• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 68
  • 25
  • 12
  • 12
  • 12
  • 12
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 345
  • 345
  • 71
  • 68
  • 68
  • 46
  • 46
  • 42
  • 34
  • 33
  • 28
  • 26
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Desenvolvimento e caracterização mecanica de compositos hidroxiapatita-zirconia, hidroxiapatita-alumina e hidroxiapatita-titania para fins biomedicos / Development and characterization mechanics of composites hydroxyapatite-zirconia, hydroxyapatite-alumina and hydroxyapatite-titania for biomedical ends

Gomide, Viviane Silva 25 February 2005 (has links)
Orientador: Cecilia Amelia de Carvalho Zavaglia / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia mecanica / Made available in DSpace on 2018-08-04T10:23:14Z (GMT). No. of bitstreams: 1 Gomide_VivianeSilva_M.pdf: 10916166 bytes, checksum: 3d319a5e8b56700e5844bc42e9b8d18f (MD5) Previous issue date: 2005 / Resumo: Existe uma crescente demanda de materiais que possibilitam a remodelação e reconstrução de partes ósseas. A indicação de biomateriais para reconstrução dos defeitos cranianos depois do trauma, tumor ou infecção, ocorre devido a razões estéticas e proteção de estruturas intracraniais. Várias técnicas cirúrgicas vários materiais já foram utilizados na confecção dessas próteses crâniomaxilofaciais, mas é importante avaliar o comportamento desse material quanto à estabilidade fisiológica e resistência mecânica. O objetivo principal deste trabalho é desenvolver biomateriais para uso em preenchimento de defeitos ósseos. A hidroxiapatita, cerâmica bioativa semelhante à parte mineral do tecido ósseo, é um material que poderia ser utilizado para essa finalidade. Porém, essa cerâmica possui baixas tenacidade à fratura e resistência mecânica à compressão. Com a finalidade de obter materiais mais adequados para restaurações ósseas e implantes crâniomaxilofaciais, foram associadas a hidroxiapatita obtida no laboratório de materiais cerâmicos do DEMA-FEM-UNICAMP, partículas de reforço de três cerâmicas: zircônia, alumina e titânia, nas proporções de 30,40 e 50% em peso para cada composição. Os compósitos obtidos e sinterizados foram caracterizados por medida de tamanho de partículas, Microscopia Eletrônica de Varredura, Difração de Raios X e Espectroscopia de Fluorescência de Raios X e tiveram suas densidades aparentes, densidades teóricas, absorção de água, volumes aparentes e porosidades aparentes determinadas pelo ensaio de Archimedes. Algumas propriedades mecânicas como resistência à compressão, dureza e tenacidade à fratura foram determinadas. Os compósitos que tiveram melhor comportamento geral foram escolhidos para continuidade do trabalho (ensaios ¿ in vitro" e ¿Hin vivo ") / Abstract: There is a growing demand of materiaIs that make the remodeling and reconstruction of bone parts possible. Reconstruction of defects of the skulI after trauma, tumor or infection is indicated for aesthetic reasons and for protection of internal structures. Different materiaIs have been used for this purpose and alI of them must be evaluated as for their stability in physiological environments and mechanical strength. The main objective of this work is to develop biomaterials for use in fulfilIing of bone defects. The hydroxyapatite, similar bioactive ceramics to the mineral part of the tissue bone, is a material that could be used for this purpose. However, this ceramics possess decreases tenacity to the breaking and resistance mechanics the compression. With the purpose to get more adequate materiaIs for bone restorations and craniomaxilofacials implantations associates had been hydroxyapatite gotten in the laboratory of ceramic materiaIs of the DEMA-FEM-UNICAMP, particles of three ceramics bioinert, zirconia, alumina and titania, in the ratios of 30%, 40% and 50% in weight for each composition. The composites obtained and sintered were characterized by particles size measure, Scanning Electronic Microscopy, X Rays Difratometry and Spectroscopy of Fluorescence of X Rays and had its apparent densities and apparent porosity determined by the assay of Archimedes. Some mechanical properties as compressive strength, hardness and tenacity to the breaking had been performanced. The composites that had general behavior had been better chosen for continuity ofthe work (assays "in vitro" and "in vivo") / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
302

Design, Synthesis, and Characterization of Aqueous Polymeric Hybrid Composites and Nanomaterials of Platinum(II) and Gold(I) Phosphorescent Complexes for Sensing and Biomedical Applications

Upadhyay, Prabhat Kumar 12 1900 (has links)
The two major topics studied in this dissertation are the gold(I) pyrazolate trimer {[Au(3-R,5-R’)Pz]3} complexes in aqueous chitosan polymer and phosphorescent polymeric nanoparticles based on platinum(II) based complex. The first topic is the synthesis, characterization and optical sensing application of gold(I) pyrazolate trimer complexes within aqueous chitosan polymer. A gold(I) pyrazolate trimer complex, {[Au(3-CH3,5-COOH)Pz]3}, shows high sensitivity and selectivity for silver ions in aqueous media, is discussed for optical sensing and solution-processed organic light emitting diodes (OLEDs) applications. Gold(I) pyrazolate trimer complexes are bright red emissive in polymeric solution and their emission color changes with respect to heavy metal ions, pH and dissolved carbon dioxide. These photophysical properties are very useful for designing the optical sensors. The phosphorescent polymeric nanoparticles are prepared with Pt-POP complex and polyacrylonitrile polymer. These particles show excellent photophysical properties and stable up to >3 years at room temperature. Such nanomaterials have potential applications in biomedical and polymeric OLEDs. The phosphorescent hybrid composites are also prepared with Pt-POP and biocompatible polymers, such as chitosan, poly-l-lysine, BSA, pnipam, and pdadmac. Photoluminescent enhancement of Pt-POP with such polymers is also involved in this study. These hybrid composites are promising materials for biomedical applications such as protein labeling and bioimaging.
303

Evaluation of the corrosion behaviour and biocompatibility of Ti-34Nb-25Zr alloy for biomedical applications.

Mahundla, Mithavini R. 11 1900 (has links)
M. Tech. (Department of Metallurgical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / Pure Ti, Nb, Zr, Al and V powders were used as starting materials. Ti, Ti-6Al-4V and Ti-34Nb-25Zr materials produced by SPS were compared on the basis of density, microstructure, biocompatibility, tensile strength and corrosion resistance. In this study, powder metallurgy (PM) processing route was used to fabricate the alloys. The processing route was mechanical alloying (MA) and spark plasma sintering (SPS). Commercially pure metallic powders (Ti, Nb, Zr, V and Al) of different morphological features and different formulations were prepared. Powder mixing for ternary alloys with Ti as the matrix were conducted in a turbula mixer at a speed of 49 rpm. Followed by mechanical alloying of Ti, Ti-6Al-4V and Ti-34Nb-25Zr in a high energy ball mill for 5h at 500rpm, with a ball to powder ratio of 10:1. Spark plasma sintering of Ti, Ti-6Al-4V and Ti-34Nb-25Zr biomedical alloys was conducted using a hybrid spark plasma sintering furnace at a sintering temperature, heating rate, holding time and pressure of 1200°C, 100°C/min, 10min and 50MPa, respectively. Ti-34Nb-25Zr was fabricated in two ways, fully densified and porous samples. The fully densified sample was fabricated at a sintering temperature, heating rate and holding time and pressure of 1200°C, 100°C/min, 10min and 50MPa, respectively. Whereas, porous Ti-34Nb-25Zr was fabricated using NaCl space holder at a sintering temperature, heating rate, holding time and pressure of 750°C, 50°C/min, 5min and 50MPa, respectively. This was done to compare the solid and porous alloy biocompatibility behaviour. Microstructures, elemental compositions. Phase constitution of the sintered specimens were examined using a field emission scanning electron microscope (FE-SEM) equipped with energy dispersive x-ray spectrometer (EDS) and an x-ray diffractometer (XRD). The microstructure of Ti-34Nb-25Zr had pores and precipitates of niobium. Relative density, micro-hardness, biocompatibility and corrosion test was also conducted on the metallographically polished cross sections of sintered specimens. Ti, Ti-6Al-4V and Ti-34Nb-25Zr alloys made from the irregularly shaped Ti powders and sintered on the hybrid sintering machine yielded higher densifications reaching up to 100 % relative densities. Hardness values ranging from 300-600Hv at a load of 0.5kg. The corrosion resistance of the alloys was higher in the range of 2-4 nA/cm2 exhibiting a passive behaviour in simulated body fluids, such as Hank’s, 0.9wt.% NaCl and eagles minimum essential + 10% fetal bovine serum (E-MEM+ 10% FBS). Biocompatibility tests were conducted (cytotoxicity by WST-1 with SaOS-2 human osteosarcoma cells, protein adsorption and surface wettability). Fibronectin adsorption was less for solid Ti and Ti-34Nb-25Zr (<2ng/mm) compared to Ti-34Nb-25Zr porous and Ti-6Al-4V (4 ng/mm). Albumin adsorption was the highest on Ti substrate (3 ng/mm) than on the fully densified and porous Ti-34Nb-25Zr surfaces followed by less adsorption on Ti-6Al-4V. Surface wettability of Ti and Ti-6Al-4V showed a high contact angle of between 93-98° compared to 86° for the Ti-34Nb-25Zr solid alloy, indicating that Ti-34Nb-Zr alloys exhibited hydrophilic behaviour. The surface wettability results correlated well to less fibronectin adsorption on Ti-34Nb-25Zr solid alloy and excellent adsorption for Ti-6Al-4V. Solid and porous Ti-34Nb-25Zr showed less cell proliferation (0.06 and 0.02% cell viability) which was possibly linked to fibronectin adsorption results. Biocompatibility behaviour of Ti-34Nb-25Zr solid and porous alloys was poorer than Ti (0.20% cell viability) and Ti-6Al-4V (0.23% cell viability). There was poor protein adsorption and cell proliferation on all the alloy substrates.
304

The use of thermal diffusivity to quantify tissue perfusion

Valvano, Jonathan Walker January 1981 (has links)
Thesis (Ph.D.)--Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology Program in Medical Engineering and Medical Physics, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE / Vita. / Includes bibliographical references. / by Jonathan Walker Valvano. / Ph.D.
305

Studies On Atmospheric Glow Discharge For Surface Modification Applications

Anand, Venu 01 1900 (has links)
The properties of materials, especially of solids, can be attributed mainly to the phenomena occurring at the surface. Surface engineering deals with altering the surface properties of materials to realize useful functionalities like wear and corrosion resistance, biocompatibility, hardening etc. Among the various methods adopted, plasma surface modification stands out, because of the inherent dry processing nature and little amount of left over chemicals. In conventional plasma systems, the process is carried out in a low pressure environment. This restricts its use in treating vacuum incompatible materials including tissues and bio-medical samples. Moreover, the batch processing nature and use of expensive vacuum pumps put a bottle-neck in the throughput of any production line. The subject matter of this thesis is about developing and optimizing an atmospheric pressure (760 torr) plasma system and to use it for surface modification of polymers. The experimental system developed, consists of two parallel electrodes facing each other, each of which is covered with a dielectric plate. A gap of 4mm exists between the dielectric surfaces, through which an axial flow of the working gas is maintained. When a high voltage is applied across the electrodes, the gas breaks down, creating plasma. The surface of the sample kept in this plasma, undergoes various phenomena, depending on the power applied, type of gas used and gas flow rate. To drive the plasma a high voltage power supply, which is able to generate 10 kV at 5.8 kHz, was developed in the laboratory. By varying the process parameters, the inherent filamentary nature of discharge can be converted to a diffuse uniform glow. The purity of plasma was studied and established by analyzing the optical emission from the plasma. After optimizing the system, it was used to modify the surface properties of polyester sheets. The wetting nature was altered using fluorocarbon and oxygen plasmas, realizing hydrophobic and hydrophilic surfaces. The contact angle of a water droplet made with the surface changed from 72° to 84° degree for hydrophobic and to 22° for hydrophilic surfaces respectively. Through this investigation, an insight to the procedure for developing an Atmospheric glow discharge system was developed. The details about system frame work, the power supply, electrical and optical characterization of the plasma, are well studied and recorded. The work establishes the various parameters to be varied to convert the filamentary discharge to a uniform glow. Purity of the plasma has been studied extensively and the system design and process values essential for maintaining the purity have been dealt with. Finally the plasma was put in use for surface modification of polymers, and the surface wetting nature alteration was studied and quantified.
306

Mechanism of biomaterial adjuvant effect: Phenotype of dendritic cells upon biomaterial contact

Yoshida, Mutsumi 20 July 2005 (has links)
Development of combination products such as tissue engineered constructs which combine biomaterials with biologics has prompted the need to clarify the role of biomaterial in potentiating the immune response towards the biological component due to adjuvant effect. In tissue engineering applications, immune responses are to be minimized while vaccine strategies seek to enhance the protective immune response. Thesis project presented herein showed that adjuvant effect of poly(lactic-co-glycolic acid) (PLGA) is mediated in part by maturation of dendritic cells (DCs), immune cells that orchestrate adaptive immune response. Maturation of human peripheral blood monocyte-derived DCs in response to PLGA contact was demonstrated in vitro and in vivo by increased co-stimulatory and MHC molecule expression, mixed lymphocyte reaction, cytokine release, and delayed type hypersensitivity reaction. In contrast to PLGA, agarose did not induce DC maturation, in accordance with its low inflammatory effect. Roles of various receptors involved in DC maturation and recognition of biomaterials were assessed by in vitro receptor blocking studies. In particular, role of Toll-like receptors were further investigated using DCs derived from bone marrows of murine model of Toll-like receptor 4 deficiency (C3H/HeJ). While PLGA induced maturation of DCs from C57BL6 mice, maturation was not observed in DCs from C3H/HeJ strain or control strain, C3H/HeOuJ, perhaps due to particular haplotypes of these animals. Collectively, these results establish the differential adjuvant effects of agarose and PLGA on the level of DC maturation, and begin to elucidate the mechanisms of biomaterial adjuvant effect. In addition, assays developed herein provide methods to screen for biomaterials to be used in combination products, such that biomaterials with desired levels of adjuvanticity as measured by DC maturation effects may be selected for given application.
307

Combinatorial Technique for Biomaterial Design

Wingkono, Gracy A. 12 July 2004 (has links)
Combinatorial techniques have changed the paradigm of materials research by allowing a faster data acquisition in complex problems with multidimensional parameter space. The focus of this thesis is to demonstrate biomaterials design and characterization via preparation of two dimensional combinatorial libraries with chemically-distinct structured patterns. These are prepared from blends of biodegradable polymers using thickness and temperature gradient techniques. The desired pattern in the library is chemically-distinct cell adhesive versus non-adhesive micro domains that improve library performance compared to previous implementations that had modest chemical differences. Improving adhesive contrast should minimize the competing effects of chemistry versus physical structure. To accomplish this, a method of blending and crosslinking cell adhesive poly(季aprolactone) (PCL) with cell non-adhesive poly(ethylene glycol) (PEG) was developed. We examine the interaction between MC3T3-E1 osteoblast cells and PCL-PEG libraries of thousands of distinct chemistries, microstructures, and roughnesses. These results show that cells grown on such patterned biomaterial are sensitive to the physical distribution and phases of the PCL and PEG domains. We conclude that the cells adhered and spread on PCL regions mixed with PEG-crosslinked non-crystalline phases. Tentatively, we attribute this behavior to enhanced physical, as well as chemical, contrast between crystalline PCL and non-crystalline PEG.
308

Collagen- and Fibronectin-Mimetic Integrin-Specific Surfaces That Promote Osseointegration

Reyes, Catherine Diane 10 July 2006 (has links)
Cell adhesion to the extracellular matrix through cell-surface integrin receptors is essential to development, wound healing, and tissue remodeling and therefore represents a central theme in the design of bioactive surfaces that successfully interface with the body. This is especially significant in the areas of integrative implant coatings since adhesion triggers signals that regulate cell cycle progression and differentiation in multiple cellular systems. The interactions of osteoblasts with their surrounding extracellular matrix are essential for skeletal development and homeostasis and the maintenance of the mature osteoblastic phenotype. Our objective was to engineer integrin-specific bioactive surfaces that support osteoblastic differentiation and promote osseointegration by mimicking these interactions. We target two specific integrins essential to osteoblast differentiation the type I collagen receptor alpha2beta1 and the fibronectin receptor alpha5beta1. The central hypothesis of this project was that the controlled presentation of type I collagen and fibronectin binding domains onto well-defined substrates would result in integrin-specific bioadhesive surfaces that support osteoblastic differentiation, matrix mineralization, and osseointegration. We have demonstrated that these biomimetic peptides enhance bone formation and mechanical osseointegration on titanium implants in a rat tibia cortical bone model. We have also shown that the presentation of multiple integrin-binding ligands synergize to enhance intracellular signaling and proliferation. Finally, we demonstrate the advantage of the short biomimetic peptides over the native ECM proteins. This research is significant because it addresses current orthopaedic implant limitations by specifically targeting cellular responses that are critical to osteoblastic differentiation and bone formation. This biomolecular approach provides a versatile and robust strategy for developing bioactive surfaces that enhance bone repair and osseointegration of orthopaedic implants.
309

Incorporation of recombinant fibronectin into genetically engineered elastin-based polymers

Balderrama, Fanor Alberto 17 November 2009 (has links)
Cardiovascular disease is the main cause of death in the United States. Many of these conditions require the grafting or bypassing of compromised blood vessels. To this effect, biological vascular grafts (autografts and allografts) are the first line of action. However, when the patient lacks vasculature suitable for grafting use, several synthetic grafting options are available. The search for an inert biomaterial for vascular grafts has proven to be unsuccessful. This makes the interaction taking place on the blood-biomaterial interface critical for the success of the grafts. This thesis introduces a new bio-inspired approach to tackle the mechanical and biological challenges of vascular material design. The hypothesis of this research is that recombinant fibronectin protein can be stably incorporated onto elastin-mimetic polymers to increase endothelialization. Recombinant elastin, designed to recreate the mechanical properties of natural elastin as a candidate material for vascular graft fabrication, was used as a model surface. Recombinant fibronectin-functionalized elastin-mimetic polymer displayed significant improvement in cell adhesion. Quantification of surface bound recombinant fibronectin verified the concentration dependence of this cell adhesive behavior. Modified elastin-mimetic polymer also demonstrated an enhanced ability to support endothelial cell proliferation. Furthermore, the stability of recombinant fibronectin-modified polymers was assessed. These studies provide the foundation for fabricating elastin-mimetic vascular grafts with improved endothelialization and subsequent biological performance.
310

Local and sustained delivery of hydrophobic drugs to the spinal cord with polyketal microparticles

Kao, Chen-Yu 30 July 2009 (has links)
Amyotrophic lateral sclerosis (ALS) is a devastating disease. Currently, there is no cure for this disease, and effective treatment strategies are greatly needed. Calpain activation plays a major role in the motor neuron degeneration that causes ALS. Therefore, therapeutic strategies can inhibit calpain activity in the central nervous system (CNS) have great clinical potential. The calpain inhibitors AK295 and MDL-28170 have been demonstrated to be neuroprotective in animal models of neurological injury, and should have great potential to treat ALS; however delivery problems have hindered their clinical success. Therefore, development of a new strategy that can locally deliver the calpain inhibitors to the central nervous system could significantly improve the treatment of ALS. The objectives of my thesis research were (1) to develop high molecular weight polyketals that provide sustained release properties for hydrophobic molecules, (2) to formulate calpain inhibitor-encapsulated polyketal microparticles which have a release half life of one month in vitro, (3) and to evaluate the performance of polyketal microparticles for delivering calpain inhibitors to the spinal cord in vivo. In completing these specific aims, we have developed biodegradable polymeric microparticles for the delivery of calpain inhibitors, AK295 and MDL-28170 to treat ALS. The results of calpain assays showed that both AK-PKMs and MDL-PKMs maintained most of their inhibitory activities even after the robust emulsion process. The in vitro release profile of MDL-28170 in MDL-PKMs showed that 50 % of the drug was released in the first 30 days. Experiments using dye-encapsulated microparticles showed that polyketal microparticles (1-2 ìm) are not easily cleared in the neutral physiological environment and can have potential to continuously release drug from the injection sites in the spinal cord. The efficacy of calpain inhibitor-encapsulated PKMs were studied by evaluation the behavior and survival of SOD1G93A rats, a genetic rat model for ALS. We observed the trend toward improvements in grip strength and rotarod performance in the first two months from the AK-PKMs treated group, however, further improvements are needed to enhance their in vivo efficacy.

Page generated in 0.1139 seconds