• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 75
  • 45
  • 42
  • 25
  • 22
  • 20
  • 20
  • 19
  • 18
  • 18
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Study of a battery energy storagesystem in a weak distributiongrid

Lindstens, Jonas January 2017 (has links)
The awareness of the problems with fossil energy sources have increased the past decades. To decrease the effects of the fossil fuels on the climate and the environment, the use of intermittent energy sources such as solar- and wind power are increasing. Intermittent generation creates instability in the power grid, which cause fluctuations in the voltage and the frequency of the power grid. To be able to handle these fluctuations, regulating capacity such as for example pumped storage or batteries are needed. This thesis has investigated how the placement and the power capacity of a battery energy storage system affects the possibility for frequency and voltage regulation in a weak distribution grid. The investigation was made in MATLAB Simulink by creating a weak radial distribution grid with a high penetration of solar power. The distribution grid had variable loads with different power consumption at each bus, creating instability in the distribution grid. The optimal placement of a battery energy storage system is firstly at the largest load and secondly as far away from the other power generation units as possible. A battery storage with a power capacity that can handle all consumption is optimal. It is possible to have a smaller power capacity if the grid is stable enough to withstand the appearing fluctuation of frequency or voltage. The frequency variations are more dependent on the power capacity and the voltage variations are more dependent on the placement of the battery energy storage system. ISSN:
22

Optimal Operation of Battery Energy Storage Systems in Radial Distribution Networks

Behnood, Aref January 2019 (has links)
In recent years, power systems are facing with various challenges arising from the increased share of renewable energy systems. Among all sections of power systems, distribution grids are affected the most since the majority of renewable energy sources are connected to distribution grids. As the penetration of Variable Energy Sources increases in electric grids, energy storage systems have become more influential. In this context, this thesis presents a new algorithm for the optimal operation of Battery Energy Storage Systems in distribution grids. The proposed algorithm aims to define the optimal operation of Battery Energy Storage Systems considering the network topology, the output power of Variable Energy Sources and the electricity prices from the one-day ahead electric market as well as real time control of the batteries through smart appliances. In order to do this, firstly a comprehensive study on the existing Optimal Power Flow methods is carried out. Then, AR-OPF which is a novel Optimal Power Flow method for radial distribution systems is presented and the required mathematical constraints, equations and parameters of Battery Energy Storage Systems for modelling in distribution systems are described. Then, the problem formulation and the proposed algorithm are discussed in detail. Further to energy storage as the main function of Battery Energy Storage Systems, the impact of the proposed method on other functions of Battery Energy Storage Systems such as voltage control, grid support and loss reduction will be investigated. In order to do so, the proposed algorithm is applied to the IEEE 34 node test system as a case study. This will be carried out through defining several different scenarios. Finally, a sensitivity analysis is performed on the size of the existing batteries and the electricity price. The thesis will be concluded by the findings and possible future works.
23

Distributed Coordination and Control of Renewable Energy Sources in Microgrids

Khazaei, Javad Khazaei 14 June 2016 (has links)
Microgrid is an emerging technology in the eld of electrical engineering which employs the concept of Distributed Energy Resources (DERs) in order to generate electricity in a small sized power system. The main objectives of this dissertation are to: 1- design a new control for lower level control of DERs in microgrids, 2- implement distributed upper level control for DERs in microgrids and 3- apply analytical approaches in order to analyze DERs in microgrids. The control in each DER can be divided into two main categories: lower and upper level. Lower level control is the main objective of control in each DER. For example, the lower level control in Photovoltaic (PV) is in charge of transferring the maximum power from sun into the main grid. Unlike the lower level control, the upper level control is an additional control loop on top of the lower level controls. For example, Voltage/Frequency (VF) controllers are installed on top of Active/Reactive (PQ) power controller in energy storage devices as upper level control. In this dissertation, for the lower level control improvements, two widely used DERs are selected (PV, and oshore wind farm) and new control algorithms are developed in order to improve the performance of lower level controllers in these DERs. For the PV lower level improvement, a new control methodology is proposed in order to minimize the maximum power tracking error in PV lower level controller. Second contribution in lower level control is for the oshore wind farm applications based on Multi-Terminal High Voltage Direct Current (MTDC) transmission; a new control is designed in order to minimize the losses in transmission lines through lower level control of High Voltage Direct Current (HVDC) converters. For the upper level control, this dissertation considers the energy storage as another mostly used type of DER in microgrids. The lower level control for energy storage is in charge of controlling the PQ of the energy storage. The main contribution in the upper level control is to implement the distributed control algorithm based on consensus theory for battery energy storages in order to maximize the efficiency, energy management as well as synchronizing the performance of parallel energy storage devices in microgrids. In this case, the consensus based distributed control algorithm with limited information exchange between neighboring energy storage units is proposed and implemented to validate the claim. The third contribution of this research is to apply advanced analysis techniques to evaluate the performance of the DERs in microgrids. Two approaches are introduced for microgrid modeling in this research. Firstly, an impedance modeling technique is used to model the oshore wind farm connected to the main AC grid through HVDC transmission line. Multiple Input Multiple Output (MIMO) Nyquist analysis and singular value analysis are used to assess the interactions between HVDC converter and grid. Secondly, an unbalanced microgrid is considered and Dynamic Phasor (DP) analysis is applied in order to nd the stability limitations under different scenarios. This dissertation has led to seven journal papers (five published, one journal in revision process and one journal submitted recently) and four conference papers.
24

Identification of AdvantagesConnected to Aggregation of SeveralBattery Energy Storage Systems

Darle, Maria, Lindqvist, Saga January 2021 (has links)
In this study, an examination regarding what benefits an aggregatedpopulation of Battery Energy Storage Systems (BESSs) could result incompared to when the individual units in the population are being usedseparately has been executed. The increased flexibility and reducedsafety margins as results of the aggregation was also examined. Thestudy was executed on behalf of the smart energy service companyCheckWatt AB and the study furthermore rests upon results of earlierperformed master theses on behalf of the company. By investigating previous work and studies through a literature study,the enabling of anumerical study was done. The numerical study wasbased on a simple model of a Virtual Power Plant (VPP) where severalBESSs are smartly controlled in order to be used for both local peakshaving and as common providers of the frequency reserve FrequencyContainment Reserve - Normal (FCR-N). The study involved the formation of a numerical model which simulated cases of both aggregated and non-aggregated populations of up to 45 load profile units, this in order for advantages and differences to be distinguished. The data used inthe simulations was received mainly from the CheckWatt AB andconsisted of photovoltaic (PV) electricity production and load data of 45 customers of the company. A sensibility analysis of the numericalstudy was also performed, which showed that the studied model andsystem were quite stable. The results of the simulations of the case of the study proved thatthere are some advantages connected to aggregation of several BESSs,and that the aggregation enabled an added value and a higher level offlexibility within the system. The safety margins connected todelivery of FCR-N could be reduced when aggregating several BESS,while a more extensive study is requested regarding safety marginsconnected to peak shaving. The study’s results further showed that anaggregator can be used as a sustainable and flexible solution forbalancing the electrical grid in the transition to a sustainableenergy system allowing a higher penetration of intermittentenergy sources.
25

Risk–constrained stochastic economic dispatch and demand response with maximal renewable penetration under renewable obligation

Hlalele, Thabo Gregory January 2020 (has links)
In the recent years there has been a great deal of attention on the optimal demand and supply side strategy. The increase in renewable energy sources and the expansion in demand response programmes has shown the need for a robust power system. These changes in power system require the control of the uncertain generation and load at the same time. Therefore, it is important to provide an optimal scheduling strategy that can meet an adequate energy mix under demand response without affecting the system reliability and economic performance. This thesis addresses the following four aspects to these changes. First, a renewable obligation model is proposed to maintain an adequate energy mix in the economic dispatch model while minimising the operational costs of the allocated spinning reserves. This method considers a minimum renewable penetration that must be achieved daily in the energy mix. If the renewable quota is not achieved, the generation companies are penalised by the system operator. The uncertainty of renewable energy sources are modelled using the probability density functions and these functions are used for scheduling output power from these generators. The overall problem is formulated as a security constrained economic dispatch problem. Second, a combined economic and demand response optimisation model under a renewable obligation is presented. Real data from a large-scale demand response programme are used in the model. The model finds an optimal power dispatch strategy which takes advantage of demand response to minimise generation cost and maximise renewable penetration. The optimisation model is applied to a South African large-scale demand response programme in which the system operator can directly control the participation of the electrical water heaters at a substation level. Actual load profile before and after demand reduction are used to assist the system operator in making optimal decisions on whether a substation should participate in the demand response programme. The application of these real demand response data avoids traditional approaches which assume arbitrary controllability of flexible loads. Third, a stochastic multi-objective economic dispatch model is presented under a renewable obligation. This approach minimises the total operating costs of generators and spinning reserves under renewable obligation while maximising renewable penetration. The intermittency nature of the renewable energy sources is modelled using dynamic scenarios and the proposed model shows the effectiveness of the renewable obligation policy framework. Due to the computational complexity of all possible scenarios, a scenario reduction method is applied to reduce the number of scenarios and solve the model. A Pareto optimal solution is presented for a renewable obligation and further decision making is conducted to assess the trade-offs associated with the Pareto front. Four, a combined risk constrained stochastic economic dispatch and demand response model is presented under renewable obligation. An incentive based optimal power dispatch strategy is implemented to minimise generation costs and maximise renewable penetration. In addition, a risk-constrained approach is used to control the financial risks of the generation company under demand response programme. The coordination strategy for the generation companies to dispatch power using thermal generators and renewable energy sources while maintaining an adequate spinning reserve is presented. The proposed model is robust and can achieve significant demand reduction while increasing renewable penetration and decreasing the financial risks for generation companies. / Thesis (PhD (Electrical Engineering))--University of Pretoria, 2020. / Electrical, Electronic and Computer Engineering / PhD (Electrical Engineering) / Unrestricted
26

Regulation and Control of AC Microgrid Systems with Renewable Generation and Battery Energy Storage System

Zhao, Huiying January 2018 (has links)
No description available.
27

Investigation of Frequency Containment Reserves With Inertial Response and Batteries

Ghasemi, Hashem, Melki, Jakob January 2019 (has links)
The rise of Renewable Energy Sources (RES) such as wind and solar power, creates new challenges for electric power systems. One of these challenges occur in Frequency Containment Reserves (FCR) on power system because of decreasing system inertia from RES. The purpose of FCR is to regulate the system frequency after a disturbance that gives rise to a Rate of Change of Frequency (RoCoF) and an Instantaneous Frequency Deviation (IFD). Conventional electricity production such as hydro and nuclear power have a contribution for the amount of inertia in the system, while RES lack this contribution of inertia.This paper studies different cases of amount of inertia to understand the impact of lower amount of inertia caused by RES on power system. A power system was simulated and the IFD and SteadyState Frequency Deviation (SSFD) of the system were examined as the nuclear powers were substituted by wind powers. The results showed that a large amount of inertia implies a small IFD and vice versa.Furthermore, this paper also studies Battery Energy Storage System (BESS) as a power support for FCR when using RES. The conclusion for the impact of the battery was to use high injected power and triggering frequency level (TLF) and vice versa to get an acceptable IFD. In other words, this means that it is possible to keep the IFD within predefined limits by using batteries and identify the appropriate range of battery control settings.
28

Batterilager på stödtjänstmarknaden : Utnyttjande och dess påverkan på det lokala elnätet / Battery energy storage systems on ancillary services market

Sandin, William, Magnusson, Pontus January 2023 (has links)
This master thesis investigates the impact of battery energy storage utilization in the ancillary services market on a local electricity grid. Specifically, the study examines the technical impact of battery energy storage installations and how grid operators should handle these types of installations in the future. To achieve this goal, battery energy storage systems simulations using MatLab software based on historical frequency data have been conducted creating an operation scheme for the battery. The battery simulation was applied to the electrical systems consumption and production data, conducting a whole year power flow simulation investigating the effects on peak power demand both for the customer and local grid owner. The worst-case scenarios were also investigated to assure that the grid could withstand the change in production and consumption at any time. The results indicate that such an installation would increase the peak power demand for the local grid owner by a maximum of 12 kW for one week but in general, it would result in a smaller increment and some small decrement. For the customer, the maximum impact is greater both in absolute numbers and in proportion to the peak power demand before with an increment of 16 kW, but in general, there will not be any impact on the effect tariff at all. The results of the worst-case scenario simulations showed that during backup power supply at high load timestamps in combination with FCR-D down there would be contingencies in one cable connection between two nodes, causing the cable current to increase above the rated current. To allow such an installment the local grid owner would need to limit the battery capacity and increase their billings to the customer, expand the dimension of the system or even, increase their effect tariffs to always ensure a stable electricity supply and stable financial balance.
29

Condition Based Reliability Evaluation and Maintenance Strategy for Battery Energy Storage System / Tillståndsbaserad Tillförlitlighets Evaluering och Underhållsstrategi för Batterienergilagringssystem

Hou, Novalie January 2022 (has links)
The electrical grid balances production capacity and demand in real-time. With an increased demand for renewable energy sources, challenges such as stability of the grid, the balance between generation and demand, and power quality occur. One way to deal with the variability is by introducing Battery Energy Storage System (BESS) to the electric grid. To ensure a stable connection, the BESS must be reliable, and much research has been carried out on the BESS reliability. However, the previous studies have mainly focused on the DC reliability of the system and little research has been conducted on the AC side of a BESS. This thesis aims to provide a reliability-based maintenance strategy for the AC-side of a BESS. First, the reliability index of each AC component is calculated with established models, and based on the results, the maintenance strategy is developed. It is shown that the load current and ambient temperature are the two main parameters that affect a BESS’s reliability. For longer periods of continuous operation, the reliability declines with time and the failure rate increases. The most suitable maintenance strategy is a combination of preventive and predictive. The frequency of the scheduled preventive maintenance differs between the AC components since the schedule is based on the results from individual reliability indices. The preventive maintenance uses the condition monitoring method to observe some key elements such as DC-bus neutral current and junction temperature. / Det elektriska distributionsnätet balanserar produktionskapacitet och efterfrågan i realtid. I samband med den ökade efterfrågan av förnyelsebara energikällor uppstår nya utmaningar, såsom nätstabilitet, balans mellan produktion och efterfrågan och kvaliteten. Ett sätt att hantera variationen är att introducera Batterienergilagringssystem (BESS) till distributionsnätet. För att säkerställa en stabil anslutning måste BESS vara tillförlitlig och mycket forskning har utförts kring BESS tillförlitlighet. Fokus från de tidigare studierna har dock främst varit på DC-sidan av systemet och nästintill ingen forskning har fokuserats på den AC-sidan och dess tillförlitlighet. Denna masteruppsats syftar till att tillhandahålla en tillförlitlighetsbaserad underhållsstrategi för AC-sidan av en BESS. Först beräknas tillförlitlighetsindexet för varje AC-komponent från etablerade modeller och den underhållsstrategin utvecklas senare baserats på resultaten från tillförlighetsindex. Det visar sig att strömmen och omgivningstemperaturen är de två huvudparametrarna som påverkar tillförlitligheten. Vid längre perioder av kontinuerlig drift minskar tillförlitligheten med tiden och felfrekvensen ökar. Den mest lämpliga underhållsstrategin är en kombination av förebyggande och förutsägande. Frekvensen av det schemalagda förebyggande underhållet skiljer sig mellan AC-komponenterna eftersom schemat är baserat på resultaten från individuella tillförlitlighetsindex. Det förebyggande underhållet använder tillståndsövervakningsmetoden för att observera några nyckelelement såsom likström och kopplingstemperatur.
30

Second Life Batteries Faciliating Sustainable Transition in the Transport and Energy Sectors? : An Exploratory Field Study in Colombia

Vesterberg, Iris, Westerlund, Sofia January 2020 (has links)
The increasing number of vehicles in Colombian cities have resulted in alarmingly low quality of air, further resulting in increasing health issues. One potential solution to this issue could be a shift from ICEVs (internal combustion engine vehicles) to EVs (electric vehicles). However, EVs in Colombia are still very expensive, an issue that needs to be addressed in order for the EV market to increase enough to be able address the issue of low air quality in cities. One way of overcoming these cost barriers could be through implementation of a market for SLB (second life batteries), meaning that a battery retired from usage in EVs would be remanufactured, resold and reused in another application. Through SLB, the owner cost of EVs could potentially be decreased. SLB could also help improve the case for nondispatchable renewable energy sources by providing low cost BESS (battery energy storage solutions). Thus, SLB has the potential to facilitate sustainable transition within both the transport and the energy sector. This thesis aims to assess the potential of SLB in Colombia. This is done through a literature review where the current state of SLB is investigated, several interviews with potential stakeholders for a SLB market in Colombia, and a techno-economic assessment of four potential BESS applications in Colombia. The literature review provides with current knowledge and state of SLB in general. The interviews provide important insight to potential stakeholders’ view on SLB for the specific case of Colombia. The techno-economic assessment includes a sensitivity analysis aiming to provide insights in which factors, such as e.g. battery purchasing price or charging cost, that that gives rise to the largest impact on feasibility of SLB. Findings from the interviews shows a strong collective commitment from the interviewees to working towards cleaner air, resulting in high engagement and collaborative efforts between stakeholders for the SLB case. The main issue highlighted by stakeholders regards technoeconomic uncertainties of SLB. Findings from the techno-economic assessment indicates that SLB is viable for larger applications such as BESS at solar farms, but not for smaller applications such as backup power in residential buildings. However, SLB is not deemed to be a game changer for either application, and there are still many uncertainties regarding both technological and economic aspects that needs to be further investigated. The sensitivity analysis shows that the factors resulting in the highest impact on feasibility of SLB is battery SOH (state of health) at the beginning of SLB usage, and battery and repurposing cost. It will be hard to address both of these factors simultaneously due to a higher SOH would render higher battery prices, and vice versa. The findings from the thesis shows that SLB can facilitate sustainable transition within both the transport and energy sectors but is not to be considered a game changer for these sectors. However, even though SLB’s contribution to sustainable transition is not revolutionary, it is still necessary from a sustainability perspective. Given the environmental footprint of EV batteries and the amount of hazardous waste retired EV batteries will give rise to, circular economy must be pursued. / Det ökande antalet fordon i colombianska städer har resulterat i oroväckande låg luftkvalitet, vilket ytterligare resulterat i ökande hälsoproblem. En potentiell lösning på det problemet kan vara en övergång från ICEVs (förbränningsmotorfordon) till EV (elfordon). EVs i Colombia är fortfarande väldigt dyra, en fråga som måste adresseras för att EV-marknaden ska kunna öka tillräckligt för att kunna ge en inverkan på problemet med låg luftkvalitet i städer. Ett sätt att övervinna dessa kostnadshinder skulle kunna vara genom att implementera en marknad för SLB (second life-batterier), vilket innebär att ett batteri som bedömts inte längre uppfylla kraven för användning i EVs, och därmed byts ut, skulle kunna byggas om, säljas vidare och återanvändas i andra applikationer. Genom SLB kan ägarkostnaderna för EVs potentiellt sänkas. SLB skulle också kunna användas för att tillhandahålla billigare BESS (batterilagringslösningar) hos icke-reglerbara förnyelsebara kraftverk, såsom solkraftverk. Således har SLB potentialen att underlätta för hållbara förändringar inom både transportsektorn och energisektorn. Den här uppsatsen ämnar att utvärdera SLBs potential i Colombia. Detta görs genom en litteraturöversikt där det nuvarande tillståndet av SLBs undersöks, flera intervjuer med potentiella intressenter för en SLB-marknad i Colombia, och en tekno-ekonomisk bedömning av fyra potentiella BESS-applikationer i Colombia. Litteraturöversikten samlar aktuell kunskap och status inom SLB i allmänhet. Intervjuerna ger viktig insikt om potentiella intressenters syn på SLB för det specifika fallet i Colombia. Den tekno-ekonomiska bedömningen inkluderar en känslighetsanalys som syftar till att ge insikter i vilka faktorer, som t.ex. batteriets inköpspris eller laddningskostnad, som ger upphov till den största effekten på SLBs genomförbarhet. Resultat från intervjuerna visar ett starkt kollektivt engagemang från de intervjuade att arbeta mot renare luft, vilket resulterar i högt engagemang och samarbete mellan intressenterna. Det största problemet med SLB från intressenternas synpunkt berör tekno-ekonomiska osäkerheter. Resultat från den tekno-ekonomiska bedömningen indikerar att SLB är ekonomiskt försvarbart för större applikationer som BESS vid solkraftverk, men inte för mindre applikationer som t.ex. för reservenergi i bostadshus. SLB anses dock inte vara ett genombrott för användning vid någon av applikationerna, och det finns fortfarande många osäkerheter när det gäller både tekniska och ekonomiska aspekter som måste undersökas ytterligare. Känslighetsanalysen visar att de faktorer som resulterar i den högsta påverkan på genomförbarheten av SLB är batteriets SOH (hälsotillstånd) i början av SLB-användning och kostnaden för batteri och ombyggnad av batterier. Det kommer dock att vara svårt att hantera båda dessa faktorer samtidigt på grund av att högre SOH skulle ge högre batteripriser, och vice versa. Resultaten från uppsatsen visar att SLB kan underlätta för hållbara förändringar inom både transport- och energisektorerna, men att det inte ska betraktas som något fantastiskt genombrott för dessa sektorer. Även fast SLBs bidrag till hållbara förändringar är inte revolutionerande, är det fortfarande en nödvändig faktor ur ett hållbarhetsperspektiv. Med tanke på miljöavtrycket för EV-batterier och mängden av farligt avfall som EV-batterier kommer att ge upphov till då de inte längre är önskvärda, måste cirkulär ekonomi bedrivas i största möjliga mån.

Page generated in 0.1112 seconds