Spelling suggestions: "subject:"bayésienne""
111 |
Recherche de caractéristiques sonores et de correspondances audiovisuelles pour des systèmes bio-inspirés de substitution sensorielle de l'audition vers la vision / Investigation of audio feature extraction and audiovisual correspondences for bio-inspired auditory to visual substitution systemsAdeli, Mohammad January 2016 (has links)
Résumé: Les systèmes de substitution sensorielle convertissent des stimuli d’une modalité sensorielle en des stimuli d’une autre modalité. Ils peuvent fournir les moyens pour les personnes handicapées de percevoir des stimuli d’une modalité défectueuse par une autre modalité. Le but de ce projet de recherche était d’étudier des systèmes de substitution de l’audition vers la vision. Ce type de substitution n’est pas bien étudié probablement en raison de la complexité du système auditif et des difficultés résultant de la désadaptation entre les sons audibles qui peuvent changer avec des fréquences allant jusqu’à 20000 Hz et des stimuli visuels qui changent très lentement avec le temps afin d’être perçus. Deux problèmes spécifiques des systèmes de substitution de l’audition vers la vision ont été ciblés par cette étude: la recherche de correspondances audiovisuelles et l’extraction de caractéristiques auditives. Une expérience audiovisuelle a été réalisée en ligne pour trouver les associations entre les caractéristiques auditives (la fréquence fondamentale et le timbre) et visuelles (la forme, la couleur, et la position verticale). Une forte corrélation entre le timbre des sons utilisés et des formes visuelles a été observée. Les sujets ont fortement associé des timbres “doux” avec des formes arrondies bleues, vertes ou gris clair, des timbres “durs” avec des formes angulaires pointues rouges, jaunes ou gris foncé et des timbres comportant simultanément des éléments de douceur et de dureté avec un mélange des deux formes visuelles arrondies et angulaires. La fréquence fondamentale n’a pas été associée à la position verticale, ni le niveau de gris ou la couleur. Étant donné la correspondance entre le timbre et une forme visuelle, dans l’étape sui- vante, un modèle hiérarchique flexible et polyvalent bio-inspiré pour analyser le timbre et extraire des caractéristiques importantes du timbre a été développé. Inspiré par les découvertes dans les domaines des neurosciences, neurosciences computationnelles et de la psychoacoustique, non seulement le modèle extrait-il des caractéristiques spectrales et temporelles d’un signal, mais il analyse également les modulations d’amplitude sur différentes échelles de temps. Il utilise un banc de filtres cochléaires pour résoudre les composantes spectrales d’un son, l’inhibition latérale pour améliorer la résolution spectrale, et un autre banc de filtres de modulation pour extraire l’enveloppe temporelle et la rugosité du son à partir des modulations d’amplitude. Afin de démontrer son potentiel pour la représentation du timbre, le modèle a été évalué avec succès pour trois applications : 1) la comparaison avec les valeurs subjectives de la rugosité 2) la classification d’instruments de musique 3) la sélection de caractéristiques pour les sons qui ont été regroupés en fonction de la forme visuelle qui leur avait été attribuée dans l’expérience audiovisuelle. La correspondance entre le timbre et la forme visuelle qui a été révélée par cette étude et le modèle proposé pour l’analyse de timbre peuvent être utilisés pour développer des systèmes de substitution de l’audition vers la vision intuitifs codant le timbre en formes visuelles. / Abstract: Sensory substitution systems encode a stimulus modality into another stimulus modality. They can provide the means for handicapped people to perceive stimuli of an impaired modality through another modality. The purpose of this study was to investigate auditory to visual substitution systems. This type of sensory substitution is not well-studied probably because of the complexities of the auditory system and the difficulties arising from the mismatch between audible sounds that can change with frequencies up to 20000 Hz and visual stimuli that should change very slowly with time to be perceived. Two specific problems of auditory to visual substitution systems were targeted in this research: the investigation of audiovisual correspondences and the extraction of auditory features. An audiovisual experiment was conducted online to find the associations between the auditory (pitch and timbre) and visual (shape, color, height) features. One hundred and nineteen subjects took part in the experiments. A strong association between timbre of envelope normalized sounds and visual shapes was observed. Subjects strongly associated soft timbres with blue, green or light gray rounded shapes, harsh timbres with red, yellow or dark gray sharp angular shapes and timbres having elements of softness and harshness together with a mixture of the previous two shapes. Fundamental frequency was not associated with height, grayscale or color. Given the correspondence between timbre and shapes, in the next step, a flexible and multipurpose bio-inspired hierarchical model for analyzing timbre and extracting the important timbral features was developed. Inspired by findings in the fields of neuroscience, computational neuroscience, and psychoacoustics, not only does the model extract spectral and temporal characteristics of a signal, but it also analyzes amplitude modulations on different timescales. It uses a cochlear filter bank to resolve the spectral components of a sound, lateral inhibition to enhance spectral resolution, and a modulation filter bank to extract the global temporal envelope and roughness of the sound from amplitude modulations. To demonstrate its potential for timbre representation, the model was successfully evaluated in three applications: 1) comparison with subjective values of roughness, 2) musical instrument classification, and 3) feature selection for labeled timbres. The correspondence between timbre and shapes revealed by this study and the proposed model for timbre analysis can be used to develop intuitive auditory to visual substitution systems that encode timbre into visual shapes.
|
112 |
Sélection de modèle d'imputation à partir de modèles bayésiens hiérarchiques linéaires multivariésChagra, Djamila 06 1900 (has links)
Les logiciels utilisés sont Splus et R. / Résumé
La technique connue comme l'imputation multiple semble être la technique la plus appropriée pour résoudre le problème de non-réponse. La littérature mentionne des méthodes qui modélisent la nature et la structure des valeurs manquantes. Une des méthodes les plus populaires est l'algorithme « Pan » de (Schafer & Yucel, 2002). Les imputations rapportées par cette méthode sont basées sur un modèle linéaire multivarié à effets mixtes pour la variable réponse. La méthode « BHLC » de (Murua et al, 2005) est une extension de « Pan » dont le modèle est bayésien hiérarchique avec groupes. Le but principal de ce travail est d'étudier le problème de sélection du modèle pour l'imputation multiple en termes d'efficacité et d'exactitude des prédictions des valeurs manquantes. Nous proposons une mesure de performance liée à la prédiction des valeurs manquantes. La mesure est une erreur quadratique moyenne reflétant la variance associée aux imputations multiples et le biais de prédiction. Nous montrons que cette mesure est plus objective que la mesure de variance de Rubin. Notre mesure est calculée en augmentant par une faible proportion le nombre de valeurs manquantes dans les données. La performance du modèle d'imputation est alors évaluée par l'erreur de prédiction associée aux valeurs manquantes. Pour étudier le problème objectivement, nous avons effectué plusieurs simulations. Les données ont été produites selon des modèles explicites différents avec des hypothèses particulières sur la structure des erreurs et la distribution a priori des valeurs manquantes. Notre étude examine si la vraie structure d'erreur des données a un effet sur la performance du choix des différentes hypothèses formulées pour le modèle d'imputation. Nous avons conclu que la réponse est oui. De plus, le choix de la distribution des valeurs manquantes semble être le facteur le plus important pour l'exactitude des prédictions. En général, les choix les plus efficaces pour de bonnes imputations sont une distribution de student avec inégalité des variances dans les groupes pour la structure des erreurs et une loi a priori choisie pour les valeurs manquantes est la loi normale avec moyenne et variance empirique des données observées, ou celle régularisé avec grande variabilité. Finalement, nous avons appliqué nos idées à un cas réel traitant un problème de santé.
Mots clés : valeurs manquantes, imputations multiples, modèle linéaire bayésien hiérarchique, modèle à effets mixtes. / Abstract
The technique known as multiple imputation seems to be the most suitable technique for solving the problem of non-response. The literature mentions methods that models the nature and structure of missing values. One of the most popular methods is the PAN algorithm of Schafer and Yucel (2002). The imputations yielded by this method are based on a multivariate linear mixed-effects model for the response variable. A Bayesian hierarchical clustered and more flexible extension of PAN is given by the BHLC model of Murua et al. (2005). The main goal of this work is to study the problem of model selection for multiple imputation in terms of efficiency and accuracy of missing-value predictions. We propose a measure of performance linked to the prediction of missing values. The measure is a mean squared error, and hence in addition to the variance associated to the multiple imputations, it includes a measure of bias in the prediction. We show that this measure is more objective than the most common variance measure of Rubin. Our measure is computed by incrementing by a small proportion the number of missing values in the data and supposing that those values are also missing. The performance of the imputation model is then assessed through the prediction error associated to these pseudo missing values. In order to study the problem objectively, we have devised several simulations. Data were generated according to different explicit models that assumed particular error structures. Several missing-value prior distributions as well as error-term distributions are then hypothesized. Our study investigates if the true error structure of the data has an effect on the performance of the different hypothesized choices for the imputation model. We concluded that the answer is yes. Moreover, the choice of missing-value prior distribution seems to be the most important factor for accuracy of predictions. In general, the most effective choices for good imputations are a t-Student distribution with different cluster variances for the error-term, and a missing-value Normal prior with data-driven mean and variance, or a missing-value regularizing Normal prior with large variance (a ridge-regression-like prior). Finally, we have applied our ideas to a real problem dealing with health outcome observations associated to a large number of countries around the world.
Keywords: Missing values, multiple imputation, Bayesian hierarchical linear model, mixed effects model.
|
113 |
Modèle bayésien pour les prêts investisseursBouvrette, Mathieu January 2006 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
114 |
Des algorithmes presque optimaux pour les problèmes de décision séquentielle à des fins de collecte d'information / Near-Optimal Algorithms for Sequential Information-Gathering Decision ProblemsAraya-López, Mauricio 04 February 2013 (has links)
Cette thèse s'intéresse à des problèmes de prise de décision séquentielle dans lesquels l'acquisition d'information est une fin en soi. Plus précisément, elle cherche d'abord à savoir comment modifier le formalisme des POMDP pour exprimer des problèmes de collecte d'information et à proposer des algorithmes pour résoudre ces problèmes. Cette approche est alors étendue à des tâches d'apprentissage par renforcement consistant à apprendre activement le modèle d'un système. De plus, cette thèse propose un nouvel algorithme d'apprentissage par renforcement bayésien, lequel utilise des transitions locales optimistes pour recueillir des informations de manière efficace tout en optimisant la performance escomptée. Grâce à une analyse de l'existant, des résultats théoriques et des études empiriques, cette thèse démontre que ces problèmes peuvent être résolus de façon optimale en théorie, que les méthodes proposées sont presque optimales, et que ces méthodes donnent des résultats comparables ou meilleurs que des approches de référence. Au-delà de ces résultats concrets, cette thèse ouvre la voie (1) à une meilleure compréhension de la relation entre la collecte d'informations et les politiques optimales dans les processus de prise de décision séquentielle, et (2) à une extension des très nombreux travaux traitant du contrôle de l'état d'un système à des problèmes de collecte d'informations / The purpose of this dissertation is to study sequential decision problems where acquiring information is an end in itself. More precisely, it first covers the question of how to modify the POMDP formalism to model information-gathering problems and which algorithms to use for solving them. This idea is then extended to reinforcement learning problems where the objective is to actively learn the model of the system. Also, this dissertation proposes a novel Bayesian reinforcement learning algorithm that uses optimistic local transitions to efficiently gather information while optimizing the expected return. Through bibliographic discussions, theoretical results and empirical studies, it is shown that these information-gathering problems are optimally solvable in theory, that the proposed methods are near-optimal solutions, and that these methods offer comparable or better results than reference approaches. Beyond these specific results, this dissertation paves the way (1) for understanding the relationship between information-gathering and optimal policies in sequential decision processes, and (2) for extending the large body of work about system state control to information-gathering problems
|
115 |
Restauration d'images Satellitaires par des techniques de filtrage statistique non linéaire / Satellite image restoration by nonlinear statistical filtering techniquesMarhaba, Bassel 21 November 2018 (has links)
Le traitement des images satellitaires est considéré comme l'un des domaines les plus intéressants dans les domaines de traitement d'images numériques. Les images satellitaires peuvent être dégradées pour plusieurs raisons, notamment les mouvements des satellites, les conditions météorologiques, la dispersion et d'autres facteurs. Plusieurs méthodes d'amélioration et de restauration des images satellitaires ont été étudiées et développées dans la littérature. Les travaux présentés dans cette thèse se concentrent sur la restauration des images satellitaires par des techniques de filtrage statistique non linéaire. Dans un premier temps, nous avons proposé une nouvelle méthode pour restaurer les images satellitaires en combinant les techniques de restauration aveugle et non aveugle. La raison de cette combinaison est d'exploiter les avantages de chaque technique utilisée. Dans un deuxième temps, de nouveaux algorithmes statistiques de restauration d'images basés sur les filtres non linéaires et l'estimation non paramétrique de densité multivariée ont été proposés. L'estimation non paramétrique de la densité à postériori est utilisée dans l'étape de ré-échantillonnage du filtre Bayésien bootstrap pour résoudre le problème de la perte de diversité dans le système de particules. Enfin, nous avons introduit une nouvelle méthode de la combinaison hybride pour la restauration des images basée sur la transformée en ondelettes discrète (TOD) et les algorithmes proposés à l'étape deux, et nos avons prouvé que les performances de la méthode combinée sont meilleures que les performances de l'approche TOD pour la réduction du bruit dans les images satellitaires dégradées. / Satellite image processing is considered one of the more interesting areas in the fields of digital image processing. Satellite images are subject to be degraded due to several reasons, satellite movements, weather, scattering, and other factors. Several methods for satellite image enhancement and restoration have been studied and developed in the literature. The work presented in this thesis, is focused on satellite image restoration by nonlinear statistical filtering techniques. At the first step, we proposed a novel method to restore satellite images using a combination between blind and non-blind restoration techniques. The reason for this combination is to exploit the advantages of each technique used. In the second step, novel statistical image restoration algorithms based on nonlinear filters and the nonparametric multivariate density estimation have been proposed. The nonparametric multivariate density estimation of posterior density is used in the resampling step of the Bayesian bootstrap filter to resolve the problem of loss of diversity among the particles. Finally, we have introduced a new hybrid combination method for image restoration based on the discrete wavelet transform (DWT) and the proposed algorithms in step two, and, we have proved that the performance of the combined method is better than the performance of the DWT approach in the reduction of noise in degraded satellite images.
|
116 |
Approches bayésiennes non paramétriques et apprentissage de dictionnaire pour les problèmes inverses en traitement d'image / Bayesian nonparametrics approaches and dictionary learning for inverse problems in image processingDang, Hong-Phuong 01 December 2016 (has links)
L'apprentissage de dictionnaire pour la représentation parcimonieuse est bien connu dans le cadre de la résolution de problèmes inverses. Les méthodes d'optimisation et les approches paramétriques ont été particulièrement explorées. Ces méthodes rencontrent certaines limitations, notamment liées au choix de paramètres. En général, la taille de dictionnaire doit être fixée à l'avance et une connaissance des niveaux de bruit et éventuellement de parcimonie sont aussi nécessaires. Les contributions méthodologies de cette thèse concernent l'apprentissage conjoint du dictionnaire et de ces paramètres, notamment pour les problèmes inverses en traitement d'image. Nous étudions et proposons la méthode IBP-DL (Indien Buffet Process for Dictionary Learning) en utilisant une approche bayésienne non paramétrique. Une introduction sur les approches bayésiennes non paramétriques est présentée. Le processus de Dirichlet et son dérivé, le processus du restaurant chinois, ainsi que le processus Bêta et son dérivé, le processus du buffet indien, sont décrits. Le modèle proposé pour l'apprentissage de dictionnaire s'appuie sur un a priori de type Buffet Indien qui permet d'apprendre un dictionnaire de taille adaptative. Nous détaillons la méthode de Monte-Carlo proposée pour l'inférence. Le niveau de bruit et celui de la parcimonie sont aussi échantillonnés, de sorte qu'aucun réglage de paramètres n'est nécessaire en pratique. Des expériences numériques illustrent les performances de l'approche pour les problèmes du débruitage, de l'inpainting et de l'acquisition compressée. Les résultats sont comparés avec l'état de l'art.Le code source en Matlab et en C est mis à disposition. / Dictionary learning for sparse representation has been widely advocated for solving inverse problems. Optimization methods and parametric approaches towards dictionary learning have been particularly explored. These methods meet some limitations, particularly related to the choice of parameters. In general, the dictionary size is fixed in advance, and sparsity or noise level may also be needed. In this thesis, we show how to perform jointly dictionary and parameter learning, with an emphasis on image processing. We propose and study the Indian Buffet Process for Dictionary Learning (IBP-DL) method, using a bayesian nonparametric approach.A primer on bayesian nonparametrics is first presented. Dirichlet and Beta processes and their respective derivatives, the Chinese restaurant and Indian Buffet processes are described. The proposed model for dictionary learning relies on an Indian Buffet prior, which permits to learn an adaptive size dictionary. The Monte-Carlo method for inference is detailed. Noise and sparsity levels are also inferred, so that in practice no parameter tuning is required. Numerical experiments illustrate the performances of the approach in different settings: image denoising, inpainting and compressed sensing. Results are compared with state-of-the art methods is made. Matlab and C sources are available for sake of reproducibility.
|
117 |
Analyse et modèle génératif de l'expressivité. Application à la parole et à l'interprétation musicaleBeller, Grégory 24 June 2009 (has links) (PDF)
Cette thèse s'inscrit dans les recherches actuelles sur les émotions et les réactions émotionnelles, sur la modélisation et la transformation de la parole, ainsi que sur l'interprétation musicale. Il semble que la capacité d'exprimer, de simuler et d'identifier des émotions, des humeurs, des intentions ou des attitudes, est fondamentale dans la communication humaine. La facilité avec laquelle nous comprenons l'état d'un personnage, à partir de la seule observation du comportement des acteurs et des sons qu'ils émettent, montre que cette source d'information est essentielle et, parfois même, suffisante dans nos relations sociales. Si l'état émotionnel présente la particularité d'être idiosyncrasique, c'est-à-dire particulier à chaque individu, il n'en va pas de même de la réaction associée qui se manifeste par le geste (mouvement, posture, visage...), le son (voix, musique...), et qui, elle, est observable par autrui. Ce qui nous permet de penser qu'il est possible de transformer cette réaction dans le but de modifier la perception de l'émotion associée. <br />C'est pourquoi le paradigme d'analyse-transformation-synthèse des réactions émotionnelles est, peu à peu, introduit dans les domaines thérapeutique, commercial, scientifique et artistique. Cette thèse s'inscrit dans ces deux derniers domaines et propose plusieurs contributions. <br />D'un point de vue théorique, cette thèse propose une définition de l'expressivité, une définition de l'expressivité neutre, un nouveau mode de représentation de l'expressivité, ainsi qu'un ensemble de catégories expressives communes à la parole et à la musique. Elle situe l'expressivité parmi le recensement des niveaux d'information disponibles dans l'interprétation qui peut être vu comme un modèle de la performance artistique. Elle propose un modèle original de la parole et de ses constituants, ainsi qu'un nouveau modèle prosodique hiérarchique. <br />D'un point de vue expérimental, cette thèse fournit un protocole pour l'acquisition de données expressives interprétées. Colatéralement, elle rend disponible trois corpus pour l'observation de l'expressivité. Elle fournit une nouvelle mesure statistique du degré d'articulation ainsi que plusieurs résultats d'analyses concernant l'influence de l'expressivité sur la parole. <br />D'un point de vue technique, elle propose un algorithme de traitement du signal permettant la modification du degré d'articulation. Elle présente un système de gestion de corpus novateur qui est, d'ores et déjà, utilisé par d'autres applications du traitement automatique de la parole, nécessitant la manipulation de corpus. Elle montre l'établissement d'un réseau bayésien en tant que modèle génératif de paramètres de transformation dépendants du contexte. <br />D'un point de vue technologique, un système expérimental de transformation, de haute qualité, de l'expressivité d'une phrase neutre, en français, synthétique ou enregistrée, a été produit. <br />Enfin et surtout, d'un point de vue prospectif, cette thèse propose différentes pistes de recherche pour l'avenir, tant sur les plans théorique, expérimental, technique, que technologique. Parmi celles-ci, la confrontation des manifestations de l'expressivité dans les interprétations verbale et musicale semble être une voie prometteuse.
|
118 |
Point de vue maxiset en estimation non paramétriqueAutin, Florent 07 December 2004 (has links) (PDF)
Dans le cadre d'une analyse par ondelettes, nous étudions les propriétés statistiques de diverses classes de procédures. Plus précisément, nous cherchons à déterminer les espaces maximaux (maxisets) sur lesquels ces procédures atteignent une vitesse de convergence donnée. L'approche maxiset nous permet alors de donner une explication théorique à certains phénomènes observés en pratique et non expliqués par l'approche minimax. Nous montrons en effet que les estimateurs de seuillage aléatoire sont plus performants que ceux de seuillage déterministe. Ensuite, nous prouvons que les procédures de seuillage par groupes, comme certaines procédures d'arbre (proches de la procédure de Lepski) ou de seuillage par blocs, ont de meilleures performances au sens maxiset que les procédures de seuillage individuel. Par ailleurs, si les maxisets des estimateurs Bayésiens usuels construits sur des densités à queues lourdes sont de même nature que ceux des estimateurs de seuillage dur, nous montrons qu'il en est de même pour ceux des estimateurs Bayésiens construits à partir de densités Gaussiennes à grande variance et dont les performances numériques sont très bonnes.
|
119 |
Test d'ajustement d'un processus de diffusion ergodique à changement de régimeGassem, Anis 07 July 2010 (has links) (PDF)
Nous considérons les tests d'ajustement de type Cramér-von Mises pour tester l'hypothèse que le processus de diffusion observé est un "switching diffusion", c'est-à-dire un processus de diffusion à changement de régime dont la dérive est de type signe. Ces tests sont basés sur la fonction de répartition empirique et la densité empirique. Il est montré que les distributions limites des tests statistiques proposés sont définis par des fonctionnelles de type intégrale des processus Gaussiens continus. Nous établissons les développements de Karhunen-Loève des processus limites correspondants. Ces développements nous permettent de simplifier le problème du calcul des seuils. Nous étudions le comportement de ces statistiques sous les alternatives et nous montrons que ces tests sont consistants. Pour traiter les hypothèses de base composite nous avons besoin de connaître le comportement asymptotique des estimateurs statistiques des paramètres inconnus, c'est pourquoi nous considérons le problème de l'estimation des paramètres pour le processus de diffusion à changement de régime. Nous supposons que le paramètre inconnu est à deux dimensions et nous décrivons les propriétés asymptotiques de l'estimateur de maximum de vraisemblance et de l'estimateur bayésien dans ce cas. L'utilisation de ces estimateurs nous ramène à construire les tests de type Cramér-von Mises correspondants et à étudier leurs distributions limites. Enfin, nous considérons deux tests de type Cramér-von Mises de processus de diffusion ergodiques dans le cas général. Il est montré que pour le choix de certaines des fonctions de poids ces tests sont asymptotiquement " distribution-free ". Pour certains cas particuliers, nous établissons les expressions explicites des distributions limites de ces statistiques par le calcul direct de la transformée de Laplace.
|
120 |
Some Signal Processing Techniques for Wireless Cooperative Localization and TrackingNOUREDDINE AL MOUSSAWI, Hadi 16 November 2012 (has links) (PDF)
Les avancements des technologies de l'information et des systèmes de communication ont permis le développement d'une grande variété d'applications et de services de géolocalisation. Les systèmes de positionnement par satellites figurent parmi les solutions principales de localisation. Dans des environnements difficiles (par exemples, les canyons urbains ou à l'intérieur des bâtiments), ces solutions ne fournissent pas une bonne précision, ou même deviennent indisponibles. Afin d'offrir des solutions de localisation précises et disponibles quelque soit l'environnement, les systèmes de communication sans fil ont été utilisés, où plusieurs paramètres topo-dépendants des signaux transmis peuvent être mesurés et exploités (par exemple, le temps d'arrivée (ToA), la puissance du signal reçu (RSS)). Dans ce travail, la localisation dans les systèmes sans fil est étudié d¿un point de vue traitement statistique du signal, et en explorant deux axes. Le premier axe concerne la localisation coopérative appliquée aux réseaux ad-hoc, où les différents n¿uds effectuent des mesures de distance par paire (c.à.d. ToA ou RSS) afin d'estimer simultanément leurs positions. Les conditions de solvabilité unique sont étudiées en s'appuyant sur les deux approches de la rigidité graphique et la programmation semi-définie, et ainsi les conditions d'identifiabilité sont déduites. Les solutions d'estimation de la position sont considérées en se concentrant sur l'estimation probabiliste et son application dans des champs aléatoires de Markov et ce en utilisant l¿algorithme de propagation de croyance non-paramétrique (NBP). Le deuxième axe concerne la poursuite des terminaux mobiles en se basant sur des mesures RSS. Ces mesures sont affectées par un phénomène de masquage (shadowing). L'amélioration apportée à la précision de positionnement par la connaissance des cartes de shadowing est étudiée. La solution classique pour l'obtention de ces cartes est le fingerprinting, qui peut être coûteux en temps de collecte de mesures. Des solutions sont développées afin de surmonter ces difficultés. Plusieurs solutions sont proposées et étudiées par des simulations de Monte Carlo pour différents scénarios d'application et de déploiement, et plusieurs résultats théoriques et pratiques sont obtenus.
|
Page generated in 0.0611 seconds