Spelling suggestions: "subject:"aktivierungsenergie""
11 |
Advanced electronic structure theory: from molecules to crystals / Höhere Elektronenstrukturtheorie: vom Molekül zum KristallButh, Christian 21 October 2005 (has links) (PDF)
In dieser Dissertation werden ab initio Theorien zur Beschreibung der Zustände von perfekten halbleitenden und nichtleitenden Kristallen, unter Berücksichtigung elektronischer Korrelationen, abgeleitet und angewandt. Als Ausgangsbasis dient hierzu die Hartree-Fock Approximation in Verbindung mit Wannier-Orbitalen. Darauf aufbauend studiere ich zunächst in Teil I der Abhandlung den Grundzustand der wasserstoffbrückengebundenen Fluorwasserstoff und Chlorwasserstoff zick-zack Ketten und analysiere die langreichweitigen Korrelationsbeiträge. Dabei mache ich die Basissatzextrapolationstechniken, die für kleine Moleküle entwickelt wurden, zur Berechnung von hochgenauen Bindungsenergien von Kristallen nutzbar. In Teil II der Arbeit leite ich zunächst eine quantenfeldtheoretische ab initio Beschreibung von Elektroneneinfangzuständen und Lochzuständen in Kristallen her. Grundlage hierbei ist das etablierte algebraische diagrammatische Konstruktionsschema (ADC) zur Approximation der Selbstenergie für die Bestimmung der Vielteilchen-Green's-Funktion mittels der Dyson-Gleichung. Die volle Translationssymmetrie des Problems wird hierbei beachtet und die Lokalität elektronischer Korrelationen ausgenutzt. Das resultierende Schema wird Kristallorbital-ADC (CO-ADC) genannt. Ich berechne damit die Quasiteilchenbandstruktur einer Fluorwasserstoffkette und eines Lithiumfluoridkristalls. In beiden Fällen erhalte ich eine sehr gute Übereinstimmung zwischen meinen Resultaten und den Ergebnissen aus anderen Methoden. / In this dissertation, theories for the ab initio description of the states of perfect semiconducting and insulating crystals are derived and applied. Electron correlations are treated thoroughly based on the Hartree-Fock approximation formulated in terms of Wannier orbitals. In part I of the treatise, I study the ground state of hydrogen-bonded hydrogen fluoride and hydrogen chloride zig-zag chains. I analyse the long-range contributions of electron correlations. Thereby, I employ basis set extrapolation techniques, which have originally been developed for small molecules, to also obtain highly accurate binding energies of crystals. In part II of the thesis, I devise an ab initio description of the electron attachment and electron removal states of crystals using methods of quantum field theory. I harness the well-established algebraic diagrammatic construction scheme (ADC) to approximate the self-energy, used in conjunction with the Dyson equation, to determine the many-particle Green's function for crystals. Thereby, the translational symmetry of the problem and the locality of electron correlations are fully exploited. The resulting scheme is termed crystal orbital ADC (CO-ADC). It is applied to obtain the quasiparticle band structure of a hydrogen fluoride chain and a lithium fluoride crystal. In both cases, a very good agreement of my results to those determined with other methods is observed.
|
12 |
Advanced electronic structure theory: from molecules to crystalsButh, Christian 10 November 2005 (has links)
In dieser Dissertation werden ab initio Theorien zur Beschreibung der Zustände von perfekten halbleitenden und nichtleitenden Kristallen, unter Berücksichtigung elektronischer Korrelationen, abgeleitet und angewandt. Als Ausgangsbasis dient hierzu die Hartree-Fock Approximation in Verbindung mit Wannier-Orbitalen. Darauf aufbauend studiere ich zunächst in Teil I der Abhandlung den Grundzustand der wasserstoffbrückengebundenen Fluorwasserstoff und Chlorwasserstoff zick-zack Ketten und analysiere die langreichweitigen Korrelationsbeiträge. Dabei mache ich die Basissatzextrapolationstechniken, die für kleine Moleküle entwickelt wurden, zur Berechnung von hochgenauen Bindungsenergien von Kristallen nutzbar. In Teil II der Arbeit leite ich zunächst eine quantenfeldtheoretische ab initio Beschreibung von Elektroneneinfangzuständen und Lochzuständen in Kristallen her. Grundlage hierbei ist das etablierte algebraische diagrammatische Konstruktionsschema (ADC) zur Approximation der Selbstenergie für die Bestimmung der Vielteilchen-Green's-Funktion mittels der Dyson-Gleichung. Die volle Translationssymmetrie des Problems wird hierbei beachtet und die Lokalität elektronischer Korrelationen ausgenutzt. Das resultierende Schema wird Kristallorbital-ADC (CO-ADC) genannt. Ich berechne damit die Quasiteilchenbandstruktur einer Fluorwasserstoffkette und eines Lithiumfluoridkristalls. In beiden Fällen erhalte ich eine sehr gute Übereinstimmung zwischen meinen Resultaten und den Ergebnissen aus anderen Methoden. / In this dissertation, theories for the ab initio description of the states of perfect semiconducting and insulating crystals are derived and applied. Electron correlations are treated thoroughly based on the Hartree-Fock approximation formulated in terms of Wannier orbitals. In part I of the treatise, I study the ground state of hydrogen-bonded hydrogen fluoride and hydrogen chloride zig-zag chains. I analyse the long-range contributions of electron correlations. Thereby, I employ basis set extrapolation techniques, which have originally been developed for small molecules, to also obtain highly accurate binding energies of crystals. In part II of the thesis, I devise an ab initio description of the electron attachment and electron removal states of crystals using methods of quantum field theory. I harness the well-established algebraic diagrammatic construction scheme (ADC) to approximate the self-energy, used in conjunction with the Dyson equation, to determine the many-particle Green's function for crystals. Thereby, the translational symmetry of the problem and the locality of electron correlations are fully exploited. The resulting scheme is termed crystal orbital ADC (CO-ADC). It is applied to obtain the quasiparticle band structure of a hydrogen fluoride chain and a lithium fluoride crystal. In both cases, a very good agreement of my results to those determined with other methods is observed.
|
13 |
Bindungsmodelle für intermetallische Verbindungen mit der Struktur des CuAl2-TypsArmbrüster, Marc 28 December 2004 (has links) (PDF)
Das Ziel der vorliegenden Arbeit war es neue Wege aufzuzeigen, mit deren Hilfe Modelle der chemischen Bindung in intermetallischen Verbindungen entwickelt werden können. Diese Modelle sollten sowohl auf experimentelle als auch auf quantenchemische Befunde gestützt und physikalisch sinnvoll sein. Untersuchungsobjekt waren intermetallische AB2-Verbindungen mit der Struktur des CuAl2-Typs. Von den vielen Vertretern wurden drei Substanzklassen mit insgesamt sechs Verbindungen gewählt, nämlich CuAl2, die Stannide (MnSn2, FeSn2 und CoSn2) sowie die Antimonide (TiSb2 und VSb2). Für die Bestimmung der physikalischen Eigenschaften der Verbindungen wurden Einkristalle mit verschiedenen synthetischen Methoden (Antimonide und Stannide: Synthese in der Schmelze; FeSn2: chemischer Transport; CuAl2: modifiziertes Bridgman-Verfahren) hergestellt. Für alle Verbindungen wurden Einkristallstrukturanalysen durchgeführt, die die aus der Literatur bekannten Strukturlösungen deutlich verbessern konnten. An die Ermittlung der Existenzbedingungen schloss sich die Charakterisierung der Verbindungen hinsichtlich ihrer physikalischen Eigenschaften an. Informationen über Art und Stärke der chemischen Bindung wurden anhand von polarisierten Raman-Messungen an orientierten Einkristallen, Ermittlung der Hall-Tensor- und Widerstands-Tensor-Komponenten, XAS-Spektren und Hochdruckuntersuchungen ermittelt. Um die experimentell bestimmten Eigenschaften der Verbindungen besser verstehen zu können, wurden quantenchemische Berechnungen an den Verbindungen durchgeführt. Auf der Basis von TB-LMTO-ASA-Berechnungen wurden die Bandstrukturen und die DOS der Verbindungen ermittelt. Die anschließende Berechnung der ELF gab Hinweise auf die Bindungstopologie in den Verbindungen. Demnach ändert sich die Topologie der chemischen Bindung mit dem konstituierenden Hauptgruppenmetall und alle bindenden Wechselwirkungen in den Verbindungen besitzen kovalenten Charakter. Zusätzlich wurden anhand von Frozen-Phonon-Berechnungen mittels LAPW-Berechnungen die Schwingungsfrequenzen der Raman-aktiven Moden der Verbindungen TiSb2, VSb2 und CuAl2 ermittelt, wodurch die experimentelle Symmetriezuordnung bestätigt werden konnte. In Zusammenarbeit mit Herrn Dr. A. Yaresko (Max-Planck-Institut für Physik komplexer Systeme, Dresden) wurden die Hall-Tensor-Komponenten der Verbindungen berechnet. Aus der großen Anzahl an Daten über die Verbindungen wurden anschließend Modelle der chemischen Bindung erstellt. Zunächst wurde anhand der Bindungs-Topologie aus den ELF-Berechnungen der Ort der partiell kovalenten Bindungen im Realraum erfasst. Basierend auf dieser Bindungstopologie wurden mit Hilfe von Kraftkonstanten-Modellen die Bindungsstärken auf der Grundlage der Raman-Daten ermittelt. Die erhaltenen Modelle wurden aufgrund von berechneten Phononen-Dispersions-Diagrammen auf ihre mechanische Stabilität hin überprüft. Die experimentellen Bindungsordnungen der verschiedenen Bindungen wurden durch Vergleich mit spektroskopischen Daten von überwiegend metallorganischen Verbindungen aus der Literatur ermittelt. Abschließend wurde die Art der chemischen Bindung aufgrund der ELF-Berechnungen, relativen Raman-Intensitäten und Daten aus der Literatur über Mößbauer- und NMR-Untersuchungen sowie den Eigenschaften der Verbindungen abgeleitet. Demnach herrscht die kovalente Bindung in diesen Verbindungen vor, zusätzlich sind jedoch freie Ladungsträger vorhanden, die für die elektrische Leitfähigkeit verantwortlich sind. Den Abschluss der Arbeit bildet ein Vergleich der verschiedenen Verbindungen hinsichtlich Topologie, Art und Stärke der chemischen Bindung und eine Weiterentwicklung der Strukturtheorie des CuAl2-Typs. Im Rahmen dieser Arbeit konnten wesentliche und neue Beiträge zum Verständnis der chemischen Bindung in intermetallischen Verbindungen mit der Struktur des CuAl2-Typs erarbeitet werden.
|
14 |
Bindungsmodelle für intermetallische Verbindungen mit der Struktur des CuAl2-TypsArmbrüster, Marc 08 December 2004 (has links)
Das Ziel der vorliegenden Arbeit war es neue Wege aufzuzeigen, mit deren Hilfe Modelle der chemischen Bindung in intermetallischen Verbindungen entwickelt werden können. Diese Modelle sollten sowohl auf experimentelle als auch auf quantenchemische Befunde gestützt und physikalisch sinnvoll sein. Untersuchungsobjekt waren intermetallische AB2-Verbindungen mit der Struktur des CuAl2-Typs. Von den vielen Vertretern wurden drei Substanzklassen mit insgesamt sechs Verbindungen gewählt, nämlich CuAl2, die Stannide (MnSn2, FeSn2 und CoSn2) sowie die Antimonide (TiSb2 und VSb2). Für die Bestimmung der physikalischen Eigenschaften der Verbindungen wurden Einkristalle mit verschiedenen synthetischen Methoden (Antimonide und Stannide: Synthese in der Schmelze; FeSn2: chemischer Transport; CuAl2: modifiziertes Bridgman-Verfahren) hergestellt. Für alle Verbindungen wurden Einkristallstrukturanalysen durchgeführt, die die aus der Literatur bekannten Strukturlösungen deutlich verbessern konnten. An die Ermittlung der Existenzbedingungen schloss sich die Charakterisierung der Verbindungen hinsichtlich ihrer physikalischen Eigenschaften an. Informationen über Art und Stärke der chemischen Bindung wurden anhand von polarisierten Raman-Messungen an orientierten Einkristallen, Ermittlung der Hall-Tensor- und Widerstands-Tensor-Komponenten, XAS-Spektren und Hochdruckuntersuchungen ermittelt. Um die experimentell bestimmten Eigenschaften der Verbindungen besser verstehen zu können, wurden quantenchemische Berechnungen an den Verbindungen durchgeführt. Auf der Basis von TB-LMTO-ASA-Berechnungen wurden die Bandstrukturen und die DOS der Verbindungen ermittelt. Die anschließende Berechnung der ELF gab Hinweise auf die Bindungstopologie in den Verbindungen. Demnach ändert sich die Topologie der chemischen Bindung mit dem konstituierenden Hauptgruppenmetall und alle bindenden Wechselwirkungen in den Verbindungen besitzen kovalenten Charakter. Zusätzlich wurden anhand von Frozen-Phonon-Berechnungen mittels LAPW-Berechnungen die Schwingungsfrequenzen der Raman-aktiven Moden der Verbindungen TiSb2, VSb2 und CuAl2 ermittelt, wodurch die experimentelle Symmetriezuordnung bestätigt werden konnte. In Zusammenarbeit mit Herrn Dr. A. Yaresko (Max-Planck-Institut für Physik komplexer Systeme, Dresden) wurden die Hall-Tensor-Komponenten der Verbindungen berechnet. Aus der großen Anzahl an Daten über die Verbindungen wurden anschließend Modelle der chemischen Bindung erstellt. Zunächst wurde anhand der Bindungs-Topologie aus den ELF-Berechnungen der Ort der partiell kovalenten Bindungen im Realraum erfasst. Basierend auf dieser Bindungstopologie wurden mit Hilfe von Kraftkonstanten-Modellen die Bindungsstärken auf der Grundlage der Raman-Daten ermittelt. Die erhaltenen Modelle wurden aufgrund von berechneten Phononen-Dispersions-Diagrammen auf ihre mechanische Stabilität hin überprüft. Die experimentellen Bindungsordnungen der verschiedenen Bindungen wurden durch Vergleich mit spektroskopischen Daten von überwiegend metallorganischen Verbindungen aus der Literatur ermittelt. Abschließend wurde die Art der chemischen Bindung aufgrund der ELF-Berechnungen, relativen Raman-Intensitäten und Daten aus der Literatur über Mößbauer- und NMR-Untersuchungen sowie den Eigenschaften der Verbindungen abgeleitet. Demnach herrscht die kovalente Bindung in diesen Verbindungen vor, zusätzlich sind jedoch freie Ladungsträger vorhanden, die für die elektrische Leitfähigkeit verantwortlich sind. Den Abschluss der Arbeit bildet ein Vergleich der verschiedenen Verbindungen hinsichtlich Topologie, Art und Stärke der chemischen Bindung und eine Weiterentwicklung der Strukturtheorie des CuAl2-Typs. Im Rahmen dieser Arbeit konnten wesentliche und neue Beiträge zum Verständnis der chemischen Bindung in intermetallischen Verbindungen mit der Struktur des CuAl2-Typs erarbeitet werden.
|
15 |
Bestimmung von Platzbesetzung und Bindungsenergien mittels Atomsondentomographie / Site Occupation and Binding Energies by Means of Atom Probe TomographyBoll, Torben 07 May 2010 (has links)
No description available.
|
Page generated in 0.0837 seconds