• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 31
  • 11
  • 1
  • Tagged with
  • 144
  • 109
  • 74
  • 56
  • 42
  • 41
  • 36
  • 35
  • 26
  • 26
  • 24
  • 21
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Définition d'une fonction de pronostic des systèmes techniques multi composants prenant en compte les incertitudes à partir des pronostics de leurs composants / Definition of a generic prognostic function of technical multi-component systems taking into account the uncertainties of the predictions of their components

Le Maitre Gonzalez, Esteban Adolfo 24 January 2019 (has links)
Face au défi des entreprises pour le maintien de leurs équipements au maximum de leur fiabilité, de leur disponibilité, de leur rentabilité et de leur sécurité au coût de maintenance minimum, des stratégies de maintenance telles que le CBM et le PHM ont été développées. Pour mettre en œuvre ces stratégies, comme pour la planification des activités de production il est nécessaire de connaître l’aptitude des systèmes à réaliser les futures tâches afin de réaliser le séquencement des opérations de production et de maintenance. Cette thèse présente les éléments d'une fonction générique qui évalue la capacité des systèmes techniques multi-composants à exécuter les tâches de production de biens ou de services assignées. Ce manuscrit présente une proposition de modélisation de systèmes techniques multi-composants représentant les différentes entités qui les composent, leurs états et leurs relations. Plusieurs types d’entités ont été identifiés. Pour chacun d’eux, des inférences sont proposées pour définir à l’intérieur du système l’aptitude de l’entité à accomplir les futures tâches de production à partir des évaluations de son état présent et futur et des évaluations des états présents et futurs des autres entités avec lesquelles elle est en relation. Ces évaluations des états présents et futurs sont basées sur l’exploitation de pronostics locaux des composants. Ces pronostics sont des prévisions qui intrinsèquement comportent des incertitudes pouvant être aléatoires ou épistémiques. La fonction proposée et les inférences prennent en compte ces deux formes d’incertitudes. Pour cela, les traitements et la fonction proposée exploite des éléments de la théorie de Dempster-Shafer. La modélisation des systèmes multi-composants pouvant être représentée sous la forme de graphes dont les états des nœuds dépendent de données comportant des incertitudes, des éléments des réseaux bayésiens sont également utilisés. Cette fonction fournit des indicateurs, sur l’aptitude de chaque entité du système à accomplir les futures tâches de production mais aussi indique les composants nécessitant une intervention afin d’améliorer cette aptitude. Ainsi, ces indicateurs constituent les éléments d'aide à la décision pour la planification des opérations de maintenance de façon conditionnelle et préventive, mais aussi pour la planification des opérations de production. / One major challenge of companies consists in maintaining their technical production resources at the maximum level of reliability, availability, profitability and safety for a minimum maintenance cost, maintenance strategies such as CBM and PHM have been developed. To implement these strategies, as with production activity planning, it is necessary to know the ability of systems to perform future tasks to order production and maintenance operations. This thesis presents the generic function that evaluates the ability of multi-component technical systems to perform the production tasks of goods or services. This manuscript presents a proposal for the modelling of multi-component technical systems representing the different entities that compose them, their states and their relationships. Several types of entities have been identified. For each of them, inferences are proposed to define within the system the entity's ability to perform future production tasks based on its own assessment of its present and future state and the assessments of the present and future states of the other entities with which it is involved. These assessments of present and future states are based on the use of local prognoses of components. These prognoses are predictions that inherently involve uncertainties that may be aleatory or epistemic. The proposed function and inferences take into account these two kinds of uncertainty. To do this, the inferences and the proposed function uses elements of the Dempster-Shafer theory. Since the modelling of multi-component systems can be represented in the form of graphs whose node states depend on data with uncertainties, elements of Bayesian networks are also used. This function provides indicators on the ability of each system entity to perform future production tasks but also indicates the components that require maintenance to improve this ability. Thus, these indicators constitute the elements of decision support for the planning of maintenance operations in a conditional and preventive way, but also for the planning of production tasks.
112

Méthodes statistiques pour la différenciation génotypique des plantes à l’aide des modèles de croissance / Statistical methods for the genotypic differentiation of plants using growth models

Viaud, Gautier 22 January 2018 (has links)
Les modèles de croissance de plantes peuvent être utilisés afin de prédire des quantités d’intérêt ou évaluer la variabilité génotypique au sein d’une population de plantes ; ce double usage est mis en évidence au sein de ce travail. Trois modèles de plantes sont ainsi considérés (LNAS pour la betterave et le blé, GreenLab pour Arabidopsis thaliana) au sein du cadre mathématique des modèles à espace d’états généraux.Une nouvelle plate-forme de calcul générique pour la modélisation et l’inférence statistique (ADJUSTIN’) a été développée en Julia, permettant la simulation des modèles de croissance de plantes considérés ainsi que l’utilisation de techniques d’estimation de pointe telles que les méthodes de Monte Carlo par chaînes de Markov ou de Monte Carlo séquentielles.L’inférence statistique au sein des modèles de croissance de plantes étant de première importance pour des applications concrètes telles que la prédiction de rendement, les méthodes d’estimation de paramètres et d’états au sein de modèles à espaces d’états et dans un cadre bayésien furent tout d’abord étudiées, et plusieurs cas d’étude pour les plantes considérées sont analysés pour le cas d’une plante individuelle.La caractérisation de la variabilité au sein d’une population de plantes est envisagée à travers les distributions des paramètres de population au sein de modèles hiérarchiques bayésiens. Cette approche requérant l’acquisition de nombreuses données pour chaque individu, un algorithme de segmentation-suivi pour l’analyse d’images d’Arabidopsis thaliana, obtenues grâce au Phénoscope, une plate-forme de phénotypage à haut rendement de l’INRA Versailles, est proposé.Finalement, l’intérêt de l’utilisation des modèles hiérarchiques bayésiens pour la mise en évidence de la variabilité au sein d’une population de plantes est discutée. D’abord par l’étude de différents scénarios sur des données simulées, et enfin en utilisant les données expérimentales obtenues à partir de l’analyse d’images pour une population d’Arabidopsis thaliana comprenant 48 individus. / Plant growth models can be used in order to predict quantities of interest or assess the genotypic variability of a population of plants; this dual use is emphasized throughout this work.Three plant growth models are therefore considered (LNAS for sugar beet and wheat, GreenLab for Arabidopsis thaliana) within the mathematical framework of general state space models.A new generic computing platform for modelling and statistical inference (ADJUSTIN’) has been developed in Julia, allowing to simulate the plant growth models considered as well as the use of state-of-the-art estimation techniques such as Markov chain Monte Carlo and sequential Monte Carlo methods.Statistical inference within plant growth models is of primary importance for concrete applications such as yield prediction, parameter and state estimation methods within general state-space models in a Bayesian framework were first studied and several case studies for the plants considered are then investigated in the case of an individual plant.The characterization of the variability of a population of plants is envisioned through the distributions of parameters using Bayesian hierarchical models. This approach requiring the acquisition of numerous data for each individual, a segmentation-tracking algorithm for the analysis of images of Arabidopsis thaliana, obtained thanks to the Phenoscope, a high-throughput phenotyping platform of INRA Versailles, is proposed.Finally, the interest of using Bayesian hierarchical models to evidence the variability of a population of plants is discussed. First through the study of different scenarios on simulated data, and then by using the experimental data acquired via image analysis for the population of Arabidopsis thaliana comprising 48 individuals.
113

AVISE, une démarche d'Anticipation du Vieillissement par Interrogation et Stimulation d'Experts, application à un matériel passif d'une centrale nucléaire : le pressuriseur

Bouzaiene-Marle, Leïla 04 April 2005 (has links) (PDF)
Ce travail de thèse s'intéresse à l'anticipation du vieillissement des matériels (systèmes, structures ou composants) d'une installation dans le cadre de la gestion de son cycle de vie. La démarche proposée, intitulée AVISE pour Anticipation du Vieillissement par Interrogation et Stimulation d'Experts, permet l'identification des problèmes potentiels liés au vieillissement d'un matériel, de mesurer les risques pris en termes de probabilité d'apparition d'une dégradation ou de ses conséquences et de proposer des solutions adéquates pour freiner ou éviter ce vieillissement. La problématique de recherche a été formulée dans un contexte industriel particulier, le contexte du nucléaire. Ce dernier est caractérisé par des matériels spécifiques, particulièrement fiables et ayant donc un faible retour d'expérience. Pour compenser ce retour d'expérience faible, voire inexistant, deux solutions sont proposées dans la démarche. La première solution, qu'on peut considérer classique, consiste à avoir recours aux opinions d'experts. La seconde, plus originale, consiste à enrichir le retour d'expérience du matériel étudié par le retour d'expérience relevé sur des matériels dits « analogues ». Afin de mettre en œuvre ces solutions et de réaliser les objectifs de l'anticipation, un ensemble de supports méthodologiques a été conçu puis testé dans le cadre de l'application sur un matériel passif d'une centrale nucléaire : le pressuriseur. Le premier support est un processus générique d'interrogation d'experts identifié suite à une comparaison entre onze méthodes existantes utilisant le jugement d'experts. Deux méthodes de stimulation d'experts, intitulées STIMEX-IMDP, STIMulation d'EXperts pour l'Identification de Mécanismes de Dégradation Potentiels, et STIMEX-IPP, STIMulation d'EXperts pour l'Identification de Parades Potentielles, ont été élaborées en se fondant sur les concepts de l'aide à la créativité. Des listes de référence de mécanismes de dégradation et de modes ou effets du vieillissement ont été construites et utilisées dans le cadre de la méthode STIMEX-IMDP afin d'aider à la stimulation des experts et de favoriser l'exhaustivité des résultats. Ensuite, la démarche développée préconise et illustre l'utilisation des réseaux bayésiens pour la modélisation et la quantification des risques liés aux dégradations potentilles. Finalement, la construction d'un modèle conceptuel de données et l'identification des spécifications sont donnés pour la création d'une base de données de vieillissement. Les données à capitaliser ont été identifiées sur la base des travaux réalisés dans la thèse
114

Modelling software quality : a multidimensional approach

Vaucher, Stéphane 11 1900 (has links)
Les sociétés modernes dépendent de plus en plus sur les systèmes informatiques et ainsi, il y a de plus en plus de pression sur les équipes de développement pour produire des logiciels de bonne qualité. Plusieurs compagnies utilisent des modèles de qualité, des suites de programmes qui analysent et évaluent la qualité d'autres programmes, mais la construction de modèles de qualité est difficile parce qu'il existe plusieurs questions qui n'ont pas été répondues dans la littérature. Nous avons étudié les pratiques de modélisation de la qualité auprès d'une grande entreprise et avons identifié les trois dimensions où une recherche additionnelle est désirable : Le support de la subjectivité de la qualité, les techniques pour faire le suivi de la qualité lors de l'évolution des logiciels, et la composition de la qualité entre différents niveaux d'abstraction. Concernant la subjectivité, nous avons proposé l'utilisation de modèles bayésiens parce qu'ils sont capables de traiter des données ambiguës. Nous avons appliqué nos modèles au problème de la détection des défauts de conception. Dans une étude de deux logiciels libres, nous avons trouvé que notre approche est supérieure aux techniques décrites dans l'état de l'art, qui sont basées sur des règles. Pour supporter l'évolution des logiciels, nous avons considéré que les scores produits par un modèle de qualité sont des signaux qui peuvent être analysés en utilisant des techniques d'exploration de données pour identifier des patrons d'évolution de la qualité. Nous avons étudié comment les défauts de conception apparaissent et disparaissent des logiciels. Un logiciel est typiquement conçu comme une hiérarchie de composants, mais les modèles de qualité ne tiennent pas compte de cette organisation. Dans la dernière partie de la dissertation, nous présentons un modèle de qualité à deux niveaux. Ces modèles ont trois parties: un modèle au niveau du composant, un modèle qui évalue l'importance de chacun des composants, et un autre qui évalue la qualité d'un composé en combinant la qualité de ses composants. L'approche a été testée sur la prédiction de classes à fort changement à partir de la qualité des méthodes. Nous avons trouvé que nos modèles à deux niveaux permettent une meilleure identification des classes à fort changement. Pour terminer, nous avons appliqué nos modèles à deux niveaux pour l'évaluation de la navigabilité des sites web à partir de la qualité des pages. Nos modèles étaient capables de distinguer entre des sites de très bonne qualité et des sites choisis aléatoirement. Au cours de la dissertation, nous présentons non seulement des problèmes théoriques et leurs solutions, mais nous avons également mené des expériences pour démontrer les avantages et les limitations de nos solutions. Nos résultats indiquent qu'on peut espérer améliorer l'état de l'art dans les trois dimensions présentées. En particulier, notre travail sur la composition de la qualité et la modélisation de l'importance est le premier à cibler ce problème. Nous croyons que nos modèles à deux niveaux sont un point de départ intéressant pour des travaux de recherche plus approfondis. / As society becomes ever more dependent on computer systems, there is more and more pressure on development teams to produce high-quality software. Many companies therefore rely on quality models, program suites that analyse and evaluate the quality of other programs, but building good quality models is hard as there are many questions concerning quality modelling that have yet to be adequately addressed in the literature. We analysed quality modelling practices in a large organisation and identified three dimensions where research is needed: proper support of the subjective notion of quality, techniques to track the quality of evolving software, and the composition of quality judgments from different abstraction levels. To tackle subjectivity, we propose using Bayesian models as these can deal with uncertain data. We applied our models to the problem of anti-pattern detection. In a study of two open-source systems, we found that our approach was superior to state of the art rule-based techniques. To support software evolution, we consider scores produced by quality models as signals and the use of signal data-mining techniques to identify patterns in the evolution of quality. We studied how anti-patterns are introduced and removed from systems. Software is typically written using a hierarchy of components, yet quality models do not explicitly consider this hierarchy. As the last part of our dissertation, we present two level quality models. These are composed of three parts: a component-level model, a second model to evaluate the importance of each component, and a container-level model to combine the contribution of components with container attributes. This approach was tested on the prediction of class-level changes based on the quality and importance of its components: methods. It was shown to be more useful than single-level, traditional approaches. To finish, we reapplied this two-level methodology to the problem of assessing web site navigability. Our models could successfully distinguish award-winning sites from average sites picked at random. Throughout the dissertation, we present not only theoretical problems and solutions, but we performed experiments to illustrate the pros and cons of our solutions. Our results show that there are considerable improvements to be had in all three proposed dimensions. In particular, our work on quality composition and importance modelling is the first that focuses on this particular problem. We believe that our general two-level models are only a starting point for more in-depth research.
115

Incertitude, causalité et décision : Le cas des risques sociaux et du risque nucléaire en particulier / Uncertainty, causality and decision : The case of social risks and nuclear risk in particular

Lahidji, Reza 29 February 2012 (has links)
La probabilité et la causalité sont deux outils indispensables à la prise en compte des situations de risque social. Lesrelations causales sont le fondement des représentations à partir desquelles on peut évaluer le risque et concevoirdes actions de prévention, de mitigation ou d’indemnisation. La probabilité permet de quantifier cette évaluation et de calibrer ces actions. Dès lors, il semble non seulement naturel, mais nécessaire d’expliciter la place de la causalité et de la probabilité dans la définition d’un problème de décision en situation de risque social. C’est l’objet de cette thèse.Un tour d’horizon de la terminologie du risque et des logiques d’intervention publique dans différentes catégories de risque social nous permettent de mieux comprendre la notion et les problèmes soulevés par sa représentation. Nous approfondissons notre analyse dans le cas de la sûreté nucléaire, en examinant en détail les méthodes et doctrinesdéveloppées dans ce domaine et leur évolution au cours du temps, ce qui nous conduit à formuler différentesobservations au sujet des évaluations de risque et de sûreté.En généralisant la notion d’intervention dans les réseaux bayésiens, nous développons une forme de réseau bayésien causal qui répond à nos besoins. Nous parvenons, par son biais, à une définition du risque qui semble pertinente pour un grand nombre de situations. Nous proposons ensuite des applications simples de ce modèle à certains aspects de l’accident de Fukushima et d’autres problèmes de sûreté nucléaire. Outre certains enseignements spécifiques, ceci nous amène à souligner la nécessité d’une démarche systématique d’identification des incertitudes dans ce domaine.Étendu en direction de la théorie de la décision, notre outil débouche naturellement sur un modèle de décision dynamique dans lequel les actes causent les conséquences et sont causalement liés entre eux. Il apporte en outre une interprétation causale au cadre conceptuel de Savage et permet d’en résoudre certains paradoxes et clarifier certains aspects. Il conduit enfin à envisager la question de l’ambigüité comme incertitude concernant la structure causale d’un problème de décision, ce qui correspond à une vision courante du principe de précaution. / Probability and causality are two indispensable tools for addressing situations of social risk. Causal relations are the foundation for building risk assessment models and identifying risk prevention, mitigation and compensation measures. Probability enables us to quantify risk assessments and to calibrate intervention measures. It therefore seems not only natural, but also necessary to make the role of causality and probability explicit in the definition of decision problems in situations of social risk. Such is the aim of this thesis.By reviewing the terminology of risk and the logic of public interventions in various fields of social risk, we gain a better understanding of the notion and of the issues that one faces when trying to model it. We further elaborate our analysis in the case of nuclear safety, examining in detail how methods and policies have been developed in this field and how they have evolved through time. This leads to a number of observations concerning risk and safety assessments.Generalising the concept of intervention in a Bayesian network allows us to develop a variety of causal Bayesian networks adapted to our needs. In this framework, we propose a definition of risk which seems to be relevant for a broad range of issues. We then offer simple applications of our model to specific aspects of the Fukushima accident and other nuclear safety problems. In addition to specific lessons, the analysis leads to the conclusion that a systematic approach for identifying uncertainties is needed in this area.When applied to decision theory, our tool evolves into a dynamic decision model in which acts cause consequencesand are causally interconnected. The model provides a causal interpretation of Savage’s conceptual framework, solves some of its paradoxes and clarifies certain aspects. It leads us to considering uncertainty with regard to a problem’s causal structure as the source of ambiguity in decision-making, an interpretation which corresponds to a common understanding of the precautionary principle.
116

Développement d'une méthodologie d'assistance au commissionnement des bâtiments à faible consommation d'énergie / Development of a methodology to assist the commissioning of low energy buildings

Hannachi-Belkadi, Nazila Kahina 08 July 2008 (has links)
Les bâtiments à faible consommation d’énergie connaissent, ces dernières années, un grand intérêt étant donné le rôle important qu’ils jouent dans la diminution des émissions de gaz à effet de serre d’une part, et la flambée des prix des combustibles, d’autre part. Néanmoins, dans de nombreux cas la réalisation de ce type de bâtiments n’atteint pas les performances escomptées. Ce problème est dû en grande partie à : 1) la perte d’informations tout au long du cycle de vie du bâtiment, 2) la non évaluation régulière des décisions prises par les acteurs intervenants. Le commissionnement en tant que processus de contrôle qualité joue un rôle important dans le bon déroulement du processus de réalisation de bâtiments à faible consommation d’énergie. Cette recherche vise à développer une méthodologie dont l’objectif est d’assister les personnes responsables de cette mission dans la définition de plans de commissionnement adaptés à leurs projets. Nous avons réalisé en premier, un état de l’art de la réalisation des bâtiments à faible consommation d’énergie, que nous avons par la suite confronté à la réalité à travers une enquête auprès des acteurs du bâtiment et d’étude de cas réels. Cette étape nous a permis de formuler une hypothèse concernant la nécessité d’un commissionnement «évolutif» -adapté aux particularités de chaque projet - et de décrire une méthodologie globale d’assistance à la conception des bâtiments à faible consommation d’énergie, qui intègre une aide à la décision, une gestion de l’information et un commissionnement «évolutif» qui vient vérifier le bon déroulement des deux premiers. Pour mettre en application cette méthodologie, une boîte à outils a été développée. Elle est constituée de : 1) un outil dit «statique» qui permet de définir un premier plan de commissionnent générique qui répond aux caractéristiques d’un projet, à partir d’une base de données exhaustives de tâches de commissionnement, 2) un outil dit «dynamique» basé sur les probabilités, qui permet de mettre à jour le plan de commissionnement initial (générique), en l’adaptant au projet en cours. Cette mise à jour permet de prendre en compte les particularités et imprévus rencontrés lors de la réalisation d’un projet, rendant ainsi le plan de commissionnement plus précis. Une expérimentation, dans un cas réel, du premier outil et des applications du second ont été faites pour montrer leurs possibilités et leurs limites. Les résultats font apparaître deux points importants : 1) l’intérêt d’avoir un plan de commissionnement structuré et évolutif pour vérifier la qualité de la réalisation des bâtiments à faible consommation d’énergie et assurer ainsi l’atteinte des performances souhaitées, 2) l’intérêt d’utiliser un outil probabiliste tel que les réseaux Bayésiens pour anticiper les dérives et prendre en charge les imprévus rencontrés lors de ce processus vivant. Cette méthodologie représente une base pour le développement d’outils d’assistance à la définition de plans de commissionnement «évolutifs» pour le neuf et l’existant, et tous les secteurs du bâtiment / The low energy buildings know, these latest years, a great interest because of the important role that they play in reducing the greenhouse gas emissions on one hand, and the rise of the combustibles prices, on the other hand. Nevertheless, in many cases, low energy consumption buildings do not achieve the expected performances. This problem is largely due to: 1) the loss of information throughout the building life cycle, 2) the non-regular evaluation of the decisions made by the actors intervening in their conception. The commissioning, as a quality control process, plays an important role in the good progress of the realization process of low energy buildings case. This research aims to develop a methodology to assist the persons responsible of the commissioning in the definition of commissioning plans adapted to their projects. Firstly, we performed a state of art of the low energy consumption buildings realisation that we then confronted, to the reality through an investigation with building actors and a study of real cases. This step allowed us to formulate a hypothesis concerning the necessity of a "progressive" commissioning -adapted to project particularities - and to describe a global methodology of assistance to the low energy consumption buildings realisation that integrates a decision making aid, an information management and a "progressive" commissioning that verify the good realisation of the two first functions. To put this methodology into application, a toolbox was developed. It comprises: 1) a tool named "static" that allows defining a first generic commission plan that satisfies the project characteristics, based on an exhaustive data of commissioning tasks, 2) a tool named "dynamic" based on the probabilities, that allows updating the initial (generic) commissioning plan. This update manages the unexpected events met during the project realization; witch permits the commissioning plan to be more precise. An experimentation of the first tool was done in a real case and applications of the second were done to show their possibilities and their limits. The results show two important points: 1) the interest of having a structured and progressive commissioning plan to verify the quality of low energy consumption buildings realisation and guarantee the achievement of the expected performances, 2) the interest of using a probabilistic tool such as the Bayésien networks to anticipate the drifts and to deal with the unexpected events met throughout the building life cycle. This methodology represents a basis for the development of assistance tools for the definition of commissioning "progressive" plans for the new and the existing, and all the building sectors
117

Des algorithmes presque optimaux pour les problèmes de décision séquentielle à des fins de collecte d'information / Near-Optimal Algorithms for Sequential Information-Gathering Decision Problems

Araya-López, Mauricio 04 February 2013 (has links)
Cette thèse s'intéresse à des problèmes de prise de décision séquentielle dans lesquels l'acquisition d'information est une fin en soi. Plus précisément, elle cherche d'abord à savoir comment modifier le formalisme des POMDP pour exprimer des problèmes de collecte d'information et à proposer des algorithmes pour résoudre ces problèmes. Cette approche est alors étendue à des tâches d'apprentissage par renforcement consistant à apprendre activement le modèle d'un système. De plus, cette thèse propose un nouvel algorithme d'apprentissage par renforcement bayésien, lequel utilise des transitions locales optimistes pour recueillir des informations de manière efficace tout en optimisant la performance escomptée. Grâce à une analyse de l'existant, des résultats théoriques et des études empiriques, cette thèse démontre que ces problèmes peuvent être résolus de façon optimale en théorie, que les méthodes proposées sont presque optimales, et que ces méthodes donnent des résultats comparables ou meilleurs que des approches de référence. Au-delà de ces résultats concrets, cette thèse ouvre la voie (1) à une meilleure compréhension de la relation entre la collecte d'informations et les politiques optimales dans les processus de prise de décision séquentielle, et (2) à une extension des très nombreux travaux traitant du contrôle de l'état d'un système à des problèmes de collecte d'informations / The purpose of this dissertation is to study sequential decision problems where acquiring information is an end in itself. More precisely, it first covers the question of how to modify the POMDP formalism to model information-gathering problems and which algorithms to use for solving them. This idea is then extended to reinforcement learning problems where the objective is to actively learn the model of the system. Also, this dissertation proposes a novel Bayesian reinforcement learning algorithm that uses optimistic local transitions to efficiently gather information while optimizing the expected return. Through bibliographic discussions, theoretical results and empirical studies, it is shown that these information-gathering problems are optimally solvable in theory, that the proposed methods are near-optimal solutions, and that these methods offer comparable or better results than reference approaches. Beyond these specific results, this dissertation paves the way (1) for understanding the relationship between information-gathering and optimal policies in sequential decision processes, and (2) for extending the large body of work about system state control to information-gathering problems
118

Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux / Bayesian models for synchronizations detection in electrocortical signals

Rio, Maxime 16 July 2013 (has links)
Cette thèse propose de nouvelles méthodes d'analyse d'enregistrements cérébraux intra-crâniens (potentiels de champs locaux), qui pallie les lacunes de la méthode temps-fréquence standard d'analyse des perturbations spectrales événementielles : le calcul d'une moyenne sur les enregistrements et l'emploi de l'activité dans la période pré-stimulus. La première méthode proposée repose sur la détection de sous-ensembles d'électrodes dont l'activité présente des synchronisations cooccurrentes en un même point du plan temps-fréquence, à l'aide de modèles bayésiens de mélange gaussiens. Les sous-ensembles d'électrodes pertinents sont validés par une mesure de stabilité calculée entre les résultats obtenus sur les différents enregistrements. Pour la seconde méthode proposée, le constat qu'un bruit blanc dans le domaine temporel se transforme en bruit ricien dans le domaine de l'amplitude d'une transformée temps-fréquence a permis de mettre au point une segmentation du signal de chaque enregistrement dans chaque bande de fréquence en deux niveaux possibles, haut ou bas, à l'aide de modèles bayésiens de mélange ricien à deux composantes. À partir de ces deux niveaux, une analyse statistique permet de détecter des régions temps-fréquence plus ou moins actives. Pour développer le modèle bayésien de mélange ricien, de nouveaux algorithmes d'inférence bayésienne variationnelle ont été créés pour les distributions de Rice et de mélange ricien. Les performances des nouvelles méthodes ont été évaluées sur des données artificielles et sur des données expérimentales enregistrées sur des singes. Il ressort que les nouvelles méthodes génèrent moins de faux-positifs et sont plus robustes à l'absence de données dans la période pré-stimulus / This thesis promotes new methods to analyze intracranial cerebral signals (local field potentials), which overcome limitations of the standard time-frequency method of event-related spectral perturbations analysis: averaging over the trials and relying on the activity in the pre-stimulus period. The first proposed method is based on the detection of sub-networks of electrodes whose activity presents cooccurring synchronisations at a same point of the time-frequency plan, using bayesian gaussian mixture models. The relevant sub-networks are validated with a stability measure computed over the results obtained from different trials. For the second proposed method, the fact that a white noise in the temporal domain is transformed into a rician noise in the amplitude domain of a time-frequency transform made possible the development of a segmentation of the signal in each frequency band of each trial into two possible levels, a high one and a low one, using bayesian rician mixture models with two components. From these two levels, a statistical analysis can detect time-frequency regions more or less active. To develop the bayesian rician mixture model, new algorithms of variational bayesian inference have been created for the Rice distribution and the rician mixture distribution. Performances of the new methods have been evaluated on artificial data and experimental data recorded on monkeys. It appears that the new methods generate less false positive results and are more robust to a lack of data in the pre-stimulus period
119

Localisation par l'image en milieu urbain : application à la réalité augmentée / Image-based localization in urban environment : application to augmented reality

Fond, Antoine 06 April 2018 (has links)
Dans cette thèse on aborde le problème de la localisation en milieux urbains. Inférer un positionnement précis en ville est important dans nombre d’applications comme la réalité augmentée ou la robotique mobile. Or les systèmes basés sur des capteurs inertiels (IMU) sont sujets à des dérives importantes et les données GPS peuvent souffrir d’un effet de vallée qui limite leur précision. Une solution naturelle est de s’appuyer le calcul de pose de caméra en vision par ordinateur. On remarque que les bâtiments sont les repères visuels principaux de l’humain mais aussi des objets d’intérêt pour les applications de réalité augmentée. On cherche donc à partir d’une seule image à calculer la pose de la caméra par rapport à une base de données de bâtiments références connus. On décompose le problème en deux parties : trouver les références visibles dans l’image courante (reconnaissance de lieux) et calculer la pose de la caméra par rapport à eux. Les approches classiques de ces deux sous-problèmes sont mises en difficultés dans les environnements urbains à cause des forts effets perspectives, des répétitions fréquentes et de la similarité visuelle entre façades. Si des approches spécifiques à ces environnements ont été développés qui exploitent la grande régularité structurelle de tels milieux, elles souffrent encore d’un certain nombre de limitations autant pour la détection et la reconnaissance de façades que pour le calcul de pose par recalage de modèle. La méthode originale développée dans cette thèse s’inscrit dans ces approches spécifiques et vise à dépasser ces limitations en terme d’efficacité et de robustesse aux occultations, aux changements de points de vue et d’illumination. Pour cela, l’idée principale est de profiter des progrès récents de l’apprentissage profond par réseaux de neurones convolutionnels pour extraire de l’information de haut-niveau sur laquelle on peut baser des modèles géométriques. Notre approche est donc mixte Bottom-Up/Top-Down et se décompose en trois étapes clés. Nous proposons tout d’abord une méthode d’estimation de la rotation de la pose de caméra. Les 3 points de fuite principaux des images en milieux urbains, dits points de fuite de Manhattan sont détectés grâce à un réseau de neurones convolutionnels (CNN) qui fait à la fois une estimation de ces points de fuite mais aussi une segmentation de l’image relativement à eux. Une second étape de raffinement utilise ces informations et les segments de l’image dans une formulation bayésienne pour estimer efficacement et plus précisément ces points. L’estimation de la rotation de la caméra permet de rectifier les images et ainsi s’affranchir des effets de perspectives pour la recherche de la translation. Dans une seconde contribution, nous visons ainsi à détecter les façades dans ces images rectifiées et à les reconnaître parmi une base de bâtiments connus afin d’estimer une translation grossière. Dans un soucis d’efficacité, on a proposé une série d’indices basés sur des caractéristiques spécifiques aux façades (répétitions, symétrie, sémantique) qui permettent de sélectionner rapidement des candidats façades potentiels. Ensuite ceux-ci sont classifiés en façade ou non selon un nouveau descripteur CNN contextuel. Enfin la mise en correspondance des façades détectées avec les références est opérée par un recherche au plus proche voisin relativement à une métrique apprise sur ces descripteurs [...] / This thesis addresses the problem of localization in urban areas. Inferring accurate positioning in the city is important in many applications such as augmented reality or mobile robotics. However, systems based on inertial sensors (IMUs) are subject to significant drifts and GPS data can suffer from a valley effect that limits their accuracy. A natural solution is to rely on the camera pose estimation in computer vision. We notice that buildings are the main visual landmarks of human beings but also objects of interest for augmented reality applications. We therefore aim to compute the camera pose relatively to a database of known reference buildings from a single image. The problem is twofold : find the visible references in the current image (place recognition) and compute the camera pose relatively to them. Conventional approaches to these two sub-problems are challenged in urban environments due to strong perspective effects, frequent repetitions and visual similarity between facades. While specific approaches to these environments have been developed that exploit the high structural regularity of such environments, they still suffer from a number of limitations in terms of detection and recognition of facades as well as pose computation through model registration. The original method developed in this thesis is part of these specific approaches and aims to overcome these limitations in terms of effectiveness and robustness to clutter and changes of viewpoints and illumination. For do so, the main idea is to take advantage of recent advances in deep learning by convolutional neural networks to extract high-level information on which geometric models can be based. Our approach is thus mixed Bottom- Up/Top-Down and is divided into three key stages. We first propose a method to estimate the rotation of the camera pose. The 3 main vanishing points of the image of urban environnement, known as Manhattan vanishing points, are detected by a convolutional neural network (CNN) that estimates both these vanishing points and the image segmentation relative to them. A second refinement step uses this information and image segmentation in a Bayesian model to estimate these points effectively and more accurately. By estimating the camera’s rotation, the images can be rectified and thus free from perspective effects to find the translation. In a second contribution, we aim to detect the facades in these rectified images to recognize them among a database of known buildings and estimate a rough translation. For the sake of efficiency, a series of cues based on facade specific characteristics (repetitions, symmetry, semantics) have been proposed to enable the fast selection of facade proposals. Then they are classified as facade or non-facade according to a new contextual CNN descriptor. Finally, the matching of the detected facades to the references is done by a nearest neighbor search using a metric learned on these descriptors. Eventually we propose a method to refine the estimation of the translation relying on the semantic segmentation inferred by a CNN for its robustness to changes of illumination ans small deformations. If we can already estimate a rough translation from these detected facades, we choose to refine this result by relying on the se- mantic segmentation of the image inferred from a CNN for its robustness to changes of illuminations and small deformations. Since the facade is identified in the previous step, we adopt a model-based approach by registration. Since the problems of registration and segmentation are linked, a Bayesian model is proposed which enables both problems to be jointly solved. This joint processing improves the results of registration and segmentation while remaining efficient in terms of computation time. These three parts have been validated on consistent community data sets. The results show that our approach is fast and more robust to changes in shooting conditions than previous methods
120

Méthodes d'analyse de données et modèles bayésiens appliqués au contexte des inégalités socio-territoriales de santé et des expositions environnementales

Lalloué, Benoît 06 December 2013 (has links) (PDF)
Cette thèse a pour but d'améliorer les connaissances concernant les techniques d'analyse de données et certains modèles bayésiens dans le domaine de l'étude des inégalités sociales et environnementales de santé. À l'échelle géographique de l'IRIS sur les agglomérations de Paris, Marseille, Lyon et Lille, l'événement sanitaire étudié est la mortalité infantile dont on cherchera à expliquer le risque avec des données socio-économiques issues du recensement et des expositions environnementales comme la pollution de l'air, les niveaux de bruit et la proximité aux industries polluantes, au trafic automobile ou aux espaces verts. Deux volets principaux composent cette thèse. Le volet analyse de données détaille la mise au point d'une procédure de création d'indices socio-économiques multidimensionnels et la conception d'un package R l'implémentant, puis la création d'un indice de multi-expositions environnementales. Pour cela, on utilise des techniques d'analyse de données pour synthétiser l'information et fournir des indicateurs composites utilisables directement par les décideurs publics ou dans le cadre d'études épidémiologiques. Le second volet concerne les modèles bayésiens et explique le modèle " BYM ". Celui-ci permet de prendre en compte les aspects spatiaux des données et est mis en œuvre pour estimer le risque de mortalité infantile. Dans les deux cas, les méthodes sont présentées et différents résultats de leur utilisation dans le contexte ci-dessus exposés. On montre notamment l'intérêt de la procédure de création d'indices socio-économiques et de multi-expositions, ainsi que l'existence d'inégalités sociales de mortalité infantile dans les agglomérations étudiées.

Page generated in 0.05 seconds