• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 41
  • 19
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 240
  • 72
  • 54
  • 52
  • 47
  • 42
  • 33
  • 30
  • 29
  • 28
  • 26
  • 24
  • 23
  • 23
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Characterizing the Roles of PilF and PilQ in Pseudomonas aeruginosa Type IV Pilus Biogenesis

Koo, Jason 12 December 2013 (has links)
Type IV pili (T4P) are bacterial biomolecular machines that mediate interactions with the environment. Bacterial pathogens such as Pseudomonas aeruginosa require T4P for virulence. Significant progress has been made in recent years towards our understanding of how the proteins in the T4P system interact and function. While over 50 different proteins are involved in T4P biogenesis, the two outer membrane components, PilF and PilQ, are the focus of the work presented in this thesis. PilF was found to be required for assembly of PilQ into secretins, the outer membrane channels through which T4P fibers exit the cell. The functions of PilF are consistent with a family of lipoproteins called pilotins, to which the roles of secretin assembly and/or localization are attributed. Structure determination by X-ray crystallography revealed that PilF is composed of six tetratricopeptide (TPR) protein-protein interaction motifs. Functional mapping of PilF indicated that a hydrophobic groove on the first TPR is involved in secretin assembly. Secretin localization correlated directly with that of PilF. The effects of pilF mutations and the structural data led to the hypothesis that PilF and PilQ interact directly. We propose that PilF and PilQ interact at the inner membrane and are co-transported to the outer membrane by the Lol lipoprotein sorting system. PilQ multimerizes into secretins upon outer membrane insertion and aligns with inner membrane T4P proteins to form a complete molecular machine. PilQ mutagenesis mapping showed that: the N-terminal “system specific” domain is important but not essential for secretin function; the central “multimerization” domain is critical for secretin assembly and function; and the C-terminal tail implicated in secretin-pilotin interactions is dispensable for PilQ function. Purified PilQ enabled copurification of PilF from cell lysates, providing the first evidence for their interaction. These data provide a framework for future exploration of T4P assembly in P. aeruginosa.
162

THE IDENTIFICATION AND CHARACTERIZATION OF AN INNER ACROSOMAL MEMBRANE ASSOCIATED PROTEIN, IAM38, RESPONSIBLE FOR SECONDARY SPERM-ZONA BINDING DURING FERTILIZATION

Yu, YANG 27 November 2008 (has links)
During mammalian fertilization, the exposure of the inner acrosomal membrane (IAM) after acrosomal exocytosis is essential for the secondary binding between sperm and zona pellucida (ZP) of the oocyte, a prerequisite for sperm penetration through the ZP. The identification of the sperm protein(s) responsible for secondary binding has posed a challenge for researchers. We were able to isolate a sperm head fraction in which the IAM was exposed. Attached to the IAM was an electon dense layer, which we termed the IAM extracellular coat (IAMC). The IAMC was also observable in acrosome reacted sperm. High salt extraction removed the IAMC including a prominent 38 kDa polypeptide, referred to as IAM38. Antibodies raised against IAM38 confirmed its presence in the IAMC of intact, sonicated, and acrosome-reacted sperm. Sequencing of IAM38 revealed it as the ortholog of porcine SP38, a protein that was found to bind specifically to ZP2 but whose intra-acrosomal location was not known. We showed that IAM38 occupied the leading edge of sperm contact with the zona pellucida during fertilization, and that secondary binding and fertilization were inhibited in vitro by antibodies directed against IAM38. As for the mechanism of secondary sperm-zona binding by IAM38, we provided evidence that the synthetic peptide derived from the ZP2-binding motif of IAM38 had a competitive inhibitory effect on both sperm-zona binding and fertilization while its mutant form was ineffective. In summary, our study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM and consolidates IAM38 as a genuine secondary sperm-zona binding protein. In addition, our investigation also provides an ultrastructural description of the origin, expression and assembly of IAM38 during spermatogenesis. It shows that IAM38 is originally secreted by the Golgi apparatus as part of the dense contents of the proacrosomic granules but later, during acrosome capping phase of spermiogenesis, is redistributed to the inner periphery of the acrosomal membrane. This relocation occurs at the time of acrosomal compaction, an obligatory structural change that fails to occur in Zpbp1-/- knockout mice, which do not express IAM38 and are infertile. / Thesis (Ph.D, Anatomy & Cell Biology) -- Queen's University, 2008-11-27 15:33:50.226
163

Characterizing the Roles of PilF and PilQ in Pseudomonas aeruginosa Type IV Pilus Biogenesis

Koo, Jason 12 December 2013 (has links)
Type IV pili (T4P) are bacterial biomolecular machines that mediate interactions with the environment. Bacterial pathogens such as Pseudomonas aeruginosa require T4P for virulence. Significant progress has been made in recent years towards our understanding of how the proteins in the T4P system interact and function. While over 50 different proteins are involved in T4P biogenesis, the two outer membrane components, PilF and PilQ, are the focus of the work presented in this thesis. PilF was found to be required for assembly of PilQ into secretins, the outer membrane channels through which T4P fibers exit the cell. The functions of PilF are consistent with a family of lipoproteins called pilotins, to which the roles of secretin assembly and/or localization are attributed. Structure determination by X-ray crystallography revealed that PilF is composed of six tetratricopeptide (TPR) protein-protein interaction motifs. Functional mapping of PilF indicated that a hydrophobic groove on the first TPR is involved in secretin assembly. Secretin localization correlated directly with that of PilF. The effects of pilF mutations and the structural data led to the hypothesis that PilF and PilQ interact directly. We propose that PilF and PilQ interact at the inner membrane and are co-transported to the outer membrane by the Lol lipoprotein sorting system. PilQ multimerizes into secretins upon outer membrane insertion and aligns with inner membrane T4P proteins to form a complete molecular machine. PilQ mutagenesis mapping showed that: the N-terminal “system specific” domain is important but not essential for secretin function; the central “multimerization” domain is critical for secretin assembly and function; and the C-terminal tail implicated in secretin-pilotin interactions is dispensable for PilQ function. Purified PilQ enabled copurification of PilF from cell lysates, providing the first evidence for their interaction. These data provide a framework for future exploration of T4P assembly in P. aeruginosa.
164

Role of the Heterotrimeric Go Protein Alpha-subunit on the Cardiac Secretory Phenotype

Roeske, Cassandra 21 May 2013 (has links)
Atrial natriuretic factor (ANF) is a polypeptide hormone produced in heart atria, stored in atrial secretory granules and released into the circulation in response to various stimuli. Proper sorting of ANF at the level of the trans-Golgi network (TGN) is required for the storage of ANF in these specific granules, and this sorting of hormones has been found to be associated with G-proteins. Specifically, the Go protein alpha-subunit (Gαo) was established to participate in the stretch-secretion coupling of ANF, but may also be involved in the transporting of ANF from the TGN into atrial granules for storage and maturation. Based on knowledge of Gαo involvement in hormone production in other endocrine tissues, protein-protein interactions of Gαo and proANF and their immunochemical co-localization in granules, the direct involvement of these two proteins in atrial granule biogenesis is probable. In this study, mice were created using the Cre/lox recombination system with a conditional Gαo knockout in cardiocytes to study and characterize ANF production, secretion and granule formation. Deletion of this gene was successful following standard breeding protocols. Characterization and validation of cellular and molecular content of the knockout mice through mRNA levels, protein expression, peptide content, electron microscopy, and electrocardiography determined that a significant phenotypic difference was observed in the abundance of atrial granules. However, Gαo knockout mice did not significantly alter the production and secretion of ANF and only partially prevented granule biogenesis, likely due to incomplete Gαo knockout. These studies demonstrate an involvement of Gαo in specific atrial granule formation.
165

Understanding the SNARE Dynamics During Melanosome Biogenesis

Jani, Raddhi Atul January 2015 (has links) (PDF)
Melanosome biogenesis is a highly regulated endosomal maturation process wherein structural fibers harbouring immature melanosomes acquires its biosynthetic proteins through the secretory pathway and finally matures into a functional organelle. These processes were shown to be dependent on several cytosolic protein complexes such as AP (adaptor protein)-1, AP-3, BLOC (biogenesis of lysosome-related organelles complex)-1, -2 and -3; in addition to kinesin motor KIF13A and Rab GTPases 7, 32 or 38. Mutations in the subunits of these complexes or Rab38 result into defective melanosome maturation leading to occulocutaneous albinism, a clinical phenotype commonly observed in Hermansky-Pudlak syndrome (HPS). Moreover, molecular function of these complexes in regulating the biogenesis of melanosome is partially known. The delivery of cargo to maturing melanosomal membranes requires fusion machinery that includes Rab GTPases, tethering factors and SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins. However, the SNAREs involved in the transport of cargo to melanosomes is poorly understood. In this study entitled as “understanding the SNARE dynamics during melanosome biogenesis” we focus on functional role of endosomal Qa-SNARE protein, Syntaxin 13 (formally called STX12, herein referred to as STX13) in the organelle biogenesis and its transport in and out of melanosome. Moreover, these studies show that STX13-mediated cargo transport require a melanosomal membrane localized R-SNARE VAMP7 and these SNAREs are interdependent on each other in regulating their steady state distribution. In addition, this study illustrated the possible mechanism of SNARE recycling which occurs indirectly through AP-3 complex. Thus, these studies underscore the STX13‟s role in cargo transport to maturating melanosomes and its trafficking routes to and from the melanosomes. Chapter-I describes the literature review on melanosome biogenesis; Chapter-II lists the experimental procedures used in this study and Chapter-III to V focuses on results and discussion, segregated into three sections. Chapter-III: Screening and identification of endosomal SNAREs involved in the trafficking of melanosomal proteins. Our preliminary RNAi screen for SNAREs involved in melanosome biogenesis revealed STX13 as one of the Qa-SNARE affecting pigmentation and cargo transport. STX13, a recycling endosomal SNARE has been reported to interact with pallidin, a subunit of BLOC-1; however the functional role of this interaction in pigment formation is unknown. In addition, previous studies from our lab have shown that STX13 colocalize with endosomal Rab11 and partially with EEA1- or Rab5-positive organelles in melanocytes. Together, these observations insinuated us to characterize the functional role of STX13 in melanosome biogenesis. Upon STX13 inactivation, wild type mouse melanocytes showed hypopigmentation due to mistargeting of cargo such as TYRP1 and TYR to lysosomes. Knockdown of STX13 dramatically decrease the population of immature and mature melanosomes. Moreover, STX13 associate with the melanosome cargo on endosomal tubular structures. In addition, deletion of regulatory domain in STX13 increases the cargo transport to melanosomes due to its increased SNARE activity. This is possibly due to loss in intracellular regulation of SNARE occur through multiple factors such as SM (Sec1p/Munc18) proteins. Together this data suggests that STX13 mediates cargo transport to melanosomes from recycling endosomes. Chapter-IV: Functional characterization of the SNAREs involved in melanosomal maturation. Several in vitro studies have shown that a set of four SNAREs such as Qa, Qb, Qc (or Qbc) and R control the membrane fusion event duing the cargo transport. Additionally, this process is further regulated by SM proteins in in vivo. Electron microscopic studies in melanocytes have shown that melanosomal proteins were delivered to the melanosomal membrane through recycling endosomal tubular domains. Moreover, our RNAi screen show that STX13 possibly acts as Qa-SNARE in mediating the fusion events between melanosomal membranes and the endosomal tubular or vesicular intermediates. However, the role of other SNAREs for this membrane transport is unknown. It has been shown that the expression of VAMP family SNAREs such as VAMP3, VAMP7 and VAMP8 increased with melanogenesis upon differentiation of melanoma cells. VAMPs belong to the class of R-SNAREs, in which VAMP7 is known to interact with VARP (abbreviation) and AP-3 (mediates the trafficking of TYR) separately, and these molecules are known to regulate the cargo transport to melanosomes. However, the precise role of VAMP7 in pigment granule maturation is unknown. Therefore, we set out to characterize the functional role of VAMP7 in melanosome biogenesis. VAMP7 has been shown to localizes to multiple sub-cellular compartments and regulate the several transport steps in other cell types. Our study found that GFP-epitope tagged either human or rat VAMP7 localize to melanosomes at steady state in wild type mouse melanocytes. Knockdown of VAMP7 causes hypopigmentation of melanocytes and misroutes the cargo to lysosomes. Further, the inactivation of VAMP7 in melanocytes phenocopies the STX13 depletion, suggesting both the SNAREs are required for the melanosome biogenesis. In addition, knockdown of STX13 target the VAMP7 to lysosomes; while inactivation of VAMP7 affect the localization of STX13 to recycling tubular structures. Subsequently, the dominant active mutants of STX13 were not able to rescue the pigmentation or cargo transport defects in VAMP7 knockdown melanocytes. Together, the data suggests that STX13 functions from recycling endosomes and VAMP7 on melanosome membrane for the transport of cargo to melanosomes Chapter-V: Understanding the mechanism of STX13 recycling during melanosome biogenesis. At steady state, SNAREs are localized to the membranes of specific organelles where they mediate or regulate the membrane fusion. During this process, three or two Q-SNAREs on one membrane (in a trans-SNARE complex, possibly formed by Qa, Qb, Qc or Qbc) interact with a R-SNARE on another member to form a SNAREpin complex. Post-fusion, SNAREs are disassembled by SNAP and NSF proteins and then recycled back to the original compartment for next round of fusion. Here, we address the mechanism of post-fusion recycling of STX13 from melanosomes to endosomes. Previous studies have shown that STX13 mislocalize to melanosomes in AP-3-deficient melanocytes, suggesting a role for AP-3 in recycling the SNARE from melanosomes. Bioinformatic analysis of the N-terminal region of STX13 revealed the presence of two canonical adaptor binding motifs 3YGP6L and KETNE80L81L, resembling the tyrosine-based (YXXø) and dileucine-based motif [DE]XXXL[LI], recognized by several adaptor proteins. Point mutagenesis of these motifs in STX13 had no effect on their steady state distribution indicating that STX13 possibly uses non-canonical residues for its recycling. Further, deletion of the N-terminal region (either 1-129 or 14-129 aa) in STX13 redistributes the SNARE to melanosomes. Moreover, the activity and the trafficking of recycling defective STX13 mutants are dependent on another HPS complex, BLOC-2 and the SNARE, VAMP7. Absence of 1-129 region in STX13 or mutations in the subunits of AP-3 perturbs the steady state localization of STX13 suggesting an indirect role for AP-3 in recycling of STX13 to endosome via non canonical motifs present in its 1-129 aa region.
166

Retentissement musculaire cardiaque et périphérique de l'hypertension artérielle pulmonaire induite par la monocrotaline chez le rat : dysfonction mitochondriale et effet de l'exercice excentrique / Mitochondrial dysfonction and eccentric training effects on cardiac and skeletal muscle in monocrotaline-induced pulmonary hypertension

Enache, Irina 25 September 2012 (has links)
Dans un premier temps, nous avons observé la chronologie des altérations de la biogenèse et de la fonction mitochondriale dans les ventricules droit (VD) et gauche (VG) et le muscle gastrocnémien (GAS) dans un modèle animal d’hypertension artérielle pulmonaire (HTAP). Nous avons constaté une diminution précoce des facteurs impliqués dans la biogénèse mitochondriale du GAS. Plus tard, les mêmes anomalies apparaissaient dans le VD. Au stade décompensé de l’insuffisance cardiaque droite s’ajoutaient une diminution de la protéine PGC-1 , de l’activité de la citrate-synthase et de la respiration mitochondriale. L’expression des ARNm et la respiration mitochondriale du VG n’étaient pas modifiées de façon significative.Dans un deuxième temps, nous avons étudié l’effet de l’entraînement en mode excentrique sur le même modèle d’HTAP. La survie des rats entraînés n’était pas différente de celle des rats sédentaires et la tolérance hémodynamique évaluée par échocardiographie et cathétérisme cardiaque a été bonne. Le bénéfice de l’entraînement s’est traduit par une augmentation de la vitesse maximale de course dans les deux groupes entraînés, malades et témoins. / We assessed the time courses of mitochondrial biogenesis factors and respiration in the right ventricle (RV), gastrocnemius (GAS) and left ventricle (LV) in a model of pulmonary-hypertensive (PH) rats induced by monocrotaline (MT). The expression of the studied genes was decreased early in the MT GAS. At 4 weeks, the MT GAS and MT RV showed decreased mRNA levels whatever the stage of disease, but PGC-1 protein and citrate-synthase activity were significantly reduced only atthe decompensated stage. The functional result was a significant fall in mitochondrial respiration at the decompensated stage in the RV and GAS. The mRNA expression and mitochondrial respiration were not significantly modified in the MT LV. Secondly, we assessed the effects of eccentric exercise training (ECCt) in MT rats with PH. ECCt was initiated 2 weeks after MT injection for 4 weeks. The trained MT rats survival was not different from that of sedentary rats. ECCt was not detrimental on hemodynamic condition estimated by echocardiography and right heart catheterization. Maximal speed significantly increased in trained rats. The mRNA expression of mitochondrial biogenesis factors were not significantly modified in skeletal muscle and in RV.
167

Efeitos do treinamento resistido e da ovariectomia sobre marcadores de biogênese mitocondrial e capacidade oxidativa do músculo esquelético de ratas / Effects of resistance training and ovariectomy on mitochondrial biogenesis and oxidative capacity markers of skeletal muscle of rats

Barbosa, Marina Rodrigues 10 April 2015 (has links)
Made available in DSpace on 2016-06-02T19:22:12Z (GMT). No. of bitstreams: 1 6669.pdf: 3530464 bytes, checksum: bd826d7ee4a6c0bb3ebc74dc5752604e (MD5) Previous issue date: 2015-04-10 / Financiadora de Estudos e Projetos / The decrease of regulate the estrogen production that occurs at menopause is typically followed by increase of several deleterious changes in the skeletal muscle system. Menopause is mimicked experimentally by a technique called ovariectomy. The ovariectomy produces increased total body mass, changes in body composition and lipid profile, reduction in skeletal muscle (sarcopenia) and bone mineral mass (osteopenia). Mitochondria play a crucial role in a myriad of cellular processes including oxidative phosphorylation, biosynthetic pathways and programming of cell death. Alteration of mitochondrial biogenesis markers in ovariectomized rats and the effects of resistance training (RT) and estrogen replacement (RE) are unclear. Purpose: This study aimed to investigate the effects of Ovariectomy (Ovx), RT and ER on markers of mitochondrial biogenesis and protein expression related to oxidative capacity in the rat gastrocnemius pool. Methods: ER was performed using Silastic® capsules. During the 12-week RT, the animals climbed a ladder with weights attached to their tails. RT began simultaneously for all experimental groups. Gene expression was analysed by RT-PCR, and protein content was determined by western blotting. Results: The estrogen deficiency associated with Ovx decreased the gene expression of the mitochondrial biogenesis markers PGC-1&#945; (~73%), NRF-1 (~44%), and TFAM (~53%) (p<0.05) and decreased the protein expression of phosphorylated AMPK, CREB and AKT, which are related to oxidative capacity, compared to the Sham-Sed group. RT increased PGC- 1&#945; (~59%) and TFAM (~48%) expression compared to the Ovx-Sed group. The combination of RT and ER was superior to the Ovx-Sed and Ovx-RT treatments regarding the gastrocnemius muscle. Conclusions: This study showed that ovaries removal affects transcription factors that regulate mitochondrial biogenesis in skeletal muscle. According to our results and evidence from the literature, and estradiol levels of exercise appear to play an important role in the protection of mitochondrial dysfunction in skeletal muscle of rats. / Introdução: A diminuição da produção regular do estrógeno que ocorre na menopausa é tipicamente seguida pelo aumento de várias alterações deletérias no sistema musculoesquelético. A menopausa é mimetizada experimentalmente por uma técnica chamada ovariectomia. A ovariectomia produz aumento da massa corporal total, alterações na composição corporal e no perfil lipídico, redução da musculatura esquelética (sarcopenia) e da massa mineral óssea (osteopenia). As mitocôndrias desempenham papel crucial em uma miríade de processos celulares que incluem fosforilação oxidativa, vias de biossíntese e programação da morte celular. Alteração dos marcadores de biogênese mitocondrial em ratas ovariectomizadas, bem como os efeitos do treinamento resistido e reposição de estrógeno não são totalmente conhecidas. Objetivos: Investigar os efeitos da ovariectomia, do treinamento resistido e da reposição de estrógeno sobre a biogênese mitocondrial e capacidade oxidativa do músculo esquelético de ratas. Materiais e Métodos: A reposição de estrógeno foi realizada com cápsula Silastic. O treinamento resistido consistiu de 12 semanas em que os animais subiram uma escada com pesos atados às suas caudas. A expressão gênica foi analisada por RT-PCR e o conteúdo de proteína por Western Blotting. Resultados: A deficiência de estrogénio, associada à ovariectomia, reduziu a expressão gênica de marcadores de biogênese mitocondriais, tais como PGC-1&#945; (~ 73%), NRF-1 (~ 44%), TFAM (~ 53%) (p <0,05) e o conteúdo de proteína relacionada à capacidade oxidativa, como AMPK, CREB e AKT quando comparado com grupo Sham-Sed. O treinamento resistido aumentou esses marcadores, tais como PGC-1&#945; (~ 59%) e TFAM (~ 48%) em relação ao grupo Ovx-Sed. Conclusões: O presente estudo mostrou que a remoção dos ovários afeta fatores de transcrição que regulam a biogênese mitocondrial no músculo esquelético. De acordo com os nossos resultados e evidências da literatura, os níveis de estradiol e de exercício parecem desempenhar um papel importante na proteção da disfunção mitocondrial no músculo esquelético de ratas.
168

Efeitos da ovariectomia, do treinamento resistido e da terapia de reposição hormonal sobre a expressão gênica de marcadores da biogênese mitocondrial em cérebro de ratas

Domingos, Mateus Moraes 15 July 2015 (has links)
Submitted by Daniele Amaral (daniee_ni@hotmail.com) on 2016-09-12T20:34:22Z No. of bitstreams: 1 TeseMMD.pdf: 2837994 bytes, checksum: 0f8e9168f951c057cd3d2b3582ba6b01 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-13T18:42:13Z (GMT) No. of bitstreams: 1 TeseMMD.pdf: 2837994 bytes, checksum: 0f8e9168f951c057cd3d2b3582ba6b01 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-13T18:42:48Z (GMT) No. of bitstreams: 1 TeseMMD.pdf: 2837994 bytes, checksum: 0f8e9168f951c057cd3d2b3582ba6b01 (MD5) / Made available in DSpace on 2016-09-13T18:42:59Z (GMT). No. of bitstreams: 1 TeseMMD.pdf: 2837994 bytes, checksum: 0f8e9168f951c057cd3d2b3582ba6b01 (MD5) Previous issue date: 2015-07-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Decreased levels of estrogen are associated with a decline in brain bioenergetics, which could be associated with a decrease in mitochondrial biogenesis (MB). Endurance training (ET) has been shown to increase markers of MB within the brain. However, the molecular events associated with this process were only investigated for ET but not for resistance training (RT) and hormone replacement therapy (HRT). In the study, we attempted to investigate the effects of ovariectomy (Ovx), RT and HRT on markers of MB (mRNA expression of peroxisome proliferator - activated receptor - γ coactivator 1 (PGC - 1α), nuclear respiratory fator- 1 (NRF - 1), and mitochondrial transcription factor A (TFAM)) in specific brain regions, cortex (CX), hippocampus (HC), and hypothalamus (HT) in rats. Sprague - Dawley adult female rats were grouped into six groups: sham - operated sedentary (Sham - Sed); Ovx - Sed; Sham - RT; Ovx - RT; Ovx – Sed - HRT and Ovx - RT - HRT. The animals in HRT groups received subcut aneously implanted silastic capsules with a solution of 180 μg 17β - estradiol/ml sunflower oil. A 12- week RT period, during which the animals climbed a 1.1 - m vertical ladder with weights attached to their tails, was used. The sessions were performed once every 3 days, with 4 - 9 climbs. Gene expression was analyzed by RT - PCR by the ∆∆Ct method. The Ovx decreased the gene expression of molecules related to BM, PGC - 1α (28%), NRF - 1 (29%) and TFAM (20%) in the HC. These Ovx - induced lower gene expressions were totally restored in this structure by RT. RT increased the markers of MB, PGC - 1a (~33%), NRF - 1 (~31%) and TFAM (~44%) in CX, HC and HT. These findings suggest that OVX decreases brain MB, in our data observed in HC, and RT increases brain MB, which may have important implications with respect to various central nervous system diseases and age - related dementia that are often characterized by mitochondrial dysfunction. Stimulation or enhancement of mitochondrial biogenesis may prove a novel neuroprotective strategy in the future. / A diminuição dos níveis dos hormônios ovarianos está associado a um declínio na bioenergética cerebral, o que poderia estar associado a uma diminuição da biogênese mitocondrial (BM). O treinamento de endurance (TE) foi demonstrado aumentar a expressão gênica dos marcadores da BM em diferentes regiões do cérebro. No entanto, os eventos moleculares da BM ainda não foram investigados em outros tipos de treinamento, como, o treinamento resistido (TR) ou em outros tipos de modelo experimental, como a ovariectomia (Ovx) e a terapia de reposição hormonal (TRH). Assim, o objetivo deste trabalho foi analisar os efeitos da Ovx, do TR e da TRH sobre a expressão gênica dos marcadores chaves da biogênese mitocondrial, o coativador 1α do receptor gama ativado por proliferador de peroxissoma (PGC-1α), o fator respiratório nuclear 1 (NRF-1) e o fator de transcrição mitocondrial A (TFAM) em diferentes regiões do cérebro, córtex (CX), hipocampo (HC) e hipotálamo (HT) de ratas. Trinta e seis ratas adultas Sprague - Dawley foram distribuídas em seis grupos experimentais (n = 6 por grupo): (I) sedentário sham-operação (Sed-Sham); (II) Ovx - Sed; (III) Sham-TR; (IV) Ovx - TR; (V) Ovx – Sed - TRH e (VI) Ovx- TR- TRH. Os animais dos grupos Ovx foram submetidos aos procedimentos cirúrgicos de remoção bilateral dos ovários, dos grupos TRH foram submetidos aos procedimentos cirúrgicos de implantação subcutânea de cápsulas silásticas preenchidas com uma solução de 180 μg de 17 β - estradiol/ml de óleo de girassol e os animais dos grupos TR foram submetidos a doze semanas de treinamento resistido progressivo em escada, sendo as sessões de treinos realizadas uma vez a cada 3 dias. A expressão gênica foi analisada por PCR-RT e determinada pelo método do ∆∆Ct. O grupo Ovx - Sed apresentou uma menor expressão gênica dos marcadores chaves da BM no HC quando comparado ao grupo Sham - Sed. A expressão do PGC - 1α foi 28% menor, do NRF - 1 29% menor e do TFAM 20% menor. Estas menores expressões gênicas no HC foram restauradas nas ratas do grupo Ovx - TR e parcialmente restauradas nas ratas do grupo Ovx – Sed - TRH. Adicionalmente, as ratas do grupo Sham-TR apresentaram maior expressão gênica nas três áreas investigadas (CX, HC e HT), PGC - 1α ~33% maior, NRF - 1 ~31% maior e TFAM ~44% maior. Estes resultados sugerem que o declínio na concentração circulante dos hormônios ovarianos diminui a BM no cérebro, em nossos resultados observados no HC, e que o TR pode aumentar a BM no cérebro, o que pode ter importantes implicações no que diz respeito a várias doenças do sistema nervoso central e demência relacionada com a idade que são frequentemente caracterizadas por disfunção mitocondrial. Sendo assim, a estimulação da BM cerebral estimulada pelo exercício pode ser uma importante estratégia de neuroproteção.
169

O treinamento resistido e a restrição calórica alteram a expressão gênica de marcadores da biogênese e dinâmica mitocondrial do músculo quadríceps de ratas ovariectomizadas

Marin, Cecília Tardivo 29 April 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-10-03T14:14:11Z No. of bitstreams: 1 DissCTM.pdf: 1497226 bytes, checksum: e33fe63139fc98a7e56c4936a60ee50c (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T19:42:38Z (GMT) No. of bitstreams: 1 DissCTM.pdf: 1497226 bytes, checksum: e33fe63139fc98a7e56c4936a60ee50c (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T19:42:49Z (GMT) No. of bitstreams: 1 DissCTM.pdf: 1497226 bytes, checksum: e33fe63139fc98a7e56c4936a60ee50c (MD5) / Made available in DSpace on 2016-10-10T19:42:59Z (GMT). No. of bitstreams: 1 DissCTM.pdf: 1497226 bytes, checksum: e33fe63139fc98a7e56c4936a60ee50c (MD5) Previous issue date: 2016-04-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Menopause, permanent discontinuation phase of ovarian follicular activity, triggers tissue and molecular changes in the body of women. The obesity and sarcopenia are two important deleterious effects, affect the functional independence and therefore the quality of life of the same. Resistance training (RT), caloric restriction (CR) are interventions that can minimize and slow down these degenerative processes related to menopause. The objective of this study was evaluate the effects of TR and RC on the biogenesis markers and mitochondrial dynamics on the quadríceps mucle of ovariectomized rats. Ratas Holtzman were divided into 8 groups (n = 10) Sham sedentary, trained, caloric and association training restriction with caloric restriction (SHAM SED, SHAM TR, SHAM RC AND SHAM TR-RC), ovariectomized sedentary, trained, caloric restriction and association training with caloric restriction (OVX SED, OVX TR, OVX and OVX RC TR-RC). The ovariectomy surgery (OVX) and pseudo-ovariectomy (Sham) was conducted when the rats reached 250g body weight. Two days after surgery, began the control of food intake and after 10 days of recovery from surgery, began the TR which consisted of 13 weeks of climbing training vertical ladder, with 72 hours between training sessions. The intensity of TR was 65, 85, 95 and 100% of the predetermined maximum load for each load proportion. After the fourth climbing, it was added 30g to determine the new maximum filler loading. Euthanasia of the animals after 13 weeks was TR and 48 hours after the last training session. The quadriceps muscle of the right hind foot was excised and stored at -80°C for analysis of gene expression and protein mediators of biogenesis and mitochondrial dynamics. The ovariectomy in rats altered mitochondrial biogenesis and dynamics as well as body weight and food consumption. The proposed interventions have been effective in minimized the body mass gains and reverse the molecular changes found in ovariectomy, especially in relation to mitochondrial biogenesis and dynamics. / A menopausa, fase de interrupção permanente da atividade folicular ovariana, desencadeia alterações teciduais e moleculares no organismo das mulheres. O ganho de massa corporal e a sarcopenia são dois importantes efeitos deletérios que ao longo do tempo, afetam a independência funcional e consequente qualidade de vida das mesmas. O treinamento resistido (TR), a restrição calórica (RC) são intervenções que podem amenizar e retardar esses processos degenerativos relacionados à menopausa. O objetivo deste trabalho foi avaliar os efeitos do TR e RC sobre os marcadores de biogênese e dinâmica mitocondrial sobre o quadríceps de ratas ovariectomizadas. Ratas Holtzman foram alocadas em 8 grupos (n=10) Sham sedentárias, treinadas, restrição calórica e associação treinamento com restrição calórica (SHAM SED, SHAM TR, SHAM RC E SHAM TR-RC), ovariectomizadas sedentárias, treinadas, restrição calórica e associação treinamento com restrição calórica (OVX SED, OVX TR, OVX RC e OVX TR-RC). As cirurgias ovariectomia (OVX) e pseudo-ovariectomia (SHAM) foram realizadas quando as ratas alcançaram 250g de massa corporal. Dois dias após as cirurgias, iniciou-se o controle do consumo alimentar e após 10 dias de recuperação das cirurgias, iniciou o TR que consistiu em 13 semanas de treinamento de escalada em escada vertical, com 72 horas de intervalo entre as sessões de treinamento. A intensidade do TR foi de 65, 85, 95 e 100% da carga máxima de carregamento previamente determinada para cada rata. Após a quarta escalada, acrescentou-se 30g para determinar a nova carga máxima de carregamento. A eutanásia dos animais ocorreu após 13 semanas de TR e 48 horas após a última sessão de treino. O músculo quadríceps da pata traseira direita foi excisado e armazenado a -80°C para as análises da expressão gênica e proteica dos mediadores da biogênese e dinâmica mitocondrial. A ovariectomia em ratas alterou a biogênese e dinâmica mitocondrial, bem como a massa corporal e o consumo alimentar. As intervenções propostas foram eficazes em amenizar os ganhos da massa corporal e reverter as alterações moleculares encontradas na ovariectomia, principalmente em relação à biogênese e dinâmica mitocondrial.
170

Studium poruch cytochrom c oxidasy a ATP synthasy na biochemické a molekulární úrovni / Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficiencies

Fornůsková, Daniela January 2011 (has links)
Mgr. Daniela Fornuskova PhD thesis Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficiencies ABSTRACT The mammalian organism fully depends on the oxidative phosphorylation system (OXPHOS) as the major energy (ATP) producer of the cell. Disturbances of OXPHOS may be caused by mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). One part of the thesis is focused on the role of early and late assembled nuclear-encoded structural subunits of cytochrome c oxidase (CcO) as well as Oxa1l, the human homologue of the yeast mitochondrial Oxa1 translocase, in the biogenesis and function of the human CcO complex using stable RNA interference of COX4, COX5A, COX6A1 and OXA1L, as well as expression of epitope-tagged Cox6a, Cox7a and Cox7b, in HEK (human embryonic kidney)- 293 cells. Our results indicate that, whereas nuclear- encoded CcO subunits Cox4 and Cox5a are required for the assembly of the functional CcO complex, the Cox6a subunit is required for the overall stability of the holoenzyme. In OXA1L knockdown HEK-293 cells, intriguingly, CcO activity and holoenzyme content were unaffected, although the inactivation of OXA1 in yeast was shown to cause complete absence of CcO activity. In addition, we compared OXPHOS protein deficiency patterns in mitochondria from skeletal...

Page generated in 0.0411 seconds