• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 66
  • 41
  • 37
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 17
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Fast charging of electrical vehicles with help from battery energy storage systems : A study of how batteries can lower the power peaks for fast charging of electrical vehicles in Stockholm / Snabbladdning av elfordon med hjälp av ett batterienergilagringssystem : En studie om hur batterier kan sänka effekttopparna för snabbladdning av elfordon i Stockholm

Wikström, Erik January 2023 (has links)
To enable fast charging of electric vehicles in Stockholm or sites where the electrical energy is limited and the number of chargeable vehicles increases, there is a need to investigate new solutions to comply with the future demand. The goal of this project is to investigate what the conditions are in Stockholm today and investigate what is needed to enable fast chargers in Stockholm city. Both what electrical equipment is necessary and develop a model to simulate the flow for the available energy and the demanded energy from a charging location. The result shows that battery energy storage systems can help the chargers, but to what degree depends on demand and availability. What is shown is, if the total maximum power demand is greater than the available power from the grid, a battery could be beneficial. In the scenarios, it has been enough to have a 150 kWh battery to increase the total charged energy over the day by more than two times what the grid could supply. / För att möjliggöra snabbladdning av elfordon i Stockholm eller platser där elenergin är begränsad och andelen laddbara fordon ökar måste nya lösningar undersökas för att möta framtidens behov. Målet med detta arbete är att undersöka vad det finns för förutsättningar för laddning i Stockholm i dagsläget och undersöka vad som krävs för att införa snabbladdare i Stockholms stad; vilken elektrisk utrustning som krävs samt ta fram en modell för att simulera ett flöde av tillgänglig energi och efterfråga för en laddplats.  Resultatet av studien är att batterienergilagringsystem kan hjälpa laddarna, men de bidrar olika mycket beroende på efterfrågan och energitillgång direkt från nätet. Om det totala maxeffektbehovet från laddgatan är högre än vad elnätet kan leverera kan det vara lönsamt att ha installerade batterier. I dessa scenarion har det räckt med ett batteri på 150 kWh för att kunna öka den energimängd som laddas över till elfordon under ett dygn med mer än dubbla nätets kapacitet.
42

Analysis of a hybrid PV-CSP plant integration in the electricity market

Maz Zapater, Juan Vicente January 2023 (has links)
One of the key challenges the world will need to face during the 21st century is global warming and the consequent climate change. Its presence is indisputable, and decarbonizing the gird emerges as one of the required pathways to achieve global sustainable objectives. Solar energy power plants have the potential to revert this situation and solve the problem. One way to harness this energy is through Concentrated Solar Power plants. The major advantage and potential of this technology is its ability to integrate cost-effective Thermal Energy Storage (TES), which is key with such an inherently intermittent resource. On the other hand, the drawback is the high current Levelized Cost of Energy (LCOE). The other main way to harness that highlighted solar energy is the use of Photovoltaic panels, which have recently achieved very competitive LCOE values. On the other hand, the storage integration is still a very pricey option, normally done with Battery Energy Storage Systems (BESS). As a conclusion, a hybrid power plant combining the LCOE of the PV and the TES of the CSP emerges as the key way of achieving a very competitive solution with a big potential. This master thesis aims at exploring the possibilities of a hybrid CSP and PV power plant with a sCO2 power cycle, integrated in the primary, secondary and tertiary electricity markets. To achieve this purpose, firstly, a Python-based Energy Dispatcher was developed to control the hybrid power plant. Indeed, the Dispatcher is the tool that decides when to produce, when to store… following an optimization problem. This can be formulated mathematically, and that was done and integrated into the Python code using Pyomo, a software for optimization problems. As a result, the Dispatcher achieved an effective control of the plant, showing intelligent decisions in detailed hourly analyses. The results were very promising and included optimization functions as maximizing the profitability of the plant or the total production, among others. To proceed with the Techno-economic assessment of the hybrid plant, the electricity markets were studied. The main source of income of any power plant is normally the revenue from selling electricity to the grid, but since there are several markets, there are also other possibilities. In this thesis, it was assessed from a Techno-Economic perspective how the performance and optimal design of the plants vary when providing different services extra to selling electricity to the grid. The conclusion was that even though the Net Present Value (NPV) achieved working on the spot market was already very high, the extra value added from participating in the secondary or tertiary markets was indisputable. Indeed, the profits attained in those markets were between two and four times higher than the ones of the spot market. This is a specific case, but a trend was identified: these hybrid power plants have a huge possibility and a bright future on the service markets. As a consequence, this thesis shows the huge potential of hybrid power plants integrated in the grid participating in several markets. It also lays the foundation for future studies in other locations, under different conditions and with different technologies, among others.
43

Laddning av elflyg på Åre Östersund Airport : Hur batterilagringssystem kan hjälpa elnätet vid laddning av elflyg

Risvall, Michael January 2023 (has links)
Detta arbete har med hjälp av en antagen förbrukningsprofil för effekt samt energibehov för laddning av elflyg beräknat om det nuvarande elnätet på mellanspänningsnivå kommer att klara av en framtid där elflyg kommer att användas för kortare resor eller om det kommer behöva avhjälpas med ett batterilagringssystem. Arbetet kom fram till att oavsett räknad förbrukning kommer dagens elnät klara av detta vid normaldrift men inte vid reservdrift för de två fall med högre räknad förbrukning. Vidare kom arbetet fram till att vid användning av nuvarande nätstation kommer ett batterilagringssystem alltid att behövas både vid normaldrift och reservdrift. Arbetet kom även fram till att effekten som elflyg kommer att kräva för att ladda dessa är den begränsande faktorn för elnätet medan energin som dessa kräver för laddning under en hel dag inte är en begränsande faktor. / This work has, with the help of an assumed consumption profile for power and energy requirements for charging electric aircraft, calculated whether the current medium voltage power grid will be able to handle a future where electric aircraft will be used for shorter trips, or if it will need to be supplemented with a battery energy storage system. The work concluded that regardless of the calculated consumption, the current power grid will be able to handle this under normal operation but not under reserve operation for the two cases with higher calculated consumption. Furthermore, the work concluded that when using the current substation, a battery energy storage system will always be needed both under normal operation and reserve operation. The work also found that the power required to charge electric aircraft is the limiting factor for the power grid, while the energy they require for charging over a full day is not a limiting factor.
44

Small-Signal Stability, Transient Stability and Voltage Regulation Enhancement of Power Systems with Distributed Renewable Energy Resources

Kanchanaharuthai, Adirak 30 January 2012 (has links)
No description available.
45

Agrivoltaic Implementation in Greenhouses : A Techno-Economic Analysis of Agrivoltaic Installations for Greenhouses in Sweden

Gauffin, Henrik January 2022 (has links)
Due to the growing population and climate change, the world will see an increase in demand for food, freshwater and renewable energy supply. Agrivoltaics has the possibility to address all these problems, by producing food and renewable energy but also by reducing water usage in agriculture. This thesis aims to study if agrivoltaics including storage has the potential to enable sustainable greenhouses in Stockholm, Sweden by trying to create a near net zero energy consumption for greenhouses with Agrivoltaics (AV) implemented. Furthermore a techno-economic assessment will be made for the AV-systems where Key Performance Indicator (KPI)’s are compared to economic parameters. The selected KPI’s were a near net zero energy consumption and irradiance underneath the Photovoltaics (PV) technology. The selected PV-technology was standard PV-modules, Semi-Transparent Module (STM) and Organic Solar Cell (OSC) PV. These technologies were paired with li-ion batteries between 0-100 kWh and simulated in the software System Advisor Model (SAM) over a 25 year period. The AV system was applied to two load profiles, one for indoor plants and one for tomatoes. The economic parameters calculated was Net Present Value (NPV), Net Capital Cost (NCC), and Levelised Cost of Electricity (LCOE).  The results showed that the system is efficient in summertime where the PV reached maximum capacity in summer and the battery works as a complement. In wintertime, the AV-system is not very efficient and most of the electricity comes from the grid. It was not possible to create a near net zero energy consumption including storage in Stockholm Sweden. The irradiance beneath the panels were at a maximum for OSC, it was slightly reduced for the STM, and below 50% for the standard PV-module, depending on the size of the AV-system. Depending on the shade tolerance of the plant, the PV-technology should be selected.
46

Thermal Management Implications Of Utility Scale Battery Energy Storage Systems

Mohammad Aquib Zafar (16889376) 08 May 2024 (has links)
<p dir="ltr">The need for reducing reliance on fossil fuels to meet ever-increasing energy demands and minimizing global climate change due to greenhouse gas emissions has led to an increase in investments in Variable Energy Resources (VREs), such as wind and solar. But due to the unreliable nature of VREs, an energy storage system must be coupled with it which drives up the investment cost.</p><p dir="ltr">Lithium-ion batteries are compact, modular, and have high cyclic efficiency, making them an ideal choice for energy storage systems. However, they are susceptible to capacity loss over the years, limiting the total life of the batteries to 15-18 years only, after which they must be safely discarded or recycled. Hence, designing a Battery Energy Storage System (BESS) should consider all aspects, such as battery life, investment cost, energy efficiency, etc.</p><p dir="ltr">Most of the available studies on cost and lifetime of BESS either consider a steady degradation rate over years, or do not account for it at all, they take constant charge/discharge cycles, and sometimes do not consider ambient temperature too. This may result in an error in estimation of the cost of energy storage. The location where the BESS is supposed to be installed can also impact its life, given that each location has its own power consumption trend and temperature profile. In this work, we attempt to simulate a BESS by considering the ambient temperature, degradation rate and energy usage. This will help in getting an insight of a more realistic estimate of levelized cost of storage and for estimating the thermal energy needed to keep them within a certain temperature range, so that they can last longer.</p>
47

Tillämpning av batterilager som energitjänsten lastutjämnare : En studie om batterilagring för en medelstor abonnent i Varberg Energis elnät / Application of battery energy storage as smoothening of power fluctuation

Al-imarah, Amena, Stenberg, Elin January 2016 (has links)
Arbetet Tillämpning av batterilager som energitjänsten lastutjämnare är en litteraturstudie och en kvantitativ studie. I studien har driftkarakteristiken år 2015 hos en matvarubutik legat till grunden. Arbetet har syftat i att besvara frågan kring ett batterilagers lämplighet som agerade för lastutjämning. För att ta reda på det har batterilagersegenskaper kartlagts och dimensionering gjorts utifrån två olika driftfall. En ekonomisk besparingspotential har även beräknats utifrån de bägge driftfallen. Driftfallen har valts att kallas teknisk dimensionering och ekonomisk dimensionering. De tekniska dimensionerade lagerna har en lager storlek om 617 kWh och 555kWh vilket motsvarar 7,1% respektive 5,8% av den dagliga energianvändningen. För de ekonomiskt dimensionerade lagerna har en lager storlek om 597 kWh och 233kWh vilket motsvarar 6,8% respektive 2,8% av den dagliga energianvändningen. Den ekonomiska besparingspotentialen blir som störst för en blandad körning av de bägge driftfallen. Trotts att besparingspotentialen är uppskattade under ideala förhållanden med varken förluster eller degraderad prestanda lönar det inte sig att investera i ett batterilager för att enbart utföra tjänsten effektutjämning idag. Investering i ett batterilager för effektutjämning har potential att bli lönsam först när den kan tillgodose fler energitjänster eller när alternativkostnaden är förhöjd. / This thesis, is a study of battery energy storage and its use as energy source and smoothening of power fluctuation. Studies have been made as a systematic review and a quantitative study. The study has consisted of analysing the power characteristic from a supermarket in the city of Varberg during year 2015. The object has been to evaluate the energy storage and the power smoothing qualities. Therefore the battery energy storages characteristics have been evaluated in this systematic review. For the quantitative study, calculations of the energy storage sizes were made for two separate operation modes. The two different operation modes were named technical dimensioning and economic dimensioning. The function of the technical dimensioning was to smooth the power outlet from the grid, while the function of the economic dimensioning was to enable the supermarket to buy more energy during low-price hours. Based on monthly power characteristics, each dimensioning gave as a result two energy storage possibilities, one in medium and one in small size. The technical dimensioning resulted in battery energy storage of the sizes 617 kWh and 555kWh which is comparable to 7,1% and 5,8% of the daily energy usage of the supermarket. The economic dimensioning resulted in battery energy storage of the sizes 597 kWh and 233kWh which is comparable to 6,8% and 2,8% of the daily energy usage of the supermarket. For optimizing the economic savings, a variation of technical and economic operation mode are needed, depending on calculated power usage through the day and elspot prices. The study shows that a battery storage is difficult to finance. The calculated economic savings were estimated during ideal conditions and without power loss or loss in performance. As a conclusion from this study a battery storage may have a good payback if there are several energy services to be filled.
48

Simuleringsbaserad analys av toppeffektreducering med batterisystem i lokalnät / Simulation based analysis of peak shaving with battery energy storage system in residential distribution network

Hamanee, Sahaphol January 2019 (has links)
In this thesis, a simulation model developed in MATLAB® in consideration of system losses based on lithium ion-battery is presented. The purpose of the simulation model is to investigate peak shaving potential in the residential distribution network. In other word to determine an optimal threshold limit and battery capacity depending on if the battery system is placed at the transformer or household level. In the report there were economic calculations executed showing that profitability of investing in a battery system depends on the threshold limit and battery capacity. / I denna rapport presenteras analys av toppeffektreducering med ett simuleringsprogram baserad på litium-jon batteri med hänsyn till systemförlust. Simuleringsmodellen är uppbyggd i MATLAB® där metoder som Coulomb counting implementerades. Syftet med simuleringsprogrammet är att definiera en optimal tröskelgräns samt batterikapacitet på transformator- och hushållsnivån. I rapporten utfördes ekonomiska beräkningar som tyder på att lönsamheten för investering av ett batterisystem beror på tröskelgräns och batterikapacitet.
49

Evaluation of KPIs and Battery Usage of Li-ion BESS for FCR Application

Jansson, Samuel January 2019 (has links)
The main purpose of this thesis was to develop and evaluate Key Performance Indicators (KPIs) and battery usage associated with Lithium-ion Battery Energy Storage Systems (LiBESS) used as Frequency Containment Reserve (FCR). The investigation was based on three of Vattenfall´s LiBESS projects that use the same lithium-ion battery technology but vary in system rating and configuration. It was found that two of the most important KPIs are response time and energy efficiency. The response time describes how fast the system can respond to changes in grid frequency. Additionally, the energy efficiency describes how effectively the system can provide energy storage during service and it can be parametrized into the efficiency of the battery, converter and transformer. The results show that all the considered LiBESS can fulfill the response time requirements of 30 seconds for FCR provision. In the future stricter requirements for the response time in grid stabilization services will most likely be required. Nevertheless, the results showed that a well configured LiBESS can provide response times on the millisecond scale. The energy efficiency evaluation showed that the system energy efficiency decreased from 89% to 85% when the power increased from 50% to 100% of rated power. At 75% of rated power it was found that the converter had the lowest efficiency (92%) based on the analysis of the efficiency of all the system components. It was also found that the power consumed by auxiliary loads was nearly constant for the examined power rates and that it significantly reduced the energy efficiency. Lastly, the battery usage analysis showed that the battery often idles or operates at low power rates if the frequency dead-band of ±10 mHz is applied around the nominal value of 50 Hz. Moreover, the battery usage can be characterized by an average State of Charge of 50% and a maximum Depth of Discharge of 30% during both charge and discharge of the batteries.
50

Sistema de armazenamento aplicado a sistemas eólicos empregando conversores de fonte z conectados à rede elétrica

Navas, Michael Andrés Hernández January 2015 (has links)
Orientador: Dr. Alfeu J. Sguarezi Filho / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2015. / Neste trabalho apresenta-se uma configuração do sistema de armazenamento de energia com baterias aplicado a sistemas de geração de energia eólica empregando conversores de fonte Z conectados à rede elétrica. Os geradores de indução gaiola de esquilo, são frequentemente utilizados nos sistemas de geração de energia eólica, por sua robustez, simplicidade, peso menor e custo baixo. Este é conectado diretamente ao conversor de potência bidirecional back to back, pode fornecer potências ativa e reativa à rede elétrica. Além disso, é estudado o conversor de fonte Z aplicado nesta topologia. No entanto, a implantação de sistemas de armazenamento de energia com baterias nos sistemas de geração de energia eólica na atualidade é muito importante, devido à possibilidade de oscilações da tensão e corrente na rede elétrica, portanto, estes podem ajudar à estabilização das tensões, correntes e a frequência na rede elétrica. Este sistema é conectado ao conversor back to back por meio de um conversor elevador-abaixador de corrente contínua. Para controlar a velocidade no eixo do rotor no gerador de indução, a estratégia é baseada no controle direto de torque. Enquanto, para o conversor do lado da rede é empregada a técnica de controle orientado pela tensão. Para o banco de baterias é utilizado o controle da tensão no barramento de corrente contínua e do fluxo na corrente da bateria, utilizando controladores do tipo PI. Com os novos desenvolvimentos tecnológicos nas chaves de potência, são apresentadas topologias de conversores CC-CA como o conversor de fonte Z, este tipo de conversor corrige algumas limitações do conversor back to back, com as características de elevador/abaixador de tensão, sem o uso de dispositivos de comutação, são permitidos os curto-circuitos na chaves, empregando novas técnicas de modulação, e reduz a quantidade harmônica injetada na rede elétrica. Os estudos foram realizados por meio de técnicas de simulação computacional usando modelos matemáticos do sistema estudado para a validação das estratégias de controle empregadas em diferentes condições de operação. Para as simulações empregou-se a ferramenta computacional SimPowerSystems R do Matlab/Simulink R . / This paper presents a battery energy storage system applied to wind power generation based on Z-source inverter connected to the power grid. The squirrel cage induction generators, often used in wind power generation systems, for its robustness, simplicity, lower weight and low cost. This is connected directly to the bidirectional power converter back to back, therefore, and provides active and reactive powers to grid. In addition, it is studied the Z-source inverter applied in this topology. However, the implementation of battery energy storage systems in wind power generation systems, currently is very important, due to possibility of the voltage and current fluctuations in the power grid, so these may to stabilisation of current, voltage and frequency on the grid. This system is connected to back to back converter through a DC-DC converter (buck-boost). For the rotor speed control on induction generator, the strategy is based on direct torque control. While, for the grid side converter is employed the technique of voltage oriented control. For the battery bank voltage control is used on DC-link voltage and battery current flow, through PI type controllers. With the new technological developments in the keys of power, DC converters topologies are presented as the Z-source inverter, this type converter fixes some limitations of the converter back to back, with the characteristics of buck-boost voltage, without the use of switching devices, allowed short-circuits on converter, using new modulation techniques, and reduces the amount injected harmonic to power grid. The studies were performed by means of computer simulation techniques using mathematical models of studied system to validate the control strategies employed in different operating conditions. For the simulations was used the computational tool SimPowerSystems R do Matlab/Simulink R .

Page generated in 0.0994 seconds