• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 15
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle de l'adrénomédulline dans la néoangiogenèse tumorale des glioblastomes / Role of adrenomedullin in the tumoral angiogenesis of glioblastoma

Khalfaoui-Bendriss, Ghizlane 13 December 2010 (has links)
La croissance tumorale et le processus de métastatisation dépendent de la néoformation de vaisseaux sanguins ou néoangiogenèse. Parmi les molécules intervenant dans ce processus, l'adrenomédul1ine (AM) est un peptide, dont l'expression est corrélée à l'agressivité de certaines tumeurs, et qui représente un maillon «clé» dans les interactions entre les cellules tumorales et les cellules du microenvironnement. Les résultats spectaculaires qu'offre le traitement des xénogreffes de cellules issues de glioblastomes (GBM) humains par les anticorps dirigés contre l'AM ou son récepteur sont très encourageants, puisque la tumeur traitée régresse en quelques semaines, la vascularisation tumorale s'en trouve touchée de manière spécifique. C'est dans ce contexte, que nous avons choisi de poursuivre notre travail sur les mécanismes d'action de l'AM dans la néoangiogenèse. Grâce à des études in vitro et in vivo, nous avons pu montrer que l'AM est impliquée dans plusieurs étapes de la néoangiogenèse tumorale : migration des cellules endothéliales, stabilisation des contacts endothéliaux et endothélio-péricytaires, recrutement des cellules mésenchymateuses. Nos résultats démontrent que nous sommes en présence d'une molécule d'AM qui agit sur diverses cibles moléculaires et cellulaires, régulant la stabilité du complexe d”adhésion intercellulaire VE-cadhérine/-caténine, nécessaire à la protection des interactions homotypiques et hétérotypiques de l°endothélium nouvellement formé. Ainsi, l'étude des mécanismes d'action de l'AM réalisée pennettra d'établir ue stratégie thérapeutique autour de l'AM. / Tumoral growth and process of metastatization depend on the formation of new blood vessels or angiogenesis. Among the molecules implicated in this process, adrenomedullin (AM) is a peptide, which expression is correlated with the aggressiveness of tumors, and which represents a "key" link in the interactions between tumoral cells and the microenvironment cells. The spectacular results offered by the treatment of human glioblastoma (GBM) xenograft by antibodies directed against the AM or its receptor are very encouraging, as the treated tumor declines in some weeks, and the tumoral vascularization is also touched in a specific way. In this context, we chose to pursue our work on the mechanisms of action of AM in angiogenesis. In vitro and in vivo studies showed that AM is involved in several stages of tumoral angiogenesis : migration of endothelial cells, stabilization of endothelial contacts, stabilization of the pericyte coverage, recruitment of multipotent cells. Our results demonstrate that we are in presence of a molecule of AM which acts on diverse molecular and cellular targets, regulating the stability of the VE-cadherin/β-catenin complex, required for the protection of the homotypics and heterotypics interactions of the newly formed endothelium. The study of the mechanisms of action of AM realized will allow us to establish a therapeutic strategy around AM.
12

c-Myc dans le développeemnt rénal et la polykystose rénale autosomique dominante

Couillard, Martin January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
13

Characterizing the Oncogenic Properties of C-terminal Binding Protein

Sumner, Evan T 01 January 2016 (has links)
The paralogous C-terminal binding proteins (CtBP) 1 and 2 are evolutionarily conserved transcriptional coregulators that target and disrupt the expression of several genes essential for multiple cellular processes critical to regulating tumor formation. CtBP’s ability to govern the transcription of genes necessary for apoptosis, tumor suppression, invasion/migration and EMT gives rise to its oncogenic activities. Both isoforms of CtBP are found to be overexpressed in cancers including colorectal, pancreatic, ovarian, and breast, with higher levels correlating to lower overall median survival. Although multiple lines of evidence suggest CtBP plays a role in tumorigenesis, it has never been formally characterized as an oncogene. For this reason, the goal of this dissertation was to design a set of experiments to determine the transforming ability of CtBP2 in vitro using both murine and human fibroblast and in vivo using the Apcmin/+ mouse model of cancer. Specifically, we demonstrate that overexpression of CtBP2 alone can drive transformation of NIH3T3 cells leading to loss of contact inhibition, increased x invasion/migration, and anchorage independent growth. In addition, CtBP2 was found to cooperate with the large T-antigen (LT) component of the simian virus 40 (SV40) to lead to transformation of murine embryonic fibroblasts (MEFs) and with both LT and small T-antigen (ST) to induce migration/invasion and anchorage-independent growth in BJ human foreskin fibroblasts. To confirm the role of Ctbp2 in a mouse tumor model with Ctbp overexpression, we bred Apcmin/+ mice to Ctbp2 heterozygous (Ctbp2+/-) mice, which otherwise live normal lifespans. CtBP is a known target of the APC tumor suppressor and is thus stabilized in APC mutated human colon cancers and is found in high levels in Apcmin/+ polyps. Remarkably, removing an allele of Ctbp2 doubled the median survival of Apcmin/+ mice (P <0.001) and reduced polyp formation to near undetectable levels. These data suggest the importance of CtBP2 in driving cellular transformation and identify it as a potential target for prevention or therapy in APC mutant backgrounds.
14

Analyse moléculaire des conséquences de l’activation de la voie Wnt/b-caténine : mise en évidence del’autophagie au cours de la carcinogenèse intestinale / Molecular analysis of consequences of activation of Wnt/b-catenin pathway : description of autophagy during intestinal carcinogenesis

Cacheux, Wulfran 27 October 2011 (has links)
Plus de 80% des cancers colorectaux sont initiés par la perte de fonction du gène Apc. Afin d’identifier de nouvelles cibles thérapeutiques, nous avons utilisé des modèles murins présentant des mutations du gène Apc et recherché par des analyses de puces à ADN de nouveaux événements moléculaires impliqués au cours de la carcinogenèse intestinale.Cette approche nous a permis d’identifier une activation de la signalisation Notch tout au long du processus tumoral. Toutefois, cette activation n’est pas un élément clé de la progression tumorale puisque son inhibition n’empêche pas le phénotype tumoral induit par la perte du gène Apc. En parallèle, nos travaux ont permis d’identifier une induction de l’autophagie tout au long de la carcinogenèse intestinale. L’activation de ce processus biologique ouvre, quant à lui, de nouvelles perspectives thérapeutiques dans le traitement du CCR. / Over 80% of colorectal cancers are linked to an Apc mutation. To identify new therapeutic targets, we used mouse models with Apc mutations and performed microarray experiments to identify key molecular events involved in intestinal carcinogenesis. This approach allowed usto identify an activation of the Notch signaling all along tumor progression. However, this induction is dispensable for tumor development since its inhibition did not prevent the Apc phenotype. In addition, we have identified an induction of autophagy throughout intestinal carcinogenesis which appears to be an attractive therapeutic target in the treatment of CRC patients.
15

Nuclear localization and transactivation of sys-1/β-catenin, a regulator of Wnt target gene expression and asymmetric cell division

Wolf, Arielle Koonyee-Lam 01 May 2019 (has links)
Human β-catenin is a dual-functioned protein responsible for regulating cell-cell adhesion and gene transcription. To activate gene transcription, β-catenin must be shuttled into the nucleus where it interacts with various co-activators to activates gene transcription. Various studies have identified proteins that bind to specific amino acid sequences in β-catenin for proper gene transcription regulation. Compared to the single beta-catenin in most animals, C. elegans surprisingly contains four β-catenins. Though structurally similar, these beta-catenins became distinct during nematode evolution, resulting in four β-catenins that differ in functions. SYS-1 is one such β-catenin that loses its adhesion ability and is specialized in activating transcription of genes in the nucleus. Across different animals, β-catenin shares similar amino acid sequences and structure. SYS-1, while it shares the similar structure to other β-catenins, is the most divergent C. elegans beta-catenin when comparing amino acid sequences. In addition, while SYS-1 interacts with homologs of proteins that bind to and regulate human β-catenin, the binding sites of those proteins to SYS-1 is unknown. Here, we identify novel sites for beta-catenin’s gene transcription role within SYS-1 that greatly differed from human β-catenin. We also identify a novel mechanism for beta-catenin nuclear import, which is still largely unknown in any system, by identifying a candidate importer that associates with SYS-1 is required for SYS-1 dependent cell fate. In summary, though SYS-1 has a well-conserved function dictating cell fate in response to developmental signals, it has evolved novel regulatory, functional and localization mechanisms and therefore serves as a model for the plasticity nuclear importer that helps shuttle SYS-1 into the nucleus identified specific regions in SYS-1 that is involved in activating transcription which will result in cell fate changes.
16

Endothelial differentiation and angiogenesis regulation

Dixelius, Johan January 2002 (has links)
<p>Angiogenesis can be defined as the formation of new blood vessels from pre-existing ones. Angiogenesis is required for development and maintenance of our vascular system and thus of fundamental importance to our existence. The endothelial cells that line the inside of the vessels de-differentiate, migrate, proliferate and re-differentiate during angiogenesis. Angiogenesis is tightly regulated, controlled by several angiogenic factors of various classes that promote angiogenesis but also by anti-angiogenic factors that counteract the effect of the pro-angiogenic factors. We have examined three factors involved in angiogenesis regulation, Vascular endotelial growth factor (VEGFR) -3, the matrix protein laminin-1 and the collagen XVIII derived fragment endostatin. </p><p>Five tyrosine phosphorylation sites in the cytoplasmic tail of VEGFR-3 were identified by phosphopeptide mapping (PPM). The data was confirmed by PPM using point-mutated receptors generated by site-directed mutagenesis.</p><p>Laminin-1 was found to promote angiogenesis in the chicken chorioallantoic membrane assay and in a synergistic fashion together with suboptimal levels of fibroblast growth factor 2 (FGF-2) in embryoid bodies. Laminin-1 also promoted endothelial tubular morphogenesis in vitro, and upregulated the expression of the endothelial differentiation marker Jagged-1. </p><p>Endostatin was shown to affect endothelial FGF-2-induced cell survival and morphogenesis. This was a result of direct binding to endothelial cells and induction of tyrosine phosphorylation of many proteins including the adaptor protein Shb. The apoptotic and morphogenic responses induced by endostatin was shown to be dependent on Shb. Further, endostatin inhibited endothelial migration and affected molecules implicated in migration. In particular, FGF-2 induced actin reorganization, and β-catenin regulation was modulated by endostatin. </p>
17

Endothelial differentiation and angiogenesis regulation

Dixelius, Johan January 2002 (has links)
Angiogenesis can be defined as the formation of new blood vessels from pre-existing ones. Angiogenesis is required for development and maintenance of our vascular system and thus of fundamental importance to our existence. The endothelial cells that line the inside of the vessels de-differentiate, migrate, proliferate and re-differentiate during angiogenesis. Angiogenesis is tightly regulated, controlled by several angiogenic factors of various classes that promote angiogenesis but also by anti-angiogenic factors that counteract the effect of the pro-angiogenic factors. We have examined three factors involved in angiogenesis regulation, Vascular endotelial growth factor (VEGFR) -3, the matrix protein laminin-1 and the collagen XVIII derived fragment endostatin. Five tyrosine phosphorylation sites in the cytoplasmic tail of VEGFR-3 were identified by phosphopeptide mapping (PPM). The data was confirmed by PPM using point-mutated receptors generated by site-directed mutagenesis. Laminin-1 was found to promote angiogenesis in the chicken chorioallantoic membrane assay and in a synergistic fashion together with suboptimal levels of fibroblast growth factor 2 (FGF-2) in embryoid bodies. Laminin-1 also promoted endothelial tubular morphogenesis in vitro, and upregulated the expression of the endothelial differentiation marker Jagged-1. Endostatin was shown to affect endothelial FGF-2-induced cell survival and morphogenesis. This was a result of direct binding to endothelial cells and induction of tyrosine phosphorylation of many proteins including the adaptor protein Shb. The apoptotic and morphogenic responses induced by endostatin was shown to be dependent on Shb. Further, endostatin inhibited endothelial migration and affected molecules implicated in migration. In particular, FGF-2 induced actin reorganization, and β-catenin regulation was modulated by endostatin.
18

c-Myc dans le développeemnt rénal et la polykystose rénale autosomique dominante

Couillard, Martin January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
19

De Novo Hair Morphogenesis in Engineered Skin Substitutes

Sriwiriyanont, Penkanok 26 October 2012 (has links)
No description available.
20

Identification of b-catenin and other RNAs in developing thalamic axons

Davey, John William January 2009 (has links)
This thesis provides evidence for the presence of multiple RNAs in the axons and growth cones of developing thalamic cells, particularly the mRNA for the cell adhesion and Wnt-signalling-related molecule b-catenin. After many decades of effort, mRNAs have been shown to be present in the axons of many different systems in recent years. Furthermore, these mRNAs have been shown to be locally translated at the growth cone, and this local translation is required for axons to turn in response to multiple guidance cues. As studies accumulate, it is becoming clear that different axonal systems contain different complements of mRNAs and have different requirements for local translation. One axonal system which has not been investigated to date is the thalamocortical tract. The nuclei of the thalamus are connected to the areas of the cortex via bundles of axons which travel from the thalamus to the cortex via the ventral telencephalon during embyronic development. These axons make a number of turns and are guided by many cues and other axonal tracts before innervating their cortical target. In this thesis, a quantitative real-time polymerase chain reaction (qRT-PCR) approach is developed to isolate multiple mRNAs from developing thalamic axons in vitro, including b-catenin mRNA, b-actin mRNA, 18S ribosomal RNA and ten other mRNAs. The method used should be suitable for use with other axonal systems and also for testing the effect of guidance cues on mRNA expression in axons. The qRT-PCR results for b-catenin, b-actin and 18S have been validated using in situ hybridisation. Analysis of in situ hybridisation results indicates that b-catenin and 18S, but not b-actin, are upregulated in the growth cone compared to the axon. As b-catenin has been shown to be involved in axon guidance via Slit and ephrin guidance cues in other axonal systems, and these guidance cues act upon thalamocortical axons, the identification of b-catenin mRNA in thalamic axons is an important step towards a full understanding of the thalamocortical system. The results presented here indicate that local protein synthesis is likely to occur in thalamic axons as it does in other axonal systems, and that local translation is likely to be important for thalamic axonal responses to guidance cues and other axonal tracts.

Page generated in 0.0371 seconds