• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS)

Spittel, D., Poppe, J., Meerbach, C., Ziegler, C., Hickey, Stephen G., Eychmüller, A. 27 November 2017 (has links)
Yes / Semiconductor nanostructures like CdSe quantum dots and colloidal nanoplatelets exhibit remarkable optical properties, making them interesting for applications in optoelectronics and photocatalysis. For both areas of application a detailed understanding of the electronic structure is essential to achieve highly efficient devices. The electronic structure can be probed using the fact that optical properties of semiconductor nanoparticles are found to be extremely sensitive to the presence of excess charges that can for instance be generated by means of an electrochemical charge transfer via an electrode. Here we present the use of potential modulated absorption spectroscopy (EMAS) as a versatile spectroelectrochemical method to obtain absolute band edge positions of CdSe nanostructures versus a well-defined reference electrode under ambient conditions. In this the spectral properties of the nanoparticles are monitored dependent on an applied electrochemical potential. We developed a bleaching model that yields the lowest electronic state in the conduction band of the nanostructures. A change in the band edge positions caused by quantum confinement is shown both for CdSe quantum dots as well as for colloidal nanoplatelets. In the case of CdSe quantum dots these findings are in good agreement with tight binding calculations. The method presented is not limited to CdSe nanostructures but can be used as a universal tool. Hence, this technique allows the determination of absolute band edge positions of a large variety of materials used in various applications.
2

Band Edge Energetics and Charge Transfer Processes in Semiconductor-Metal Heterostructured Nanorods as Photocatalysts and Metal Oxide Electrode-Organic Semiconductor Interfaces in Organic Photovoltaics

Ehamparam, Ramanan January 2015 (has links)
Energetics, charge selectivity and interfacial charge transfer kinetics affect the efficiency of solar electric energy conversion and solar photochemical formation of fuels. The research described herein focuses on understanding and controlling the energetics, charge selectivity, and interfacial charge transfer processes in organic photovoltaics, as well as new generation semiconductor-semiconductor and metal-semiconductor heterostructured nanorods (NRs) as photocatalysts. Waveguide and transmission based spectroelectrochemistries, photoemission spectroscopies, and impedance spectroscopy were used to characterize the frontier orbital energies, charge selectivity and interfacial charge transfer kinetics in heterostructured NRs and organic photovoltaics. CdSe NRs tipped with Au nanoparticles and CdSe seeded CdS NRs tipped with Pt nanoparticles were used to study the effect of compositional asymmetry and catalytic sites on band edge energies of NRs. We used UV photoemission spectroscopy (UPS) and waveguide and transmission-based spectroelectrochemistry of NR monolayers/multilayers on conductive substrates to estimate valence/conduction band energies. Potential-modulated attenuated total reflectance (PM-ATR) spectroscopy was utilized to measure the apparent heterogeneous rate constants of reversible electron injection into NR films on indium tin oxide (ITO). We conclude from these measurements that metal tipping, which is designed to enhance the photocatalytic activity of semiconductor NRs, altered band edge energies and enhanced electronic coupling to conductive substrates, in ways that are predicted to influence their efficiency as photoelectrocatalysts. Monolayers of functionalized phosphonic acid ruthenium phthalocyanines (RuPcPA) tethered to ITO as a model organic photovoltaic donor/electrode interface were studied to understand the aggregation and orientation dependent charge transfer kinetics and energetics of these systems. The effect of surface roughness on the orientation of RuPcPA was theoretically modeled and compared to the experimental results. Electrochemical and spectroelectrochemical studies revealed the presence of only monomeric species on ITO. Impedance spectroscopy (IS) and PM-ATR were used to measure charge transfer rate constants. Further, frontier orbital energies of RuPcPA modified ITO were measured using UPS, and the results indicated favorable energetics for hole collection at the RuPcPA/ITO interface for OPV applications. The effect of "UV-light soaking" on the performance of organic photovoltaic devices employing metal oxide (MO) electron selective interlayers (ESL) was addressed using sputtered zinc oxide (ZnO) ESL films. This study provides a coherent methodology for differentiating between the proposed origins of the s-shaped current-voltage (J-V) responses in the literature for organic photovoltaics using MO ESLs. We use IS and UPS to demonstrate that the energetic barrier for charge extraction at the ZnO/active layer interface leads to the observed s-shape response in OPVs using ZnO ESLs. Furthermore, this study provides clear guidelines for minimizing the s-shaped J-V response and the effect of UV light on the performances of OPV devices using ZnO ESLs. We have developed solution electrochemical protocols to characterize nanometer-scale porosity and electronic properties of both solution-deposited and sputtered ZnO thin films used as interlayers for electron-harvesting contacts in inverted organic solar cells on ITO substrates. These electrochemical experiments were performed in order to evaluate the hole-blocking abilities of these ZnO ESLs as well as their effective "pinhole density," thus demonstrating a strong correlation to their OPV performances. These electrochemical experiments can be used to characterize and optimize ESLs rapidly, before OPV device fabrication.
3

Strained Semiconductor Quantum Dots - Electronic Band Structure and Multilayer Correlation

Zou, Yu 05 October 2009 (has links)
No description available.
4

Degenerate Band Edge Resonators in Silicon Photonics

Burr, Justin R. January 2015 (has links)
No description available.
5

Development of Graphitic Carbon Nitride based Semiconductor Photocatalysts for Organic Pollutant Degradation

Wang, Jing January 2015 (has links)
As a potential solution to the global energy and environmental pollution, design and synthesis of artificial photocatalysts with high activities have attracted increasing scientific interests worldwide. In recent years, the graphitic carbon nitride (g-C3N4) has shown new possible applications in the photocatalytic field due to its unique properties. However, the photocatalytic efficiency of the pristine g-C3N4 is greatly limited by the high recombination rate of the photo-induced electron-hole pairs. In this thesis, the aim is to design and fabricate efficient g-C3N4 based photocatalysts with enhanced photocatalytic activities under a visible light irradiation. In order to achieve this goal, two strategies have been employed in the present thesis. First, the as-obtained g-C3N4 was used as the host material to construct staggered-aligned composite photocatalysts by selecting semiconductors with suitable band positions. By this method, three kinds of g-C3N4-based composite photocatalysts such as g-C3N4/ZnS nanocage, g-C3N4/m-Ag2Mo2O7 and g-C3N4/MIL-88A were successfully fabricated. Second, the microstructure of the g-C3N4 was modified by the H2O2-treatment at an elevated temperature and ambient pressure. In this study, the g-C3N4 was prepared by a simple pyrolysis of urea. As for all the as-synthesized phtocatalysts, the structures, morphologies and the optical properties were carefully characterized by the following techniques: XRD, SEM, TEM, FT-IR and DRS. Also, the band edge positions of m-Ag2Mo2O7 and MIL-88A were studied by the Mott-Schottky methods. Thereafter, the photocatalytic activities were evaluated by using a solution of rhodamine B (RhB) as a target pollutant for the photodegradation experiments performed under a visible light irradiation. The results showed that all the aforementioned g-C3N4-based photocatalysts exhibited enhanced photocatalytic activities in comparison with the pristine g-C3N4. For the case of the g-C3N4-based composite photocatalysts, the enhancement factor over the pristine g-C3N4 can achieve values ranging from 2.6 to 3.4. As for the H2O2-treated g-C3N4, the degradation rate constant can be 4.6 times higher than that of the pristine g-C3N4. To understand the key factors in new materials design, we also devote a lot of efforts to elucidate the basic mechanisms during the photocatalytic degradation of organic pollutant. Based on the results of the active species trapping (AST) experiments, the main active species in each photocatalytic system were determined. In the g-C3N4/m-Ag2Mo2O7 and the g-C3N4/MIL-88A system, three kinds of active species of ·O2-, h+ and ·OH were found to be involved in the photocatalytic reaction. Among them, the ·O2- and h+ were the main active species. In the g-C3N4/ZnS and H2O2-treated g-C3N4 photocatalytic systems, the main active species was determined as the ·O2-. The reaction pathways of these active species were also demonstrated by comparing the band edge positions with the potentials of the redox couple. In addition, the relationship between the active species and the photocatalytic behaviors of N-de-ethylation and conjugated structure cleavage were studied. Finally, possible mechanisms to explain the enhanced photocatalytic activities were proposed for each photocatalytic system. The results in this thesis clearly confirm that the photocatalytic activity of the g-C3N4 based photocatalyst can efficiently be enhanced by constructions of staggered-aligned composites and by modification of the microstructure of the g-C3N4. The enhanced photocatalytic performance can mainly be ascribed to the efficient separation of the photo-induced electron-hole pairs and the increase of the active sites for the photocatalytic reaction. / <p>QC 20150909</p>
6

Coupled Transmission Line Based Slow Wave Structures for Traveling Wave Tubes Applications

Zuboraj, MD R. January 2016 (has links)
No description available.
7

Active Silicon Photonic Devices Based on Degenerate Band Edge Resonances

Wood, Michael G. January 2016 (has links)
No description available.
8

Propriétés magnéto-optiques de nanocristaux de CdSe individuels à basse température / Magneto-optical properties of single CdSe nanocrystals at low temperature

Sinito, Chiara 16 December 2014 (has links)
Les applications émergentes des nanocristaux de CdSe nécessitent une compréhension approfondie des propriétés d’émission et de relaxation des sous-niveaux de structure fine de l’exciton de bord de bande. Cette thèse porte sur l’étude spectroscopique de nanocristaux individuels de CdSe présentant une photostabilité remarquable aux températures cryogéniques. La distribution spectrale de leur photoluminescence en fonction de la température et d’un champ magnétique appliqué fournit une signature précise des niveaux de plus basse énergie, révélatrice de leur morphologie et leur structure cristalline. Une méthode d’excitation de la luminescence de haute résolution spectrale a été développée pour sonder la totalité des niveaux de structure fine. Les raies de recombinaison des huit états ont ainsi été résolues pour la première fois dans une situation de levée totale de dégénérescence produite par l’anisotropie des nanocristaux et l’application d’un champ magnétique. L’excitation sélective des nanocristaux dans les niveaux supérieurs de la structure fine permet aussi d’étudier les mécanismes de relaxation de spin entre les branches excitoniques à trou lourd et à trou léger. Des canaux de relaxation sélectifs peuvent notamment être mis à profit pour préparer un nanocristal dans un niveau quantique unique.Des nanocristaux à double coque ont été conçus pour être efficacement photo-chargés, produisant une émission stable à partir de l’exciton chargé (trion) à la température de l’hélium liquide. La recombinaison du trion est purement radiative, avec une signature spectrale caractérisée par une raie d’émission sans phonon unique et intense. Sous champ magnétique, son éclatement en quatre composantes Zeeman livre les facteurs de Landé de l’électron et du trou. L’analyse des poids de ces composantes permet aussi de trouver le taux de relaxation de spin du trion et le signe de sa charge. Une inhibition remarquable de la relaxation de spin se produit lorsque l’éclatement Zeeman est inférieur à l’énergie du premier mode de phonons acoustiques du nanocristal. / The development of emerging applications of CdSe nanocrystals requires a detailed understanding of the band-edge exciton fine structure and relaxation pathways. This thesis is focused on cryogenic spectroscopy of single nanocrystal with a remarkable photostability. Photoluminescence spectra as a function of temperature and under external magnetic fields provide a spectral fingerprint of the low energy sub-levels, revealing the morphology and the crystal structure of individual nanocrystals. In order to probe the entire band-edge exciton fine structure, a high resolution luminescence excitation technique has been developed. Zeeman and anisotropy-induced splittings are used to reveal the entire 8-state band-edge fine structure, enabling complete comparison with band-edge exciton models. State selective excitation allows the preparation of single quantum states. It is also used to map the hole spin relaxation pathways between the fine structure sub-levels.Charged quantum dots provide an important platform for a range of emerging quantum technologies. Double shell CdSe nanocrystals are engineered to efficiently ionize at cryogenic temperatures, resulting in trion emission with a single sharp zero-phonon line and a near-unity quantum yield. Zeeman splitting of this line enables direct determination of electron and hole g-factors. Spin relaxation is observed in high fields, enabling identification of the trion charge. Importantly, we show that spin flips are completely inhibited for Zeeman splittings below the low-energy bound for confined acoustic phonons. This charac- teristic unique to colloidal quantum dots has potential applications in single spin coherent manipulation.
9

Optical and Dielectric Properties of Sr(x)Ba(1-x)Nb(2)O(6)

David, Calin Adrian 15 December 2004 (has links)
Several SBN-x crystals of different composition have been investigated using the following methods: Optical absorption in the band gap spectral region, optical absorption of the OH-stretch-mode in the near infrared, Raman scattering, pyroelectric and dielectric measurements.The band edge position depends on the crystal composition in a non-linear manner, thus showing band bowing, typical for mixed systems. A new method has been developed to increase the hydrogen content in the bulk. This doping depends on the composition in an almost linear manner. The observed OH stretch mode spectra have been deconvoluted into three sub bands which can be attributed to different sites in the lattice. The composition dependent spectra have been modelled with a few parameters, using different line shapes and both linear and quadratic dependences of the band position.Raman spectra of several crystals of different composition were recorded for four different scattering configurations. Changes for wave numbers below 500 have been found, but could not attributed to particular modes. A prominent feature at about 600 wave numbers was not disturbed by other modes allowing a decomposition and an assigned of this mode to a certain vibration. It was found that the behaviour of this mode is governed by the [Sr]/[Ba] ratio in the pentagonal channel of SBN-x.The ferroelectric relaxor phase-transition of SBN-x has been studied with pyroelectric measurements. From the nonlinear susceptibility as a function of temperature the phase-transition temperature was deduced using the inflection point. The non fully-linear dependence of the phase-transition temperature as a function of the [Sr]/[Ba] ratio can be explained by a system of three different sublattices for the Strontium and Barium atoms.First results obtained with a setup for measuring the dielectric constant confirmed already reported data of other groups.
10

Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS)

Spittel, Daniel, Poppe, Jan, Meerbach, Christian, Ziegler, Christoph, Hickey, Stephen G., Eychmüller, Alexander 28 February 2019 (has links)
Semiconductor nanostructures such as CdSe quantum dots and colloidal nanoplatelets exhibit remarkable optical properties, making them interesting for applications in optoelectronics and photocatalysis. For both areas of application a detailed understanding of the electronic structure is essential to achieve highly efficient devices. The electronic structure can be probed using the fact that optical properties of semiconductor nanoparticles are found to be extremely sensitive to the presence of excess charges that can for instance be generated by means of an electrochemical charge transfer via an electrode. Here we present the use of EMAS as a versatile spectroelectrochemical method to obtain absolute band edge positions of CdSe nanostructures versus a well-defined reference electrode under ambient conditions. In this, the spectral properties of the nanoparticles are monitored with respect to an applied electrochemical potential. We developed a bleaching model that yields the lowest electronic state in the conduction band of the nanostructures. A change in the band edge positions caused by quantum confinement is shown both for CdSe quantum dots and for colloidal nanoplatelets. In the case of CdSe quantum dots these findings are in good agreement with tight binding calculations. The method presented is not limited to CdSe nanostructures but can be used as a universal tool. Hence, this technique allows the determination of absolute band edge positions of a large variety of materials used in various applications

Page generated in 0.1057 seconds