• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 16
  • 9
  • 1
  • Tagged with
  • 75
  • 36
  • 36
  • 35
  • 35
  • 23
  • 21
  • 19
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Le moment angulaire de la lumière en génération d'harmoniques d'ordre élevé / The angular momentum of light in high harmonic generation

Géneaux, Romain 13 December 2016 (has links)
Le moment angulaire est une quantité essentielle pour l'étude d'objets en interaction. Tout comme la matière, un rayonnement porte du moment angulaire. Il se décompose en deux composantes, moment angulaire de spin (MAS) et moment angulaire orbital (MAO). Chacune de ces composantes a des propriétés spécifiques et ont donné lieu à de nombreuses applications en utilisant de la lumière dans le domaine visible et infrarouge. Dans cette thèse, nous nous proposons d'étudier le comportement des deux types de moment angulaire de la lumière dans un processus très non-linéaire appelé génération d'harmoniques d'ordre élevé (GHOE). Dans ce processus physique connu depuis 1987, un laser infrarouge intense est focalisé dans un jet d'atomes ou de molécules, ce qui dans le bon régime d'intensité permet de générer un rayonnement à courte longueur d'onde (domaine extrême ultraviolet) et extrêmement bref (attoseconde, 1 as = 10⁻¹⁸ s). Nous commençons par décrire théoriquement ce processus, ainsi que définir de manière approfondie la notion de moment angulaire de la lumière. Nous étudions ensuite la GHOE à partir d'un faisceau infrarouge portant du MAO, ce qui nous permet d'obtenir une source unique, générant des impulsions lumineuses ultrabrève de moment angulaire orbital contrôlé et de longueur d'onde de l'ordre de 10nm. Nous étudions étudions la GHOE à partir de faisceaux portant du MAS. En utilisant une résonance du gaz de génération, nous parvenons à transmettre ce moment angulaire au rayonnement extrême ultraviolet. Ce rayonnement est ensuite utilisé pour mesurer des dichroïsmes circulaires de photoionisation dans des molécules chirales, mesures auparavant réservées aux sources synchrotrons. Ceci ouvre la voie à des mesures chirotpiques résolues en temps à l'échelle femto/attoseconde. / Angular momentum is an ubiquitous quantity in all areas of physics. Just like matter, radiation carries angular momentum. It can be decomposed in two parts, namely the spin angular momentum (SAM) and the orbital angular momentum (OAM). Each one of these components has very specific properties and lead to numerous applications using visible and infrared light. In this thesis, we study the behavior of these two types of light angular momentum in a very non-linear process called high harmonic generation (HHG). In this physical process known since 1987, an intense infrared laser is focused into an atomic or molecular gas jet, which in the right intensity regime allows to generate a radiation which has a short wavelength (extreme ultraviolet domain) and is extremely brief (attosecond, 1 as = 10⁻¹⁸ s).We begin by describing theoretically this process, as well as defining in depth the notion of light angular momentum. We then study HHG from an infrared laser carrying OAM. This allows to obtain an unique light source, generating ultrashort light pulses of controlled orbital angular momentum with a wavelength of the order of 10 nm. We then study GHOE from beams carrying MAS. Using a resonance from the generation gas, we manage to transfer this angular momentum to the emitted extreme ultraviolet radiation. This radiation is finally used to measure photoionisation circular dichroisms in chiral molecules, measurements previously restricted to synchrotron sources. This paves the way towards chiroptic time resolved measurement on a femto/attosecond timescale.
32

Étude de dynamiques de photoionisation résonante à l'aide d'impulsions attosecondes / Application of attosecond pulses to resonant photoionization dynamics

Barreau, Lou 18 December 2017 (has links)
Cette thèse s’intéresse à la photo-ionisation de systèmes atomiques et moléculaires en phase gazeuse à l’aide d’harmoniques d’ordre élevé, un rayonnement cohérent dans le domaine de l’extrême ultraviolet (10-100 eV) sous la forme de trains d’impulsions attosecondes (1 as = 10-18 s). Dans un premier temps, les dynamiques électroniques au cours de l’auto-ionisation de gaz rares sont étudiées par interférométrie électronique. L’auto-ionisation résulte de l’interférence entre un chemin d’ionisation direct et un chemin résonant pour lequel l’atome reste transitoirement piégé dans un état excité.L’amplitude de la transition associée à ces processus est accessible via des expériences de photo-ionisation dans le domaine spectral (sur synchrotron par exemple), mais ce n’est pas le cas de la phase qui est pourtant essentielle à la compréhension de la dynamique électronique.Nous avons développé plusieurs méthodes interférométriques afin de mesurer la phase spectrale associée aux transitions électroniques vers des résonances de Fano dans les gaz rares.A partir des informations dans le domaine spectral, nous avons reconstruit pour la première fois la dynamique d'auto-ionisation ultra-rapide dans le domaine temporel et observé les interférences électroniques donnant lieu au profil de raie asymétrique. Dans un second temps, la photo-ionisation de molécules de NO est étudiée dans le référentiel moléculaire et utilisée comme un polarimètre afin de caractériser complètement l’état de polarisation du rayonnement harmonique, et en particulier de distinguer la partie du rayonnement polarisée circulairement d’une éventuelle partie dépolarisée. Nous présentons les résultats des mesures de polarimétrie moléculaire dans le cas de la génération d’harmoniques par un champ à deux couleurs polarisées circulairement en sens opposé. Ces études, complétées par des simulations numériques, permettent de proposer des conditions optimales de génération de rayonnement harmonique polarisé circulairement et contribuent à ouvrir la voie vers des études de dichroïsme circulaire ultrarapide dans la matière. / In this work, photoionzation of atomic and molecular species in the gas phase is investigated with high-harmonic radiation. In a first part, electronic dynamics in the autoionization process of rare gases in studied with electron interferometry. This method gives access to the spectral phase of the transition to the autoionizing state, and allows there construction of the entire autoionization dynamics. The ultrafast electronic dynamics, as well as the build-up of the celebrated asymmetric Fano profile, are observed experimentally for the first time. In a second part, photoionization of NO molecules in the molecular frame is used as a polarimeter to completeley characterize the polarization state of high-harmonics. In particular, this method can address the challenging disentanglement of the circular and unpolarized components of the light. The experimental results, completed by numerical simulations, allow defining optimal generation conditions of fully circularly-polarized harmonics for advanced studies of ultrafast dichroisms in matte
33

Application of Attosecond Techniques to Condensed Matter Systems

Smith, Gregory J. 04 October 2021 (has links)
No description available.
34

Calculations on the possibilities for photoionization-delay studies with circularly polarized light

Sörngård, Johanna January 2021 (has links)
Advances in experimental physics, specifically light sources emitting at an attosecond time scale, has enabled the time resolution of atomic processes like photoionization. Recent developments have allowed these sources to produce light with non-linear polarization. There exists various theoretical methods that can simulate experimental set-ups that make use of these attosecond sources. The aim of this thesis project was to extend two of these methods to be able to simulate circularly polarized light in order to both better model experimental results and come up with new potentially interesting experiments. This has resulted in an extended version of the Random Phase Approximation with Exchange method capable of simulating an ionization process by light of arbitrary polarization, as well as well as an extended version of the NewStock package that is capable of time-resolved simulation of matter interactions with arbitrary light pulses.
35

Attosecond spectroscopy : study of the photoionization dynamics of atomic gases close to resonances / Spectroscopie attoseconde : étude de la dynamique de photoionisation de gaz atomiques au voisinage des résonances

Alexandridi, Christina-Anastasia 19 December 2018 (has links)
L'interaction des puissantes impulsions laser avec les gaz atomiques et moléculaires entraîne l’émission de flashs exceptionnellement brefs de lumière XUV grâce au processus de génération harmonique d'ordre élevé (GHOE) de la fréquence laser fondamentale. Ce rayonnement ultra-bref, dans la gamme attoseconde (10⁻¹⁸ s), permet des investigations détaillées de la dynamique électronique ultra-rapide dans la matière. Le travail de cette thèse consiste à étudier les délais de photoionisation au voisinage de différents types de résonances, en utilisant la technique Rainbow RABBIT. Il s'agit d'une technique interférométrique à deux couleurs (XUV + IR) qui permet d'accéder au temps nécessaire à l'électron pour s'échapper du potentiel atomique avec une haute résolution. Nous nous intéressons particulièrement à deux cas: i) les résonances auto-ionisantes spectralement étroites (dizaines de meV) et ii) les minima de type Cooper ayant une largeur spectrale de quelques eV. L'effet de ces structures de continuum sur la dynamique d'ionisation correspondante est étudié. / The interaction of intense laser pulses with atomic and molecular gases results in exceptionally short bursts of XUV light, through the process of high-order harmonic generation of the fundamental laser frequency. This ultrashort radiation, in the attosecond (10⁻¹⁸ s) range, allows detailed investigations of ultrafast electron dynamics in matter. The work of this thesis consists in studying the photoionization delays close to different types of resonances, using the Rainbow RABBIT technique. This is a two-color interferometric technique (XUV + IR) that allows access to the time required for the electron to escape the atomic potential with high resolution. We are particularly interested in two cases: i) autoionizing resonances which are spectrally narrow (tens of meV) and ii) Cooper-type minima which have a spectral width of some eV. The effect of these continuum structures on the corresponding ionization dynamics is studied.
36

Near-single-cycle laser for driving relativistic plasma mirrors at kHz repetition rate - development and application / Génération d'impulsions laser proches du cycle optique pour le pilotage de miroirs plasma relativistes au kHz

Böhle, Frederik 08 December 2017 (has links)
Les impulsions laser ultrabrèves nous permettent de suivre en temps réel les phénomènes ultrarapides au sein de la matière à l’échelle microscopique. C’est précisément pour l’invention de la chimie à l’échelle femtoseconde, ou femtochimie, qu’Ahmed Zewail se vit décerner le prix Nobel de chimie en 1999. Depuis les utilisateurs du laser cherchent à augmenter la résolution temporelle, c’est-à-dire réduire la durée des impulsions laser. Aujourd’hui, nous savons générer des flashs lumineux à l’échelle attoseconde dans le domaine spectral de l’extrême ultraviolet (XUV) mais l’efficacité de génération reste faible et le développement de sources laser attosecondes intenses constitue un sujet de recherche très actif sur le plan international.Notre groupe au LOA se concentre sur la génération d’impulsions attoseconde sur miroir plasma en régime relativiste. Pour cela, il cherche à développer une source d’impulsions femtosecondes à forte cadence et fort contraste et suffisamment énergétiques pour atteindre des intensités relativistes (>> 10^18W/cm2) lorsqu’elles sont fortement focalisées sur un plasma surdense. Un plasma surdense réfléchit la lumière incidente et par conséquent agit comme un miroir qui se déplaçant à vitesse relativiste et qui comprime l’impulsion incidente, produisant ainsi un flash attoseconde par cycle optique. En utilisant des impulsions proches d’un cycle optique, il est donc envisageable de générer une seule impulsion attoseconde intense pendant l’interaction.Dans la première partie de mon travail de thèse, j’ai réalisé un compresseur nonlinéaire pour réduire la durée des impulsions issues d’une chaîne à double dérive de fréquence (10mJ, 25fs, 1kHz) à phase enveloppe-porteuse (CEP) stabilisée. En propageant les impulsions du laser à haute intensité dans une fibre creuse remplie de gaz rare, j’ai réussi à générer des impulsions de 1.3 cycle optique avec une puissance crête autour de 1TW avec une CEP stabilisée. Dans un deuxième temps, j’ai mis en forme spatialement et temporellement les impulsions issues du compresseur à fibre pour générer à la fois des impulsions attosecondes intenses et des faisceaux d’électrons énergétiques sur un miroir plasma à gradient de densité contrôlé. Ces expériences nous permis, pour la première fois, de mettre en évidence la production d’impulsions attosecondes isolées dans l’XUV, l’émission corrélée de faisceaux d’électrons énergétiques en régime relativiste ainsi qu’un nouveau régime d’accélération d’électrons à très long gradient plasma. / Very short light pulses allow us to resolve ultrafast processes in molecules, atoms and condensed matter. This started with the advent of Femtochemistry, for which Ahmed Zewail received the Novel Prize in Chemistry in 1999. Ever since, researcher have been trying to push the temporal resolution further and we have now reached attosecond pulse durations. Their generation, however, remains very challenging and various different generation mechanisms are the topic of heated research around the world.Our group focuses on attosecond pulse generation and ultrashort electron bunch acceleration on solid targets. In particular, this thesis deals with the upgrade of a high intensity, high contrast, kHz, femtosecond laser chain to reach the relativistic interaction regime on solid targets. Few cycle driving laser pulses should allow the generation of intense isolated attosecond pulses. A requirement to perform true attosecond pump-probe exeriments.To achive this, a HCF postcompression scheme has been conceived and implemented to shorten the duration of a traditional laser amplifier. With this a peak intensity of 1TW was achieved with near-single-cycle pulse duration. For controlled experiments, a vacuum beamline was developed and implemented to accurately control the laser and plasma conditions on target.During the second part of this thesis, this laser chain was put in action to drive relativistic harmonic generation on solid targets. It was the first time ever that this has been achieved at 1 kHz. By CEP gating the few-cycle-pulses, single attosecond pulses were generated. This conclusion has been supported by numerical simulations. Additionally a new regime to accelerate electron bunches on soft gradients has been detected.
37

Characterization And Application Of Isolated Attosecond Pulses

Chini, Michael 01 January 2012 (has links)
Tracking and controlling the dynamic evolution of matter under the influence of external fields is among the most fundamental goals of physics. In the microcosm, the motion of electrons follows the laws of quantum mechanics and evolves on the timescale set by the atomic unit of time, 24 attoseconds. While only a few time-dependent quantum mechanical systems can be solved theoretically, recent advances in the generation, characterization, and application of isolated attosecond pulses and few-cycle femtosecond lasers have given experimentalists the necessary tools for dynamic measurements on these systems. However, pioneering studies in attosecond science have so far been limited to the measurement of free electron dynamics, which can in most cases be described approximately using classical mechanics. Novel tools and techniques for studying bound states of matter are therefore desired to test the available theoretical models and to enrich our understanding of the quantum world on as-yet unprecedented timescales. In this work, attosecond transient absorption spectroscopy with ultrabroadband attosecond pulses is presented as a technique for direct measurement of electron dynamics in quantum systems, demonstrating for the first time that the attosecond transient absorption technique allows for state-resolved and simultaneous measurement of bound and continuum state dynamics. The helium atom is the primary target of the presented studies, owing to its accessibility to theoretical modeling with both ab initio simulations and to model systems with reduced dimensionality. In these studies, ultrafast dynamics – on timescales shorter than the laser cycle – are observed in prototypical quantum mechanical processes such as the AC Stark and ponderomotive energy level shifts, Rabi oscillations and electromagnetically-induced absorption iv and transparency, and two-color multi-photon absorption to “dark” states of the atom. These features are observed in both bound states and quasi-bound autoionizing states of the atom. Furthermore, dynamic interference oscillations, corresponding to quantum path interferences involving bound and free electronic states of the atom, are observed for the first time in an optical measurement. These first experiments demonstrate the applicability of attosecond transient absorption spectroscopy with ultrabroadband attosecond pulses to the study and control of electron dynamics in quantum mechanical systems with high fidelity and state selectivity. The technique is therefore ideally suited for the study of charge transfer and collective electron motion in more complex systems. The transient absorption studies on atomic bound states require ultrabroadband attosecond pulses − attosecond pulses with large spectral bandwidth compared to their central frequency. This is due to the fact that the bound states in which we are interested lie only 15-25 eV above the ground state, so the central frequency of the pulse should lie in this range. On the other hand, the bandwidth needed to generate an isolated 100 as pulse exceeds 18 eV – comparable to or even larger than the central frequency. However, current methods for characterizing attosecond pulses require that the attosecond pulse spectrum bandwidth is small compared to its central frequency, known as the central momentum approximation. We therefore explore the limits of attosecond pulse characterization using the current technology and propose a novel method for characterizing ultrabroadband attosecond pules, which we term PROOF (phase retrieval by omega oscillation filtering). We demonstrate the PROOF technique with both simulated and experimental data, culminating in the characterization of a world-record-breaking 67 as pulse.
38

High Flux Isolated Attosecond Pulse Generation

Wu, Yi 01 January 2013 (has links)
This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory. First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a chirped pulse amplifier up to the current date. Second, using this laser as a driving laser source, the generalized double optical gating method is employed to generate isolated attosecond pulses. Detailed gate width analysis of the ellipticity dependent pulse were performed. Calculation of electron light interaction dynamics on the atomic level was carried out to demonstrate the mechanism of isolated pulse generation. Third, a complete diagnostic apparatus was built to extract and analyze the generated attosecond pulse in spectral domain. The result confirms that an extreme ultraviolet super continuum supporting 230 as isolated attosecond pulses at 35 eV was generated using the generalized double optical gating technique. The extreme ultraviolet pulse energy was ∼100 nJ at the exit of the argon gas target.
39

Three Aspects of Photoionization in Ultrashort Pulses

Azizi, Sajad 09 November 2023 (has links)
This document is Sajad Azizi's doctoral thesis titled 'Three Aspects of Photoionization in Ultrashort Pulses.' The research was conducted under the supervision of Prof. Dr. Jan Michael Rost at the Max Planck Institute for the Physics of Complex Systems.:Contents 1 Introduction 1 1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Fundamental Concepts 5 2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Introduction to strong field ionization . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 From the photoelectric effect to strong-field ionization . . . . . . . . . 6 2.3 Non-relativistic time-dependent Hamiltonian . . . . . . . . . . . . . . . . . . 10 2.3.1 Dipole approximation and choice of gauges . . . . . . . . . . . . . . . 11 2.3.2 Interaction of an electron with a classical field . . . . . . . . . . . . . 12 2.4 Ultrashort laser pulse shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Fourier-limited pulse: Gaussian envelope . . . . . . . . . . . . . . . . . 17 2.4.2 Modulated pulse: sinusoidal phase modulation . . . . . . . . . . . . . 18 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Controlling Non-adiabatic Photoionization with Ultrashort Pulses 20 3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Introduction to non-adiabatic ionization . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Intuitive picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Mathematical picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Non-adiabatic ionization with tailored laser pulses . . . . . . . . . . . . . . . 25 3.3.1 Ionization by single Gaussian pulses . . . . . . . . . . . . . . . . . . . 26 3.3.2 Sensitivity of non-adiabatic photoionization to the modulation phase . 28 3.3.3 The role of the catalyzing state . . . . . . . . . . . . . . . . . . . . . . 31 3.3.4 Second-order perturbation theory . . . . . . . . . . . . . . . . . . . . . 32 3.3.5 Pulse optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Time-dependent Perturbation Theory for Ultrashort Pulses 37 4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Introduction to time-dependent perturbation theory . . . . . . . . . . . . . . 39 4.2.1 Higher order time-dependent perturbation theory . . . . . . . . . . . . 42 4.2.2 Perturbation theory in shaped short laser pulse . . . . . . . . . . . . . 45 4.3 Application I: non-adiabatic ionization . . . . . . . . . . . . . . . . . . . . . . 47 4.3.1 Slowly varying envelope approximation . . . . . . . . . . . . . . . . . 50 4.3.2 Zero-photon transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.3 Zero-photon ionization probability . . . . . . . . . . . . . . . . . . . . 55 4.3.4 Oscillation in zero-photon transition . . . . . . . . . . . . . . . . . . . 58 4.4 Application II: interference stabilization . . . . . . . . . . . . . . . . . . . . . 59 4.4.1 Third-order time-dependent perturbation theory . . . . . . . . . . . . 61 4.4.2 Ionization probability and stabilization . . . . . . . . . . . . . . . . . . 62 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5 Molecular Photoionization Time Delay 65 5.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Introduction to time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2.1 Time delay in scattering scenario . . . . . . . . . . . . . . . . . . . . 69 5.2.2 Asymptotic behavior of ⟨r⟩ . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3 Photoionization time delay from a scattering theory perspective . . . . . . . 74 5.3.1 Asymptotic solutions and scattering matrix . . . . . . . . . . . . . . . 75 5.3.2 Energy normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.3 Boundary condition and final molecular wavefunction . . . . . . . . . 79 5.3.4 Matrix element and photoionization time delay . . . . . . . . . . . . . 81 5.3.5 Two-center system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4 Photoionization time delay from a wavepacket perspective . . . . . . . . . . 87 5.4.1 Partial time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4.2 Photoelectron wavepacket and photoionization time delay . . . . . . . 92 5.4.3 Anisotropic potential and half-collision checking . . . . . . . . . . . . 94 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Conclusions and Outlook 97 A Renormalized Numerov Method 101 A.1 Introduction to Numerov method . . . . . . . . . . . . . . . . . . . . . . . . 103 A.1.1 Eigenvalue calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 A.2 Johnson renormalized Numerov method . . . . . . . . . . . . . . . . . . . . . 106 A.2.1 Proper initialization for extreme values of potential . . . . . . . . . . . 108 A.2.2 Matching point and bound states solutions . . . . . . . . . . . . . . . 110 A.2.3 Discretized continuum states solutions . . . . . . . . . . . . . . . . . . 111 A.2.4 Continuum states solutions . . . . . . . . . . . . . . . . . . . . . . . . 112 B Derivation of the Asymptotic Behavior of ⟨r⟩ 114 C Classical Time Delay 117 D Temporal Airy Pulse 119 E Numerical Details of Perturbation Theory 122 F Atomic Units
40

Optiques pour les impulsions attosecondes / Optical components for attosecond pulses

Bourassin-Bouchet, Charles 05 December 2011 (has links)
Les plus brefs flashs de lumière qui puissent être produits en laboratoire actuellement ont des durées de quelques dizaines d’attosecondes (1 as = 10-18 s), et ne peuvent être créés que dans le domaine extrême-ultraviolet (XUV). Le développement de composants optiques capables de contrôler et de mettre en forme ce rayonnement attoseconde est crucial pour permettre à ces impulsions de se généraliser. Cette thèse porte donc sur l’étude et la réalisation de tels composants.Les impulsions attosecondes ont la particularité de comporter une dérivée de fréquence intrinsèque au processus utilisé pour leur génération. Cela a pour effet d’augmenter leur durée. Nous avons donc développé des miroirs multicouches capables d’induire une dérive de fréquence opposée sur les impulsions s’y réfléchissant, permettant ainsi de les compresser. En caractérisant les impulsions attosecondes réfléchies par ces miroirs, nous avons pour la première fois observé une telle compression des impulsions attosecondes. Nous avons également développé des miroirs multicouches théoriquement capables de compresser des impulsions sous la barre symbolique des 50 as, soit en dessous du record actuel de durée d’une impulsion lumineuse.La mesure de ces impulsions requiert leur focalisation dans un spectromètre. Or les miroirs focalisants généralement utilisés peuvent très rapidement introduire des aberrations géométriques. A l’aide de simulations numériques et d’une étude analytique, nous avons montré que ces aberrations pouvaient très fortement déformer la structure spatio-temporelle des impulsions attosecondes, provoquant une augmentation de leur durée. Enfin, nous avons montré que ces effets n’étaient pas pris en compte par les techniques actuelles de caractérisation d’impulsions attosecondes, cela pouvant amener à mesurer une impulsion attoseconde plus courte qu’elle ne l’est en réalité. / The shortest flashes of light ever produced so far have durations of a few tens of attoseconds (1 as = 10-18 s), and can only be generated in the extreme ultraviolet spectral range (XUV). Developing optical components able to control and shape such attosecond radiation is crucial to generalize the use of these light pulses. This is the topic of this work.Attosecond pulses happen to be chirped due to the physical process used to generate them. This phenomenon leads to an increase in their duration. Consequently, we developed inversely chirped multilayer mirrors, allowing one to compress the pulses during their reflection off the mirrors. By measuring these reflected pulses, we observed for the first time such a compression of attosecond pulses. Moreover, we developed another set of multilayer mirrors theoretically able to compress pulses below 50 as. That is below the current pulse duration record.Furthermore, the measurement of these pulses requires that they be focussed into a spectrometer. However, typically used focusing mirrors can add geometric aberrations. By the use of numerical simulations and thanks to an analytic study, we showed that these aberrations could strongly distort the spatio-temporal structure of the pulses, and increase their duration. Moreover, we showed that this phenomenon was not taken into account by current attosecond pulse characterization techniques. This could lead to determining the pulse duration to be shorter than it actually is.

Page generated in 0.0591 seconds