for probing coupled electronic dynamics in molecules. In this thesis, I will present our work in using ultrafast, XUV spectroscopy to study these dynamics in molecules of increasing complexity. We begin by probing the relaxation dynamics of superexcited states in diatomic O₂. These states can relax via two types of electronic couplings, either through autoionization or neutral dissociation. We find that our pump-probe scheme can disentangle the two relaxation mechanisms and independently measure their contributing lifetimes. Next, we present our work in observing a coherent electron hole wavepacket initiated by the ionization of polyatomic CO₂ near a conical intersection. The electron-nuclear couplings near the conical intersection drive the electron hole between different orbital configurations. We find that we can not only measure the lifetime of quantum coherence in the electron hole wavepacket, but also control its evolution with a strong, infrared probing field. Finally, we propose an experiment to observe the migration of an electron hole across iodobenzene on the few-femtosecond timescale. We present experimental modifications made to the high harmonic generation set-up in order to probe this ultrafast and elusive charge migration. These results demonstrate the potential of ultrafast, XUV spectroscopy in probing the inner-workings of electronic couplings occurring in nature.
28

Propriétés statiques et dynamiques électroniques ultrarapides dans les molécules carbonées, du régime linéaire au non-linéaire / Static properties and ultrafast electronic dynamics in carbonate molecules, from linear to non-linear regime

Barillot, Thomas 09 October 2013 (has links)
Les travaux présentés dans cette thèse s'inscrivent dans le cadre du projet MUSES (MUltiscale Electron Spectroscopy) qui consiste en une approche expérimentale et théorique combinée de l'étude des dynamiques électroniques dans les molécules sur une large fenêtre de temps. Ils se concentrent particulièrement sur les dynamiques électroniques dans les molécules carbonées aux échelles femtoseconde et attoseconde. Pour comprendre les processus à l'oeuvre dans ces systèmes complexes, il est nécessaire d'effectuer une étude approfondie de leurs propriétés électroniques en régime d'excitation à la fois linéaire et non linéaire. En effet, une grande partie des modèles de dynamiques électroniques valides dans le cas d'atomes s'effondrent lorsque l'on considère des molécules polyatomiques. Par ailleurs, l'accès à des sources de lumière ultrarapides permet maintenant de sonder expérimentalement des processus multiélectroniques ultrabrefs et de les confronter aux modèles théoriques. Les systèmes modèles C60, PAHs (Naphtalène, Anthracène et Pyrène) et les bases de l'ADN/ARN (bases pyrimidiques Cytosine, Thymine, Uracile) ont été les principaux systèmes étudiés dans cette perspective. Les expériences ont été conduites en spectroscopie de photoélectrons résolue en angle (VMIS) et spectroscopie de masse des produits d'ionisation, sous excitation XUV (10-30 eV) en champ faible (rayonnement synchrotron) ou proche Infrarouge en champ laser intense (∼1013 W/cm2) ainsi que sur une ligne laser pompe sonde XUV-IR disposant d'une résolution temporelle d'une centaine d'attosecondes. A l'aide de ces outils, nous avons mis en évidence et modélisé l'influence de la résonance plasmon de surface à 20 eV dans la dynamique de photoionisation du C60 à l'échelle attoseconde. Nous avons identifié la population d'états de Rydberg similaires lors de l'excitation des bases de l'ADN/ARN par un champ laser infrarouge intense, ce qui permet de contraindre les modèles théoriques sur la réponse non linéaire de systèmes complexes exposés à ce type de rayonnement. Enfin nous avons pu observer en temps des dynamiques non adiabatiques (couplages électrons-noyaux à l'échelle de plusieurs femtosecondes) dans les PAH consécutives à des processus d'ionisation et d'excitation multiélectroniques (mécanisme de shake-up) / The works presented in this thesis are part of project MUSES (MUltiscale Electron Spectroscopy) which consist in a combined experimental and theoretical approach on the study of electronic dynamics in molecules over a large time range. They concentrate particularly on electrons dynamics in carbonates molecules at the femtosecond and attosecond timescales. In order to understand processes occurring in those complex systems, it is necessary to study them in linear excitation regime as well as non linear one. Indeed, many electron dynamics theoretical models, valid in case of atoms or diatomic systems collapse in the case of polyatomic molecules. Moreover, the access to ultrafast light sources now allows to probe multielectronic processes and confront experimental results to theoretical calculations. Model systems C60, PAHs (Naphtalene, Anthracene and Pyrene) as well as DNA/RNA bases (pyrimidic bases Cytosine, Thymine, Uracile) have been the principal objects of study in that purpose. Experiments have been done in angularly resolved photoelectron spectroscopy and ionisation products mass spectroscopy, under XUV (10-30 eV) weak field synchrotron excitation, intense near infrared (I 1013 W/cm2) excitation as well as on a pump-probe XUV-IR laser beamline that give access to a hundred attosecond time resolution. With help of those tools, we evidenced and modeled the influence of the surface plasmon resonance of C60 at 20 eV in its photoionization dynamics at the attosecond timescale. We identified the population of Rydberg states during multiphoton ionisation of DNA/RNA bases similar for all the bases. This constraints theoretical models about non linear response of complex system under those excitation conditions. Finally we have been able to observe non adiabatic dynamics (electrons-nucleus couplings at a few tens of femtoseconds timescale) that appear consecutively of multielectronic excitation and ionization processes (shake-up mechanism)
29

Study on generation of attosecond pulse with polarization gating

Ghimire, Shambhu January 1900 (has links)
Doctor of Philosophy / Department of Physics / Zenghu Chang / It is still a dream to image the dynamics of electrons in atoms and molecules experimentally. This is due to the fact that such motion takes place in an ultra-short time scale; for example, an electron moves around the Bohr orbit in about 150-as (1 as = 10 -18 s), and pulses much shorter than this limit are not currently available to probe such fast dynamics. In recent years, an isolated single attosecond pulse has been produced by extracting the cutoff of harmonic spectrum driven by a laser pulse as short as ~ 5fs (1fs =10-15 s). But, these pulses are still too long in order to make the dream come true. Here, we study the possibility of generation of a much shorter and wavelength tunable single attosecond pulse by using polarization gating. In the experiment, we compressed ~30fs pulses from the laser amplifier down to ~6fs and characterized them. These linearly polarized pulses were converted to ellipticity varying pulses, and by exploiting the property of the strong dependence of the harmonic signal with the ellipticity of the laser, an XUV supercontinuum was produced in the harmonic spectrum which could support 60-as pulses. The bandwidth of such a supercontinuum, and therefore the duration of the attosecond pulses, is limited mainly by the currently available energy of the driving laser pulses at few cycle limits. In this project, we present an approach which allowed us to scale up the energy of such pulses by a factor of 1.5 in “Hollow Core Fiber / Chirped Mirrors Compressor”. Finally, in order to temporarily characterize the attosecond pulses we designed and built an “Attosecond Streak Camera”. Most of such cameras to date are limited to measuring a 1 dimensional energy spectrum and have only a few degrees of acceptance angle. Our camera is capable of measuring 2d momentum of the photoelectrons with large acceptance angle, for example ~ 65o at the photoelectron of energy ~15 eV. Recently, we observed the sidebands in addition to the main peaks in their laser assisted XUV photoelectron spectrum. The single attosecond pulses, after being characterized with this high speed camera, can be used to explore the dynamics of electrons at the attosecond scale.
30

Polarimétrie harmonique et spectroscopie de photoionisation attoseconde / Harmonic polarimetry and attosecond photoionization spectroscopy

Gruson, Vincent 14 December 2015 (has links)
La physique attoseconde est un domaine en pleine expansion, intrinsèquement lié au processus de génération d’harmoniques d’ordre élevé. Cette émission, sous forme d’un train d’impulsions attosecondes ou d’une impulsion attoseconde isolée, constitue une source de lumière dans le domaine spectral extrême-UV (XUV), ultra-brève, cohérente, parfaitement synchrone du champ générateur. Deux thématiques ont été abordées. La première consiste en la caractérisation complète de l’état de polarisation des harmoniques par Polarimétrie Moléculaire en collaboration avec l’ISMO-Orsay. Cette technique est basée sur la mesure de la distribution angulaire des photoélectrons dans le référentiel moléculaire lors de l’ionisation dissociative de la molécule de NO. Nous l’appliquons à trois configurations produisant un rayonnement harmonique polarisé elliptiquement. Nous obtenons ainsi, pour la première fois, la valeur absolue de l’ellipticité harmonique, son signe, ainsi que le taux de dépolarisation.La seconde thématique est la photoionisation attoseconde résonante : nous avons étudié la photoionisation de l’hélium au voisinage de la résonance d'autoionisation 2s2p à 60.15eV, excitée par une impulsion XUV accordable et sondée par une impulsion laser IR en utilisant la technique RABBIT, qui permet la mesure de l’amplitude et de la phase spectrales de la transition résonante à deux photons. Il est ainsi possible de reconstruire dans le domaine temporel, le paquet d'ondes électronique (POE) à 2 photons. Ces mesures ont été complétées par des simulations effectuées par nos collaborateurs à UAM-Madrid et au LCPMR-Paris, qui montrent que, dans nos conditions expérimentales, ce paquet à deux photons est une image fidèle du paquet résonant à un photon. Ceci représente la première reconstruction de la dynamique temporelle d’une résonance non perturbée par le champ laser, avec une résolution attoseconde. / Attosecond physics is an expending field, intrinsically linked to the High Harmonic Generation process. This emission, which can be either an attosecond pulse train or an isolated attosecond pulse, constitutes a light source in the extreme-UV (XUV) spectral domain, coherent, perfectly synchronous of the generating field. Two thematic have been studied. The first one consists in the complete characterization of the harmonic emission through Molecular Polarimetry, in collaboration with ISMO-Orsay. This technique is based on the measurement of the Molecular Frame PhotoElectron Angular Distribution, during the dissociative ionization of NO molecules. We applied this technique to three configurations producing an elliptically polarized light. For the first time, we obtain the absolute value of the ellipticity, its sign and the depolarization rate. The second topic is the resonant attosecond photoionization: we studied the photoionization of helium, close to the 2s2p autoionization resonance at 60.15 eV, excited by a tunable XUV pulse and probed by an IR pulse, using RABBIT technique, enabling the measurement of the spectral amplitude and phase of the two photons resonant transition. From this, we can reconstruct the two-photons electron wave packets (EWP). These measurements have been completed by simulations done by our collaborator from UAM-Madrid and LCPMR-Paris, showing that, in our experimental conditions, this two photons EWP corresponds to the image of the one-photon EWP. This measurement is the first reconstruction of the temporal dynamic of a resonance non-perturbed by a laser field, with an attosecond resolution.

Page generated in 0.0542 seconds