1 |
On Mothodological Approach to Philosophical System of SunologyJiang, Chunqi 04 July 2001 (has links)
On Mothodological Approach to Philosophical System of Sunology
Abstract
A Study on the Methodology of the Philosophical System of Sunology
The focus of this doctoral dissertation is primarily predicated upon my attempt to explore the philosophical system of Sunology or Dr. Sun Yat-sen¡¦s works and the related mode and value of the methodology. As a consequence of this effort, this author suggests a common foundation of research and dialogue as a model for human epistemology. With this foundation in mind, the main dimensions of Sunology has been explored:
(1) Regarding the philosophical system, the method of content analysis in social sciences has been applied, yielding its peculiar characteristics and mode;
(2) Regarding its logical structure, the axiomatic method has been employed so as to testify that Dr. Sun¡¦s logical structure is well integrated;
(3) Regarding Dr. Sun¡¦s operational dimension, the mode of interdisciplinary integration has been used, so as to clarify his operational conversion; and
(4) Regarding Sunology¡¦s consistency in its logic, an attempt has been made to explore its methodology, so as to find out its form and value and, at the same time, the kind of method and approach to materialize an ideal.
From the study, one should realize that mankind ought to seriously weigh the value of any given theoretical and philosophical systems in the past and fully appreciate its latent significance and validity. As a next step, one should try to put it into practice. Subsequently, an attainable framework should be constructed, so as to fulfill the projected undertaking. However, we should understand that the approach and method should not be just limited to this. At the same time, it should be noted that our framework argues that knowledge has a holistic structure which can be mutually continuous. Philosophical systems are interrelated. When analyzing any change in the relationship and its development, it is necessary to clarify the structure and operation aspects of the two. Only having done that, can we enhance the clarification and systematization of thinking. And only then, can we handle humankind and nature¡¦s mutual movement. Unless this is done, it is not possible for us to have an original look at human thinking and knowledge construction. In this connection, it should be noted that each discipline has its background and knowledge. Based on this, can we develop pervasive and automatic mode of knowledge. After that, can we have the ability to be creative. As a result, human knowledge and culture can continue its integrative process and be progressive.
|
2 |
Some Set-theoretical Traces In Leibniz' / s Works.Ertemiz, Nusret 01 January 2011 (has links) (PDF)
The purpose of this dissertation is to search the primitives of Axiomatic Set Theory in Leibnizian Philolosophy, nourishing, roughly, from Platonic idea of universal-particular distinction, Aristotelian syllogistic propositions of Organon-Categoria and Euclidean Methodology in Elements. The main focus of the dissertation intends to examine the analyticity of Leibnizian Metaphysics and the anologies between the subject-predicate relation in The Philosophy of Leibniz and Axiomatic Method in general and Set Theory in particular. In doing this, special emphasis will be ascribed to the notion of sets as to universality and/or nullness of a class, probable causes of paradoxes and in this context a critical analysis of Russell Paradox.
|
3 |
Considerações sobre a demonstração original do teorema da completude de Kurt GödelSanctos, Cassia Sampaio 11 May 2015 (has links)
Made available in DSpace on 2016-04-27T17:27:11Z (GMT). No. of bitstreams: 1
Cassia Sampaio Sanctos.pdf: 875084 bytes, checksum: 3baa23ce43e41c748fa70bf983f30e20 (MD5)
Previous issue date: 2015-05-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The thesis constitutes a critical review of Gödel´s doctoral dissertation which presents a proof for the completeness of first order logic. The introduction addresses the concepts of formalism, axiomatic method and completeness, thus the proof can be contextualized. The language for the restricted functional calculus is defined, with the corresponding syntax and semantics, and the original Gödel´s demonstration is updated. The appendix contains a translation of the referred dissertation, which is unprecedented in Portuguese / O trabalho constitui um comentário crítico da dissertação de doutorado de Gödel que apresenta uma prova de completude da lógica de primeira ordem. A introdução trata dos conceitos de formalismo, método axiomático e completude, para que seja possível contextualizar a prova. A linguagem para o cálculo funcional restrito é definida, com sua sintaxe e semântica, e a demonstração original de Gödel é atualizada. O apêndice contém a tradução da referida dissertação, que é inédita em língua portuguesa
|
4 |
O Teorema da Incompletude de Gödel em cursos de Licenciatura em Matemática / The Gödel's incompleteness theorem in Mathematics Education undergraduate coursesBatistela, Rosemeire de Fátima [UNESP] 02 February 2017 (has links)
Submitted by ROSEMEIRE DE FATIMA BATISTELA null (rosebatistela@hotmail.com) on 2017-02-11T02:22:43Z
No. of bitstreams: 1
tese finalizada 10 fevereiro 2017 com a capa.pdf: 2263896 bytes, checksum: 413948c6a47fb47a21e1587275d29c03 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-02-15T16:56:58Z (GMT) No. of bitstreams: 1
batistela_rf_dr_rcla.pdf: 2263896 bytes, checksum: 413948c6a47fb47a21e1587275d29c03 (MD5) / Made available in DSpace on 2017-02-15T16:56:58Z (GMT). No. of bitstreams: 1
batistela_rf_dr_rcla.pdf: 2263896 bytes, checksum: 413948c6a47fb47a21e1587275d29c03 (MD5)
Previous issue date: 2017-02-02 / Apresentamos nesta tese uma proposta de inserção do tema teorema da incompletude de Gödel em cursos de Licenciatura em Matemática. A interrogação norteadora foi: como sentidos e significados do teorema da incompletude de Gödel podem ser atualizados em cursos de Licenciatura em Matemática? Na busca de elaborarmos uma resposta para essa questão, apresentamos o cenário matemático presente à época do surgimento deste teorema, expondo-o como a resposta negativa para o projeto do Formalismo que objetivava formalizar toda a Matemática a partir da aritmética de Peano. Além disso, trazemos no contexto, as outras duas correntes filosóficas, Logicismo e Intuicionismo, e os motivos que impossibilitaram o completamento de seus projetos, que semelhantemente ao Formalismo buscaram fundamentar a Matemática sob outras bases, a saber, a Lógica e os constructos finitistas, respectivamente. Assim, explicitamos que teorema da incompletude de Gödel aparece oferecendo resposta negativa à questão da consistência da aritmética, que era um problema para a Matemática na época, estabelecendo uma barreira intransponível para a demonstração dessa consistência, da qual dependia o sucesso do Formalismo e, consequentemente, a fundamentação completa da Matemática no ideal dos formalistas. Num segundo momento, focamos na demonstração deste teorema expondo-a em duas versões distintas, que para nós se nos mostraram apropriadas para serem trabalhadas em cursos de Licenciatura em Matemática. Uma, como possibilidade de conduzir o leitor pelos meandros da prova desenvolvida por Gödel em 1931, ilustrando-a, bem como, as ideias utilizadas nela, aclarando a sua compreensão. Outra, como opção que valida o teorema da incompletude apresentando-o de maneira formal, portanto, com endereçamentos e objetivos distintos, por um lado, a experiência com a numeração de Gödel e a construção da sentença indecidível, por outro, com a construção formal do conceito de método de decisão de uma teoria. Na sequência, apresentamos uma discussão focada na proposta de Bourbaki para a Matemática, por compreendermos que a atitude desse grupo revela a forma como o teorema da incompletude de Gödel foi acolhido nessa ciência e como ela continuou após este resultado. Nessa exposição aparece que o grupo Bourbaki assume que o teorema da incompletude não impossibilita que a Matemática prossiga em sua atividade, ele apenas sinaliza que o aparecimento de proposições indecidíveis, até mesmo na teoria dos números naturais, é inevitável. Finalmente, trazemos a proposta de como atualizar sentidos e significados do teorema da incompletude de Gödel em cursos de Licenciatura em Matemática, aproximando o tema de conteúdos agendados nas ementas, propondo discussão de aspectos desse teorema em diversos momentos, em disciplinas que julgamos apropriadas, culminando no trabalho com as duas demonstrações em disciplinas do último semestre do curso. A apresentação é feita tomando como exemplar um curso de Licenciatura em Matemática. Consideramos por fim, a importância do trabalho com um resultado tão significativo da Lógica Matemática que requer atenção da comunidade da Educação Matemática, dado que as consequências deste teorema se relacionam com a concepção de Matemática ensinada em todos os níveis escolares, que, muito embora não tenham relação com conteúdos específicos, expõem o alcance do método de produção da Matemática. / In this thesis we present a proposal to insert Gödel's incompleteness theorem in Mathematics Education undergraduate courses. The main research question guiding this investigation is: How can the senses and meanings of Gödel's incompleteness theorem be updated in Mathematics Education undergraduate courses? In answering the research question, we start by presenting the mathematical scenario from the time when the theorem emerged; this scenario proposed a negative response to the project of Formalism, which aimed to formalize all Mathematics based upon Peano’s arithmetic. We also describe Logicism and Intuitionism, focusing on reasons that prevented the completion of these two projects which, in similarly to Formalism, were sought to support mathematics under other bases of Logic and finitists constructs. Gödel's incompleteness theorem, which offers a negative answer to the issue of arithmetic consistency, was a problem for Mathematics at that time, as the Mathematical field was passing though the challenge of demonstrating its consistency by depending upon the success of Formalism and upon the Mathematics’ rationale grounded in formalists’ ideal. We present the proof of Gödel's theorem by focusing on its two different versions, both being accessible and appropriate to be explored in Mathematics Education undergraduate courses. In the first one, the reader will have a chance to follow the details of the proof as developed by Gödel in 1931. The intention here is to expose Gödel’ ideas used at the time, as well as to clarify understanding of the proof. In the second one, the reader will be familiarized with another proof that validates the incompleteness theorem, presenting it in its formal version. The intention here is to highlight Gödel’s numbering experience and the construction of undecidable sentence, and to present the formal construction of the decision method concept from a theory. We also present a brief discussion of Bourbaki’s proposal for Mathematics, highlighting Bourbaki’s group perspective which reveals how Gödel’s incompleteness theorem was important and welcome in science, and how the field has developed since its result. It seems to us that Bourbaki’s group assumes that the incompleteness theorem does not preclude Mathematics from continuing its activity. Thus, from Bourbaki’s perspective, Gödel’s incompleteness theorem only indicates the arising of undecidable propositions, which are inevitable, occurring even in the theory of natural numbers. We suggest updating the senses and the meanings of Gödel's incompleteness theorem in Mathematics Education undergraduate courses by aligning Gödel's theorem with secondary mathematics school curriculum. We also suggest including discussion of this theorem in different moments of the secondary mathematics school curriculum, in which students will have elements to build understanding of the two proofs as a final comprehensive project. This study contributes to the literature by setting light on the importance of working with results of Mathematical Logic such as Gödel's incompleteness theorem in secondary mathematics courses and teaching preparation. It calls the attention of the Mathematical Education community, since its consequences are directly related to the design of mathematics and how it is being taught at all grade levels. Although some of these mathematics contents may not be related specifically to the theorem, the understanding of the theorem shows the broad relevance of the method in making sense of Mathematics.
|
5 |
Four essays on the axiomatic method : cooperative game theory and scientometrics / Quatre essais sur la méthode axiomatique : théorie des jeux coopératifs et scientométrieFerrières, Sylvain 25 November 2016 (has links)
La thèse propose quatre contributions sur la méthode axiomatique. Les trois premiers chapitres utilisent le formalisme des jeux coopératifs à utilité transférable. Dans les deux premiers chapitres, une étude systématique de l'opération de nullification est menée. Les axiomes de retraits sont transformés en axiomes de nullification. Des caractérisations existantes de règles d’allocation sont revisitées, et des résultats totalement neufs sont présentés. Le troisième chapitre introduit et caractérise une valeur de Shapley proportionnelle, où les dividendes d’Harsanyi sont partagés en proportion des capacités des singletons concernés. Le quatrième chapitre propose une variante multi-dimensionnelle de l’indice de Hirsch. Une caractérisation axiomatique et une application aux classements sportifs sont fournies. / The dissertation provides four contributions on the axiomatic method. The first three chapters deal with cooperative games with transferable utility. In the first two chapters, a systematic study of the nullification operation is done. The removal axioms are translated into their nullified counterparts. Some existing characterizations are revisited, and completely new results are presented. The third chapter introduces and characterizes a proportional Shapley value in which the Harsanyi dividends are shared in proportion to the stand-alone worths of the concerned players. The fourth chapter proposes a multi-dimensional variant of the Hirsch index. An axiomatic characterization and an application to sports rankings are provided.
|
Page generated in 0.0486 seconds