• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 9
  • 7
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 210
  • 74
  • 52
  • 51
  • 44
  • 42
  • 33
  • 32
  • 29
  • 28
  • 26
  • 26
  • 26
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Developent of a Phospholipid Encapsulation Process for Quantum Dots to Be Used in Biologic Applications

Grimes, Logan 01 June 2014 (has links) (PDF)
The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions of tissue via various forms of biopsies. Accurate assessment of cancerous cells via this method are subjective, and often unreliable in the early stages of cancer formation when only few cancer cells are forming. With fewer cancer cells, it is less likely that a cancer cell will appear in a biopsied tissue. This leads to a lower detection rate, even when cancer is present. This lack of detection when cancer is in fact present is referred to as a false negative. False negatives can have a highly detrimental effect on treating the cancer as soon as possible. More accurate methods of detecting cancer in early stages, in a nonsubjective form would alleviate these problems. A proposed alternative to visual examination of biopsied legions is to utilize fluorescent nanocrystalline biomarker constructs to directly attach to the abnormal markers found on cancerous tissues. Quantum dots (QDs) are hydrophobic nanoscale crystals composed of semiconducting materials which fluoresce when exposed to specific wavelengths of radiation, most commonly in the form of an ultraviolet light source. The QD constructs generated were composed of cadmium-selenium (CdSe) cores encapsulated with zinc-sulfide (ZnS) shells. These QDs were then encapsulated with phospholipids in an effort to create a hydrophilic particle which could interact with polar fluids as found within the human body. The goal of this thesis is to develop a method for the solubilization, encapsulation, and initial functionalization of CdSe/ZnS QDs. The first stage of this thesis focused on the generation of CdSe/ZnS QDs and the fluorescence differences between unshelled and shelled QDs. The second stage focused on utilizing the shelled QDs to generate hydrophilic constructs by utilizing phospholipids to bind with the QDs. Analysis via spectroscopy was performed in an effort to characterize the difference in QDs both prior to and after the encapsulation process. The method generated provides insight on fluorescence trends and the encapsulation of QDs in polar substances. Future research focusing on the repeatability of the process, introducing the QD constructs to a biological material, and eventual interaction with cancer cells are the next steps in generating a new technique to target and reveal skin cancer cells in the earliest possible stages without using a biopsy.
202

DEVELOPMENT OF TOOLS TO UNDERSTAND THE ROLE OF THE PBAF CHROMATIN REMODELER IN PROSTATE CANCER

Sandra Carolina Ordonez Rubiano (18115162) 06 March 2024 (has links)
<p dir="ltr">The BRG1/BRM-associated factor (BAF) complexes, also called SWI/SNF, are multi-subunit chromatin remodelers that regulate chromatin compaction in an ATP-dependent manner. In the past decade, BAF complexes have been under the spotlight in cancer research, especially after proteomic analyses revealed the genes encoding the subunits are amongst the most frequently mutated genes in cancer. The present dissertation focuses on prostate cancer (PCa), a disease in which the role of the BAF subunits is increasingly being explored but is yet to be defined as a potential therapeutic target. According to the GLOBOCAN report, PCa is the second most frequent cancer in males worldwide. Since most of the variants of PCa rely on the androgen receptor (AR) axis, surgical or chemical castration and androgen deprivation therapy (ADT) are the main treatment strategies for PCa patients. Even though these therapeutic approaches prolong survival, reduce tumor burden, and relieve symptoms, PCa patients eventually relapse and develop castration resistant PCa (CRPC). At present, the mechanisms underlying ADT resistance are not fully understood, current efforts focus on finding new targets for PCa treatment.</p><p dir="ltr">In the projects included in this dissertation we explored the function of the PBAF complex, a BAF subtype, in a variety of models of PCa and its potential as a therapeutic target by inhibiting or depleting its different subunits. To do so we (i) developed the first inhibitors for BRD7 (a subunit unique to PBAF) and (ii) established cell-based assays in multiple PCa cell lines to study BRD7 and other PBAF unique subunits.</p><p dir="ltr">Bromodomain-containing proteins are readers of acetylated lysine and play important roles in cancer. Bromodomain-containing protein 7 (BRD7) has been implicated in multiple malignancies; however, there are no selective chemical probes to study its function in disease. Using crystal structures of BRD7 and BRD9 bromodomains (BDs) bound to BRD9-selective ligands, we identified a binding pocket exclusive to BRD7. We synthesized a series of ligands designed to occupy this binding region and identified two inhibitors with increased selectivity towards BRD7, 1-78 and 2-77, which bind with submicromolar affinity to the BRD7 BD. Our binding mode analyses indicate that these ligands occupy a uniquely accessible binding cleft in BRD7 and maintain key interactions with the asparagine and tyrosine residues critical for acetylated lysine binding. Finally, we validated the utility and selectivity of the compounds in cell-based models of prostate cancer.</p><p dir="ltr">There are three BAF complexes that have been biochemically characterized up to date: canonical BAF (cBAF), polybromo-associated BAF (PBAF) and GLTSCR1/like-containing BAF (GBAF or ncBAF). All BAF complexes are characterized by containing an ATPase and accessory subunits that may be shared between them or unique to each subtype. PBAF, the BAF subtype of interest of this dissertation, contains four unique subunits: BRD7, PBRM1, ARID2 and BAF45A. We showed that knocking down BRD7 and ARID2 leads to reduction of cell viability in PCa cells with ligand-dependent and independent AR signaling, while knocking down PBRM1 leads to reduction in viability of cells with only ligand-dependent AR signaling. We also performed a chromatin immunoprecipitation assay with BAF45A and observed that it does not colocalize with AR binding sites, indicating that the mechanism by which PBAF regulates AR signaling is indirect. This observation was further supported by the fact that knocking down BRD7 prevents expression of genes related to adaptive processes, but not AR target genes, in response to androgen treatment. Further mechanistic studies will aid in understanding the function of PBAF in PCa. However, overall, our results indicate that PBAF is a promising therapeutic target in PCa models expressing AR, including CRPC systems.</p>
203

Single Molecule Electron Paramagnetic Resonance and Other Sensing and Imaging Applications with Nitrogen-Vacancy Nanodiamond

Teeling-Smith, Richelle Marie 21 May 2015 (has links)
No description available.
204

Multivariate Analysis for the Quantification of Transdermal Volatile Organic Compounds in Humans by Proton Exchange Membrane Fuel Cell System

Jalal, Ahmed Hasnain 05 November 2018 (has links)
In this research, a proton exchange membrane fuel cell (PEMFC) sensor was investigated for specific detection of volatile organic compounds (VOCs) for point-of-care (POC) diagnosis of the physiological conditions of humans. A PEMFC is an electrochemical transducer that converts chemical energy into electrical energy. A Redox reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), but theoretically, the sensor is not limited to only those VOCs given proper calibration. Detection in biosensing, which needs to be carried out in a controlled system, becomes complex in a multivariate environment. Major limitations of all types of biosensors would include poor selectivity, drifting, overlapping, and degradation of signals. Specific detection of VOCs in multi-dimensional environments is also a challenge in fuel cell sensing. Humidity, temperature, and the presence of other analytes interfere with the functionality of the fuel cell and provide false readings. Hence, accurate and precise quantification of VOC(s) and calibration are the major challenges when using PEMFC biosensor. To resolve this problem, a statistical model was derived for the calibration of PEMFC employing multivariate analysis, such as the “Principal Component Regression (PCR)” method for the sensing of VOC(s). PCR can correlate larger data sets and provides an accurate fitting between a known and an unknown data set. PCR improves calibration for multivariate conditions as compared to the overlapping signals obtained when using linear (univariate) regression models. Results show that this biosensor investigated has a 75% accuracy improvement over the commercial alcohol breathalyzer used in this study when detecting ethanol. When detecting isoflurane, this sensor has an average deviation in the steady-state response of ~14.29% from the gold-standard infrared spectroscopy system used in hospital operating theaters. The significance of this research lies in its versatility in dealing with the existing challenge of the accuracy and precision of the calibration of the PEMFC sensor. Also, this research may improve the diagnosis of several diseases through the detection of concerned biomarkers.
205

DISTINCT ROLES OF THE aD HELIX IN aCAMKII ACTIVATION CHARACTERIZED USING A DE NOVO MUTATION FROM CHILDREN WITH LEARNING DISABILITIES

Walter Saide (16650807) 07 August 2023 (has links)
<p>This dissertation describes the effects of a <i>de novo</i> mutation of CaMKII found in children with learning disabilities and describes its effect on catalytic activity. We develop a malachite green assay for the measurement of CaMKII activation and use it for high-throughput chemical screening to identify CaMKII inhibitors and enhancers. We also propose a new mechanism of regulation of CaMKII activity by ADP.</p><p><br></p>
206

HOW TO BE A BAD HOST FOR VIRUSES BY UNDERSTANDING THE COMPLEXITIES OF HOST LIPID-VIRAL PROTEIN INTERACTIONS

Emily A David (17583603) 10 December 2023 (has links)
<p dir="ltr">The recent global pandemic, COVID-19, has revealed to all the importance of understanding the complex relationship between viruses and hosts. Before COVID-19, I started my study of viral protein-host lipid interactions in the hemorrhagic fevers Ebola and Marburg viruses. These viruses contain a matrix protein that interacts with the plasma membrane to facilitate the formation of both authentic viruses and virus-like particles. My goal was to understand the limitations of their specific host lipid interactions. However, when the COVID-19 pandemic began, so to be our swift response in the development of a biosafety level 2 compatible model. This model can be used for studying severe acute respiratory distress syndrome 2 (SARS-CoV-2) assembly, egress, and entry. This model enabled exponentially greater access to more facilities to study the intricacies of SARS-CoV-2 assembly. With more access to studying the virus in a safe model, our goal is to push the understanding of viral assembly faster. I then began to take apart the individual pieces of the model and started to look at understanding the roles that they play independently. The membrane protein is the most abundant structural protein and I studied the specific lipid interactions of the soluble fraction of the protein. Physicians observed nucleocapsid protein mutations in the clinic with the increasing number of SARS-CoV-2 variants that are on the rise. The microscopy data collected can give us more insight into perhaps how the nucleocapsid protein induces the formation of filopodia structures at the plasma membrane. The envelope protein proved to be a challenge, but I determined a specific envelope and ceramide interaction in cells. The envelope protein was also causing the formation of microvesicles for an undefined function. I was able to determine the subcellular localization of the protein to the mitochondria. The localization to the mitochondria appears to induce depolarization of the mitochondria membrane action potential and induces the increase in mitochondria dysfunction signal, cytochrome c. Although the mitochondria were dysfunctional, there was no increase in apoptosis signal in the presence of the protein alone.</p>
207

Creation, deconstruction, and evaluation of a biochemistry animation about the role of the actin cytoskeleton in cell motility

Kevin Wee (11198013) 28 July 2021 (has links)
<p>External representations (ERs) used in science education are multimodal ensembles consisting of design elements to convey educational meanings to the audience. As an example of a dynamic ER, an animation presenting its content features (i.e., scientific concepts) via varying the feature’s depiction over time. A production team invited the dissertation author to inspect their creation of a biochemistry animation about the role of the actin cytoskeleton in cell motility and the animation’s implication on learning. To address this, the author developed a four-step methodology entitled the Multimodal Variation Analysis of Dynamic External Representations (MVADER) that deconstructs the animation’s content and design to inspect how each content feature is conveyed via the animation’s design elements.</p><p><br></p><p> </p><p>This dissertation research investigated the actin animation’s educational value and the MVADER’s utility in animation evaluation. The research design was guided by descriptive case study methodology and an integrated framework consisting of the variation theory, multimodal analysis, and visual analytics. As stated above, the animation was analyzed using MVADER. The development of the actin animation and the content features the production team members intended to convey via the animation were studied by analyzing the communication records between the members, observing the team meetings, and interviewing the members individually. Furthermore, students’ learning experiences from watching the animation were examined via semi-structured interviews coupled with post- storyboarding. Moreover, the instructions of MVADER and its applications in studying the actin animation were reviewed to determine the MVADER’s usefulness as an animation evaluation tool.</p><p><br></p><p> </p><p>Findings of this research indicate that the three educators in the production team intended the actin animation to convey forty-three content features to the undergraduate biology students. At least 50% of the student who participated in this thesis learned thirty-five of these forty-three (> 80%) features. Evidence suggests that the animation’s effectiveness to convey its features was associated with the features’ depiction time, the number of identified design elements applied to depict the features, and the features’ variation of depiction over time.</p><p><br></p><p>Additionally, one-third of the student participants made similar mistakes regarding two content features after watching the actin animation: the F-actin elongation and the F-actin crosslink structure in lamellipodia. The analysis reveals the animation’s potential design flaws that might have contributed to these common misconceptions. Furthermore, two disruptors to the creation process and the educational value of the actin animation were identified: the vagueness of the learning goals and the designer’s placement of the animation’s beauty over its reach to the learning goals. The vagueness of the learning goals hampered the narration scripting process. On the other hand, the designer’s prioritization of the animation’s aesthetic led to the inclusion of a “beauty shot” in the animation that caused students’ confusion.</p><p><br></p><p> </p><p>MVADER was used to examine the content, design, and their relationships in the actin animation at multiple aspects and granularities. The result of MVADER was compared with the students’ learning outcomes from watching the animation to identify the characteristics of content’s depiction that were constructive and disruptive to learning. These findings led to several practical recommendations to teach using the actin animation and create educational ERs.</p><p><br></p><p> </p><p>To conclude, this dissertation discloses the connections between the creation process, the content and design, and the educational implication of a biochemistry animation. It also introduces MVADER as a novel ER analysis tool to the education research and visualization communities. MVADER can be applied in various formats of static and dynamic ERs and beyond the disciplines of biology and chemistry.</p>
208

TARGETED DELIVERY OF BONE ANABOLICS TO BONE FRACTURES FOR ACCELERATED HEALING

Jeffery J H Nielsen (8787002) 21 June 2022 (has links)
<div>Delayed fracture healing is a major health issue involved with aging. Therefore, strategies to improve the pace of repair and prevent non-union are needed in order to improve patient outcomes and lower healthcare costs. In order to accelerate bone fracture healing noninvasively, we sought to develop a drug delivery system that could safely and effectively be used to deliver therapeutics to the site of a bone fracture. We elected to pursue the promising strategy of using small-molecule drug conjugates that deliver therapeutics to bone in an attempt to increase the efficacy and safety of drugs for treating bone-related diseases.</div><div>This strategy also opened the door for new methods of administering drugs. Traditionally, administering bone anabolic agents to treat bone fractures has relied entirely on local surgical application. However, because it is so invasive, this method’s use and development has been limited. By conjugating bone anabolic agents to bone-homing molecules, bone fracture treatment can be performed through minimally invasive subcutaneous administration. The exposure of raw hydroxyapatite that occurs with a bone fracture allows these high-affinity molecules to chelate the calcium component of hydroxyapatite and localize primarily to the fracture site.</div><div>Many bone-homing molecules (such as bisphosphonates and tetracycline targeting) have been developed to treat osteoporosis. However, many of these molecules have toxicity associated with them. We have found that short oligopeptides of acidic amino acids can localize to bone fractures with high selectivity and with very low toxicity compared to bisphosphonates and tetracyclines.</div><div>We have also demonstrated that these molecules can be used to target peptides of all chemical classes: hydrophobic, neutral, cationic, anionic, short, and long. This ability is particularly useful because many bone anabolics are peptidic in nature. We have found that acidic oligopeptides have better persistence at the site of the fracture than bisphosphonate-targeted therapeutics. This method allows for a systemic administration of bone anabolics to treat bone fractures, which it achieves by accumulating the bone anabolic at the fracture site. It also opens the door for a new way of treating the prevalent afflictions of broken bones and the deaths associated with them.</div><div>We further developed this technology by using it to deliver anabolic peptides derived from growth factors, angiogenic agents, neuropeptides, and extracellular matrix fragments. We found several promising therapeutics that accelerated the healing of bone fractures by improving the mineralization of the callus and improving the overall strength. We optimized the performance of these molecules by improving their stability, targeting ligands, linkers, dose, and dosing frequency.</div><div>We also found that these therapeutics could be used to accelerate bone fracture repair even in the presence of severe comorbidities (such as diabetes and osteoporosis) that typically slow the repair process. We found that, unlike the currently approved therapeutic for fracture healing (BMP2), our therapeutics improved functionality and reduced pain in addition to strengthening the bone. These optimized targeted bone anabolics were not only effective at healing bone fractures but they also demonstrated that they could be used to speed up spinal fusion. Additionally, we demonstrated that acidic oligopeptides have potential to be used to treat other bone diseases with damaged bone.</div><div>With these targeted therapeutics, we no longer have to limit bone fracture healing to casts or invasive surgeries. Rather, we can apply these promising therapeutics that can be administered non-invasively to augment existing orthopedic practices. As these therapeutics move into clinical development, we anticipate that they will be able to reduce the immobilization time that is the source of so many of the deadly complications associated with bone fracture healing, particularly in the elderly.</div>
209

Structural Investigation of Processing α-Glucosidase I from Saccharomyces cerevisiae

Barker, Megan 20 August 2012 (has links)
N-glycosylation is the most common eukaryotic post-translational modification, impacting on protein stability, folding, and protein-protein interactions. More broadly, N-glycans play biological roles in reaction kinetics modulation, intracellular protein trafficking, and cell-cell communications. The machinery responsible for the initial stages of N-glycan assembly and processing is found on the membrane of the endoplasmic reticulum. Following N-glycan transfer to a nascent glycoprotein, the enzyme Processing α-Glucosidase I (GluI) catalyzes the selective removal of the terminal glucose residue. GluI is a highly substrate-specific enzyme, requiring a minimum glucotriose for catalysis; this glycan is uniquely found in biology in this pathway. The structural basis of the high substrate selectivity and the details of the mechanism of hydrolysis of this reaction have not been characterized. Understanding the structural foundation of this unique relationship forms the major aim of this work. To approach this goal, the S. cerevisiae homolog soluble protein, Cwht1p, was investigated. Cwht1p was expressed and purified in the methyltrophic yeast P. pastoris, improving protein yield to be sufficient for crystallization screens. From Cwht1p crystals, the structure was solved using mercury SAD phasing at a resolution of 2 Å, and two catalytic residues were proposed based upon structural similarity with characterized enzymes. Subsequently, computational methods using a glucotriose ligand were applied to predict the mode of substrate binding. From these results, a proposed model of substrate binding has been formulated, which may be conserved in eukaryotic GluI homologs.
210

Structural Investigation of Processing α-Glucosidase I from Saccharomyces cerevisiae

Barker, Megan 20 August 2012 (has links)
N-glycosylation is the most common eukaryotic post-translational modification, impacting on protein stability, folding, and protein-protein interactions. More broadly, N-glycans play biological roles in reaction kinetics modulation, intracellular protein trafficking, and cell-cell communications. The machinery responsible for the initial stages of N-glycan assembly and processing is found on the membrane of the endoplasmic reticulum. Following N-glycan transfer to a nascent glycoprotein, the enzyme Processing α-Glucosidase I (GluI) catalyzes the selective removal of the terminal glucose residue. GluI is a highly substrate-specific enzyme, requiring a minimum glucotriose for catalysis; this glycan is uniquely found in biology in this pathway. The structural basis of the high substrate selectivity and the details of the mechanism of hydrolysis of this reaction have not been characterized. Understanding the structural foundation of this unique relationship forms the major aim of this work. To approach this goal, the S. cerevisiae homolog soluble protein, Cwht1p, was investigated. Cwht1p was expressed and purified in the methyltrophic yeast P. pastoris, improving protein yield to be sufficient for crystallization screens. From Cwht1p crystals, the structure was solved using mercury SAD phasing at a resolution of 2 Å, and two catalytic residues were proposed based upon structural similarity with characterized enzymes. Subsequently, computational methods using a glucotriose ligand were applied to predict the mode of substrate binding. From these results, a proposed model of substrate binding has been formulated, which may be conserved in eukaryotic GluI homologs.

Page generated in 0.0726 seconds