• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 476
  • 89
  • 79
  • 40
  • 25
  • 23
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 7
  • 6
  • Tagged with
  • 1018
  • 111
  • 109
  • 93
  • 90
  • 79
  • 75
  • 73
  • 73
  • 71
  • 67
  • 61
  • 60
  • 58
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Fonction et régulation des gènes de biosynthèse des acides mycoliques chez les mycobactéries / Function and regulation of mycolic acids genes in mycobacteria

Jamet, Stevie 22 September 2015 (has links)
Mycobacterium tuberculosis (M.tb) l'agent étiologique de la tuberculose infecte un tiers de la population mondiale avec 9 millions de nouveaux cas et 1.5 millions de décès chaque année. La capacité de la bactérie à persister dans son hôte ainsi que l'apparition croissante de souches multi-résistantes voire totalement résistantes expliquent ces statistiques dramatiques. La découverte de nouveaux traitements à travers une meilleure connaissance de la physiologie et des programmes génétiques adaptatifs du pathogène est donc une priorité mondiale. M.tb est un bacille à Gram+ avec une enveloppe particulière caractérisée par une membrane externe (la mycomembrane) essentielle à sa viabilité et sa virulence. Cette membrane est constituée majoritairement d'acides mycoliques (AMs), des acides gras à très longues chaînes modifiés par l'introduction de groupements fonctionnels. Bien qu'à ce jour la biosynthèse des AMs est relativement bien caractérisée d'un point de vue biochimique, certaines données nécessitent d'être confirmées in vivo, de même qu'il existe peu d'information sur la régulation et la contribution des gènes de biosynthèse à la capacité adaptative des mycobactéries. Une trentaine de gènes sont impliqués dans la biosynthèse des AMs dont hadA, hadB et hadC codant pour une réaction de déshydratation essentielle. Il a été démontré biochimiquement que HadB porte l'activité catalytique et que HadA et HadC apportent la spécificité de substrats. Au cours de ma thèse, par une approche génétique, nous avons montré que seule HadB était essentielle à la viabilité mais que HadA et HadC bien que non essentielles jouaient un rôle majeur dans la physiologie, la capacité adaptative et la virulence des mycobactéries, en relation avec leur rôle dans la structure des AMs. Ces résultats avaient non seulement confirmé les données biochimiques quant au rôle de HadC dans la biosynthèse des AMs, mais également souligné l'intérêt d'une stratégie de lutte basée sur l'affaiblissement du fitness de M.tb, rendant ainsi le pathogène plus sensible aux traitements déjà existants ainsi qu'aux défenses naturelles de l'hôte. Une analyse phylogénétique couplée à une analyse expérimentale de l'expression des gènes nous a permis de retracer et de rationaliser le scénario évolutif qui a façonné le locus hadABC. En accord avec l'organisation génétique, j'ai ainsi montré que la carence en nutriments, un stress rencontré par la bactérie lors de l'infection, conduisait à la co-répression des gènes hadABC ainsi que de la plupart des gènes de biosynthèse des AMs avec des gènes impliqués dans le processus de traduction. Le potentiel de traduction est connu pour être contrôlé par la disponibilité en nutriments, à travers notamment la réponse stringente, une réponse adaptative universellement conservée chez les bactéries. Suite à ces résultats, un modèle a été proposé selon lequel au cours de la réponse stringente, les intermédiaires de synthèse des AMs, seraient détournés au profit de la synthèse de lipides alternatifs dont des lipides de stockage. L'analyse phylogénétique a également suggéré une relation fonctionnelle étroite entre l'activité des enzymes HadABC et des enzymes responsables de la modification des AMs. Afin d'avoir une vision intégrée de la régulation de la synthèse de la mycomembrane, nous avons analysé le rôle biologique du gène rv0081 codant pour un facteur de transcription global. Différentes approches systémiques suggéraient que Rv0081 jouerait un rôle central dans la capacité adaptative de M.tb en régulant de nombreux gènes impliqués dans différentes fonctions cellulaires dont les gènes hadABC. J'ai pu montrer qu'un mutant rv0081 était hypervirulent et que l'absence d'une régulation naturelle du gène affectait la capacité de survie de la bactérie à l'intérieur des macrophages. / Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis infects one third of the world population with 9 million new cases and 1.5 million deaths each year. The capability of the bacteria to persist in its host and the emergence of multi- and totally-drug resistant strains explain these dramatic statistics. Therefore, the discovery of new drugs through a better understanding of the physiology and of the adaptive genetic programs of the pathogen is a priority. Mtb is a Gram + bacilli with an unusual cell envelope characterized by an outer membrane (the mycomembrane) essential to its viability and virulence. This membrane is mainly composed of mycolic acids (MAs), a class of very long chain fatty acids which are modified by the introduction of functional groups. To date the biosynthesis of MAs is biochemically well characterized, but some data need to be confirmed in vivo, likewise there is little information about the regulation and the contribution of biosynthesis genes in the adaptive capacity of mycobacteria. Around thirty genes are involved in the biosynthesis of MAs including hadA, hadB and hadC which are required for an essential dehydration reaction. It has been shown biochemically that HadB bears the catalytic activity and that HadA and HadC bring about the substrate specificity. In this study, using a genetic approach, we have shown that only HadB was essential to the viability but that the non-essential HadA and HadC proteins played a major role in the physiology, the adaptive capacity and the virulence of mycobacteria. These results have not only confirmed the biochemical data on the role of HadC in the biosynthesis of MAs, but have also underlined the relevance of a strategy based on weakening the fitness of Mtb, making the pathogen more susceptible to existing therapy as well as to the natural host defenses. Phylogenetic and experimental analyses of gene expression allowed us to rationalize the evolutionary scenario that has shaped the hadABC locus. In agreement with the genetic organization, I have shown that starvation, a stress experienced by the bacterium upon infection, resulted into the co-repression of the genes hadABC as well as most of the MAs biosynthetic genes with genes involved in the translation process. The translation potential is known to be controlled by nutrient avaibility, especially through the stringent response, an adaptive response widely conserved in bacteria. Following these results a model was proposed stating that during the stringent response, the MAs intermediate products would be redirected toward the synthesis of alternate lipids including storage lipids. Phylogenetic analysis also suggested a close functional relationship between the activity of HadABC proteins and the enzymes involved in the modification of MAs. In order to get an integrated picture of the regulation of the biosynthesis of the mycomembrane, we analyzed the biological role of rv0081, a gene encoding a transcription factor. Various comprehensive approaches suggested that Rv0081 plays a key role in M.tb adaptive capacity through the regulation of many genes involved in various cellular functions including the hadABC genes. In my PhD work I have shown that an rv0081 deleted strain was hypervirulent and that the inability of the bacteria to properly regulate the gene had prevented the bacteria to survive within macrophages.
562

Estudo químico e de biossíntese de metabólitos secundários produzidos pelas linhagens fúngicas Roussoella sp. DLM33 e Annulohypoxylon moriforme MA9 / Chemical study and study of the biosynthesis of secondary metabolites produced by fungal line Roussoela sp. DLM33 e Annulohypoxylon moriforme MA9

Éverton Leandro de França Ferreira 12 June 2017 (has links)
Microorganismos são uma excelente fonte de substâncias bioativas, porém muitas destas substâncias são biossintetizadas em baixas quantidades. A utilização de técnicas de planejamento experimental e de análise multivariada permite melhorar as condições de cultivo e incrementar a produção de metabolitos secundários. A linhagem fúngica Roussoella sp. DLM-33 produziu o composto roussoellatídeo (33) inédito na literatura com esqueleto de carbono novo. A utilização do planejamento fatorial fracionado e da metodologia multicritério permitiu incrementar a produção do composto roussoellatídeo (33), para investigar sua biossíntese utilizando precursores marcados com 13C. Experimentos de incorporação com precursores [1-13C]acetato de sódio, [1,2-13C]acetato de sódio e [metil-13C]metionina permitiu verificar que a biossíntese do composto (33) envolve dois rearranjos de Favorskii e uma ciclização de Diels-Alder intermolecular entre duas cadeias policetídicas independentes. Também, o estudo químico do meio de cultivo da linhagem Annulohypoxylon moriforme MA9, levou ao isolamento e identificação de dois compostos inéditos denominados por: (E)-3-benzilidenohexahidro-2-metilpirrolo[1,2-a]-pirazina-1,4-diona (36) e 4,7,9-trihidroxi-3-metoxi-2,3,6b,7-tetrahidro-1H-benzo[j]fluoranten-8-ona (53), e 10 compostos conhecidos: TCM-95A (43), TMC-95B (44), daidzeína (45), 5-hidroxi-3,4-dihidro-2H-naftalen-1-ona (46), 4,8-dihidroxi-3,4-dihidro-2H-naftalen-1-ona (47), 4-metoxi-1-naftalenol (48) e 3-benzil-hexahidro-pirrolo[1,2-a]-pirazina-1,4-diona (49), hypoxylonol C (50), hypoxylonol B (51) e hypoxylonol E (52). Os compostos 43 e 44 foram descobertos ainda quando presentes no extrato bruto de Annulohypoxylon moriforme MA9 por meio da co-cristalização do extrato com a enzima responsável pela atividade do proteassomo. Os dados obtidos por cristalografia de raio-X juntamente com os dados da literatura permitiram determinar suas estruturas químicas. / .Microorganisms are an excellent source of bioactive substances. However, most metabolites are biosynthesized in small amounts. The use of experimental design and multivariate analysis allows to improve the culture conditions and increase the production of secondary metabolites. The fungal strain Roussoella sp. DLM33 produced the roussoellatide (33), which is unprecedented and present a with novel carbon backbone chemical structure. Utilizing fractional factorial design and multicriteria analyses allowed us to increase the production of the roussoellatide (33) in order to investigate its biosynthesis using precursors labeled with 13C. Feeding experiments utilizing [1-13C]acetate, [1,2-13C]acetate, and [methyl-13C]methionine enabled us to verify that the biosynthesis 33 we postulate the involvement of two Favorskii rearrangements and one intermolecular Diels-Alder cyclization between two independent polyketide chains. Also, the chemical investigation of the culture medium of the strain Annulohypoxylon moriform MA9 led to the isolation and identification of two new compounds: (E)-3-benzylidenehexahydro-2-methylpyrrolo[1,2-a]pyrazine-4-dione (36) and 4,7,9-trihydroxy-3-methoxy-2,3,6b,7-tetrahydro-1H-benzo[j]fluoranenen-8-one (53), along with 10 compounds already known in the literature: TCM-95B (43), TMC-95A (44), daidzein (45), 5-hydroxy-3,4-dihydro-2H-naphthalen-1-one (46), 4,8-dihydroxy-3,4-dihydro-2H-naphthalen-1-one (47), 4-methoxy-1-naphthalenol (48) and 3-benzylhexahydro-pyrrolo [1,2-a]pyrazine-1,4-dione (49), hypoxylonol C (50), hypoxylonol B (51) and hypoxylonol E (52). Compounds 43 and 44 were discovered by the co-crystallization of the extract medium with the enzyme responsible for the proteasome activity. Data obtained by X-ray crystallography, NMR and MS analyses combined or data available in the literature allowed to determine their chemical structures.
563

Further exploration to the cucurbitacin D (LC978) signal transduction pathway during fetal hemoglobin induction.

January 2008 (has links)
Zhang, Siwei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 87-98). / Abstracts in English and Chinese. / Chapter 1. --- General introduction --- p.1 / Chapter 1.1. --- "Types, structure and function of human hemoglobin" --- p.1 / Chapter 1.1.1. --- Structure and functions of human hemoglobin --- p.1 / Chapter 1.1.2. --- Types of human hemoglobin --- p.2 / Chapter 1.2. --- Regulatory mechanism of human hemoglobin expression --- p.3 / Chapter 1.2.1. --- The human a and β locus --- p.3 / Chapter 1.2.2. --- Development of globin genes switching concept --- p.4 / Chapter 1.2.3. --- Factors that regulate globin gene expression --- p.5 / Chapter 1.2.3.1. --- The locus control region (LCR) --- p.5 / Chapter 1.2.3.2. --- The cis-regulatory elements --- p.5 / Chapter 1.2.3.3. --- The trans-acting factors --- p.6 / Chapter 1.3. --- The human hemoglobinopathies --- p.8 / Chapter 1.3.1. --- α-thalassemia --- p.8 / Chapter 1.3.2. --- β-thalassemia --- p.9 / Chapter 1.3.3. --- Sickle cell anemia --- p.10 / Chapter 1.4. --- Current approaches towards β-thalassemia treatment --- p.11 / Chapter 1.4.1. --- Blood transfusion --- p.11 / Chapter 1.4.2. --- Bone marrow transplantation --- p.12 / Chapter 1.4.3. --- Drug-induced activation of fetal hemoglobin production --- p.12 / Chapter 1.4.3.1. --- Hydroxyurea --- p.12 / Chapter 1.4.3.2. --- Butyrate and short-chain fatty acids --- p.13 / Chapter 1.4.3.3. --- "Mutagens, DNA methyltransferase inhibitors and other HbF inducible agents" --- p.13 / Chapter 1.4.3.4. --- Cucurbitacin D --- p.14 / Chapter 1.4.4. --- Gene therapy --- p.14 / Chapter 1.5. --- Research Objectives --- p.15 / Chapter 2. --- "Analysis of CuD, Hydroxyurea and other inducers on the induction of α, β, γ, δ, ε,ζ BP-1 genes and fetal hemoglobin induction" --- p.16 / Chapter 2.1. --- Introduction --- p.16 / Chapter 2.1.1. --- Properties of human K562 cell line --- p.16 / Chapter 2.1.2. --- Induction and measurement of fetal hemoglobin --- p.16 / Chapter 2.1.3. --- "Induction of α, β, γ, δ, ε , ζ and BP-1 gene and Real-time RT-PCR analysis" --- p.17 / Chapter 2.2. --- Materials --- p.18 / Chapter 2.2.1. --- Chemicals and reagents --- p.18 / Chapter 2.2.2. --- Kits --- p.19 / Chapter 2.2.3. --- Buffers and solutions --- p.19 / Chapter 2.2.4. --- Cell lines --- p.20 / Chapter 2.3. --- Experimental procedures --- p.20 / Chapter 2.3.1. --- Hemoglobin quantity measurement by HbF ELISA --- p.20 / Chapter 2.3.1.1. --- MTT assay --- p.21 / Chapter 2.3.1.2. --- Preparation of capture-antibody coated ELISA plates --- p.21 / Chapter 2.3.1.3. --- Plate blocking --- p.22 / Chapter 2.3.1.4. --- Sample and standard preparation --- p.22 / Chapter 2.3.1.5. --- HRP antibody and colorimetric detection --- p.23 / Chapter 2.3.1.6. --- Statistical analysis --- p.23 / Chapter 2.3.2. --- Preparation of mRNA extract from K562 cells --- p.23 / Chapter 2.3.3. --- Reverse transcription and Real-time PCR analysis --- p.24 / Chapter 2.4. --- Results --- p.25 / Chapter 2.4.1. --- CuD significantly upregulates HbF expression in K562 cells --- p.25 / Chapter 2.4.2. --- "CuD augments α, β, γ, δ, ε , ζ and BP-1 genes at different level in K562 cells" --- p.28 / Chapter 2.4.3. --- Cucurbitacin D-induced γ-globin gene activation requires12-24 hours in K562 cells --- p.31 / Chapter 2.5. --- Discussion --- p.33 / Chapter 2.5.1. --- Enhancement of fetal hemoglobin production using different chemical compounds --- p.33 / Chapter 2.5.2. --- CuD increased HbF synthesis by increasing γ-globin mRNA amount --- p.35 / Chapter 2.5.3. --- CuD and HU down-regulated the BP-1 gene expression --- p.36 / Chapter 3. --- Determination of potential signal transduction pathways during CuD and HU-mediated fetal hemoglobin production --- p.36 / Chapter 3.1. --- Introductions --- p.36 / Chapter 3.1.1. --- The p38 MAPK family --- p.37 / Chapter 3.1.2. --- The JAK2-STAT3 pathway --- p.38 / Chapter 3.1.3. --- Fundamentals on inhibition assay of p38 MAPK and JAK2-STAT3 pathway --- p.39 / Chapter 3.1.4. --- Fundamentals on nuclear translocation of STAT3 --- p.41 / Chapter 3.2. --- Materials --- p.41 / Chapter 3.2.1. --- Chemicals and reagents --- p.41 / Chapter 3.2.2. --- Kits --- p.44 / Chapter 3.2.3. --- Buffers and solutions --- p.44 / Chapter 3.3. --- Experimental procedures --- p.45 / Chapter 3.3.1. --- Detection of p3 8 MAPK phosphorylation status --- p.46 / Chapter 3.3.1.1. --- Preparation of cytosolic protein extracts --- p.46 / Chapter 3.3.1.2. --- Quantitative measurement of phospho-p38 and pan-p38 by ELIS A method --- p.46 / Chapter 3.3.1.2.1. --- Antigen adsorption and establishment of standard curves --- p.46 / Chapter 3.3.1.2.2. --- Plate washing and application of detection antibody --- p.47 / Chapter 3.3.1.2.3. --- Plate washing and application of secondary antibody --- p.47 / Chapter 3.3.1.2.4. --- Plate washing and chromogen detection --- p.48 / Chapter 3.3.2. --- Detection of signal cascade on JAK2-STAT3 pathway --- p.48 / Chapter 3.3.2.1. --- Preparation of cytosolic protein extracts for Western Blot detection --- p.48 / Chapter 3.3.2.2. --- Gel running and Western Blot detection --- p.48 / Chapter 3.3.3. --- Quantitative measurement of phospho-STAT3-Tyr705 using ELISA method --- p.50 / Chapter 3.3.3.1. --- Preparation of cytosolic protein extracts --- p.50 / Chapter 3.3.3.2. --- Reconstitution and Dilution of STAT3 [pY705] Standard --- p.50 / Chapter 3.3.3.3. --- Measurement of STAT3 [pY705] concentration in cell lysates --- p.51 / Chapter 3.3.4. --- Inhibitor assay of JAK2-STAT3 and p38 MAPK pathway --- p.52 / Chapter 3.3.4.1. --- Establishment of inhibitor assay --- p.52 / Chapter 3.3.4.2. --- HbF ELISA detection --- p.53 / Chapter 3.3.5. --- Detection of STAT3 nuclear translocation and DNA binding affinity --- p.53 / Chapter 3.3.5.1. --- Preparation of nuclear extract from K562 cells --- p.53 / Chapter 3.3.5.2. --- EMS A detection of transcriptional factors binding to γ-promoter region --- p.54 / Chapter 3.3.5.2.1. --- 3´ة end-labeling of EMS A probes --- p.54 / Chapter 3.3.5.2.2. --- Dot blotting for labeling efficiency estimation --- p.56 / Chapter 3.3.5.2.3. --- EMSA binding reaction and non-denaturing gel electrophoresis --- p.57 / Chapter 3.3.5.2.4. --- Membrane development and chemiluminescence detection --- p.58 / Chapter 3.3.5.3. --- Preparation of K562 samples for immunofluorescence detection --- p.60 / Chapter 3.3.5.3.1. --- Slide coating for cell capture --- p.60 / Chapter 3.3.5.3.2. --- Preparation of cell slide --- p.60 / Chapter 3.3.5.3.3. --- Sample fixation and antibody probing treatment --- p.60 / Chapter 3.3.5.3.4. --- Sample imaging and immunofluorescence detection --- p.61 / Chapter 3.4 --- Results --- p.62 / Chapter 3.4.1. --- Activation of p38 MAPK pathway and STAT3 phosphorylation by hydroxyurea --- p.62 / Chapter 3.4.1.1. --- "The p38 MAPK pathway is activated by hydroxyurea, but not activated by Cucurbitacin D" --- p.62 / Chapter 3.4.1.2. --- Increased p38 phosphorylation level elicits STAT3 phosphorylation at Ser727 site --- p.64 / Chapter 3.4.2. --- Activation of JAK2 and STAT3 phosphorylation by Cucurbitacin D --- p.66 / Chapter 3.4.2.1. --- Cucurbitacin D promotes JAK2 activation --- p.66 / Chapter 3.4.2.2. --- Cucurbitacin D and hydroxyurea promote STAT3 phosphorylation at Tyr705 site --- p.66 / Chapter 3.4.3. --- Basal activity of signal transduction pathways is essential for HbF induction --- p.69 / Chapter 3.4.3.1. --- Activation of γ-globin gene requires presence of basal phosphorylation level of p38 MAPK --- p.69 / Chapter 3.4.3.2. --- Inhibition on JAK2-STAT3 pathway results in reduced fetal hemoglobin production --- p.71 / Chapter 3.4.4. --- Translocation and DNA binding of STAT under Cucurbitacin D induction --- p.72 / Chapter 3.4.4.1. --- Cucurbitacin D and hydroxyurea both enhance binding affinity of transcriptional factors to the Gγ/Aγ promoter --- p.72 / Chapter 3.4.4.2. --- Cucurbitacin D and hydroxyurea induces nuclear translocation of STAT3 --- p.75 / Chapter 3.5. --- Discussion --- p.77 / Chapter 3.5.1. --- The role of p38 MAPK activation during γ-globin gene activation --- p.77 / Chapter 3.5.2. --- STAT3 phosphorylation at Ser727 site promotes transcription factor activity and γ-globin gene expression --- p.77 / Chapter 3.5.3. --- The role of JAK2-STAT3 activation during γ-globin gene activation --- p.78 / Chapter 3.5.4. --- Inhibitor assay --- p.79 / Chapter 3.5.5. --- Relations between STAT3 nuclear translocation and enhanced fetal hemoglobin production --- p.82 / Chapter 4. --- Summery and Prospect --- p.83 / Chapter 5. --- References --- p.87
564

DNA transformation and fermentation study of Acremonium chrysogenum.

January 2007 (has links)
Lau, Shong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 124-129). / Abstracts in English and Chinese. / Abstract of thesis --- p.i / 碩士論文摘要 --- p.iii / Acknowledgement --- p.iv / Declaration --- p.v / Abbreviations --- p.vi / Genetic symbols --- p.viii / Table of content --- p.ix / List of figures --- p.xiii / List of tables --- p.xv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Thesis outline --- p.1 / Chapter 1.2 --- A. chrysogenum --- p.3 / Chapter 1.3 --- Antibiotic industry --- p.4 / Chapter 1.4 --- Cephalosporins --- p.4 / Chapter 1.5 --- CPC biosynthetic pathway --- p.5 / Chapter 1.6 --- DAC --- p.8 / Chapter 1.7 --- Aims of study --- p.10 / Chapter Chapter 2 --- Construction of transformation cassettes --- p.11 / Chapter 2.1 --- Introduction --- p.11 / Chapter 2.2 --- Materials and Methods --- p.13 / Chapter 2.2.1 --- Construction of cassette RTCAH --- p.13 / Chapter 2.2.1.1 --- Cultivation of R. toruloides --- p.13 / Chapter 2.2.1.2 --- Preparation of R. toruloides genomic DNA --- p.13 / Chapter 2.2.1.3 --- PCR of R. toruloides CAH gene --- p.14 / Chapter 2.2.1.4 --- Construction of pRTCAHhyr --- p.16 / Chapter 2.2.2 --- Construction of cassette GHG --- p.17 / Chapter 2.3 --- Results and Discussion --- p.18 / Chapter 2.3.1 --- pGHG construction --- p.18 / Chapter 2.3.2 --- pRTCAHhyr construction --- p.18 / Chapter Chapter 3 --- Optimization of integrative transformation of A. chrysogenum --- p.22 / Chapter 3.1 --- Introduction --- p.22 / Chapter 3.2 --- Materials and Methods --- p.24 / Chapter 3.2.1 --- Strain and culture medium --- p.24 / Chapter 3.2.2 --- Reagents --- p.24 / Chapter 3.2.3 --- Standard transformation procedures --- p.25 / Chapter 3.2.3.1 --- Cell cultivation --- p.25 / Chapter 3.2.3.2 --- Protoplast preparation --- p.25 / Chapter 3.2.3.3 --- PEG mediated protoplast fusion --- p.27 / Chapter 3.2.4 --- Examination of transformation parameters --- p.28 / Chapter 3.3 --- Results and Discussion --- p.29 / Chapter 3.3.1 --- Cell growth period --- p.30 / Chapter 3.3.2 --- DNA concentration --- p.32 / Chapter 3.3.3 --- PEG molecular weight --- p.35 / Chapter 3.3.4 --- Transformation additives --- p.37 / Chapter 3.3.5 --- Modified transformation protocol --- p.39 / Chapter Chapter 4 --- Metabolic engineering of A. chrysogenum --- p.42 / Chapter 4.1 --- Introduction --- p.42 / Chapter 4.2 --- Materials and Methods --- p.43 / Chapter 4.2.1 --- Transformation of A. chrysogenum --- p.43 / Chapter 4.2.2 --- Screening of transformants --- p.43 / Chapter 4.2.3 --- HPLC analysis --- p.43 / Chapter 4.2.4 --- A. chrysogenum genomic DNA preparation --- p.44 / Chapter 4.2.5 --- Genotyping by PCR --- p.45 / Chapter 4.2.5.1 --- GHG transformants --- p.45 / Chapter 4.2.5.2 --- RTCAH transformants --- p.47 / Chapter 4.2.6 --- Genotyping of GHG transformants by Southern hybridization --- p.47 / Chapter 4.2.6.1 --- Preparation of DIG-labeled GHG probe by PCR --- p.48 / Chapter 4.2.6.2 --- PCR preparation of DIG-labeled Cef-EF probe --- p.48 / Chapter 4.2.6.3 --- Restriction digestion of genomic DNA of GHG transformants --- p.49 / Chapter 4.2.6.4 --- Agarose gel electrophoresis and DNA transfer to positively charged nylon membrane --- p.50 / Chapter 4.2.6.5 --- Pre-hybridization and hybridization --- p.52 / Chapter 4.2.6.6 --- Membrane washing and blocking --- p.52 / Chapter 4.2.6.7 --- Membrane detection --- p.53 / Chapter 4.2.7 --- Genotyping of RTCAH transformants by Southern hybridization --- p.53 / Chapter 4.2.7.1 --- PCR preparation of DIG-labeled RTCAH probe --- p.54 / Chapter 4.2.7.2 --- Restriction digestion of genomic DNA of RTCAH transformants --- p.54 / Chapter 4.2.7.3 --- Agarose gel electrophoresis and Southern hybridization of RTCAH transformants --- p.55 / Chapter 4.3 --- Results and Discussion --- p.56 / Chapter 4.3.1 --- Hygromycin B screening and HPLC analysis of GHG transformants --- p.56 / Chapter 4.3.2 --- Genotyping of GHG232 by PCR --- p.56 / Chapter 4.3.3 --- Genotyping of GHG232 by Southern hybridization --- p.58 / Chapter 4.3.4 --- Hygromycin B screening and HPLC analysis of RTCAH transformant --- p.61 / Chapter 4.3.5 --- Genotyping of RTCAH transformants by PCR --- p.61 / Chapter 4.3.6 --- Genotyping of RTCAH transformants by Southern hybridization --- p.63 / Chapter Chapter 5 --- Characterization of modified strains and fermentation study --- p.65 / Chapter 5.1 --- Introduction --- p.65 / Chapter 5.2 --- Materials and Methods --- p.67 / Chapter 5.2.1 --- Comparison of DAC production in GHG232 and RTCAH transformants by small-scale fermentation --- p.67 / Chapter 5.2.2 --- CPC conversion assay --- p.67 / Chapter 5.2.3 --- Evaluation of fermentation media --- p.68 / Chapter 5.2.4 --- Factorial design for medium formulation --- p.68 / Chapter 5.3 --- Results and Discussion --- p.71 / Chapter 5.3.1 --- Evaluation of DAC production profiles of GHG232 and RTCAH transformants --- p.71 / Chapter 5.3.2 --- CPC conversion assay --- p.79 / Chapter 5.3.3 --- Medium formulation --- p.81 / Chapter 5.3.4 --- Factorial design for medium formulation --- p.85 / Chapter 5.3.4.1 --- CSL and NH4OAc --- p.85 / Chapter 5.3.4.2 --- CaC03 --- p.91 / Chapter 5.3.4.3 --- Sucrose --- p.94 / Chapter 5.3.4.4 --- Starch and soy oil --- p.97 / Chapter 5.3.4.5 --- Methionine --- p.99 / Chapter Chapter 6 --- Conclusive remarks --- p.101 / Appendix: Study of reusability of commercial plasmid extraction kit --- p.103 / Chapter A1 --- Introduction --- p.103 / Chapter A2 --- Materials and Methods --- p.105 / Chapter A2.1 --- Preparation of competent E. coli DH5a cells --- p.105 / Chapter A2.2 --- Transformation and cultivation ofE. coli DH5a cells --- p.106 / Chapter A2.3 --- Column and solutions for plasmid DNA preparation --- p.107 / Chapter A2.4 --- Plasmid preparation --- p.108 / Chapter A2.5 --- Regeneration and storage of DNA extraction column --- p.109 / Chapter A2.6 --- Yield and quality assessment of the prepared plasmid DNA --- p.109 / Chapter A3 --- Results and Discussion --- p.111 / Chapter A3.1 --- Plasmid DNA yield and purity comparison --- p.111 / Chapter A3.2 --- Column regeneration and EtOH storage --- p.111 / Chapter A3.2.1 --- DNA yield after column regeneration --- p.111 / Chapter A3.2.2 --- Purity of plasmid DNA --- p.112 / Chapter A3.2.3 --- Restriction digestion --- p.117 / Chapter A3.2.4 --- E. coli DH5α cells transformation --- p.121 / Chapter A4 --- Conclusive remarks --- p.123 / Bibliography --- p.124
565

Biossíntese de ácido L-ascórbico em plantas: estudo com supostos precursores / Biosynthesis of L-ascorbic acid in plants: study with some precursors

Soares, Anderson Demétrio Barata 21 August 2001 (has links)
Poucos trabalhos foram publicados envolvendo a biossíntese do AA em plantas desde sua descoberta em 1928. O mecanismo de biossíntese era um mistério até 1998 quando Wheeler, Jones e Smirnoff demonstraram que a L-galactose é um precursor chave desta importante vitamina. Utilizando-se açúcares marcados e frios pudemos confirmar o mecanismo Smirnoff-Wheeler de biossíntese do AA. Neste trabalho nós apresentamos os resultados alcançados usando alguns supostos precursores e alguns frutos como o morango, a goiaba e o mamão papaya, e alguns legumes como o brócolis, alguns deles ricos em AA. As técnicas de HPLC e espectrofometria UVNIS foram utilizadas na determinação do AA. Os vegetais foram mantidos em soluções dos precursores frios por 24 horas e então analisados quanto ao teor de AA. Os resultados do uso de compostos marcados foi analisado utilizando-se a cintilografia líquida (LSC). Os açúcares extraídos do brócolis, do mamão papaya e da goiaba que foram infiltrados com D-[U-14C] manose, L-[1-14C] galactose e D-[U-14C] glucose-1-P mostraram diferentes padrões de distribuição entre os açúcares envolvidos no mecanismo Smirnoff-Wheeler de biossíntese do AA. Em folhas de goiabeira encontramos altos teores de ácido desidroascórbico e pequena quantidade de AA, diferentemente do conteúdo de AA nos frutos. Nossos resultados confirmaram que a L-galactono-1 ,4-lactona é um precursor bastante eficiente do AA em frutos e proveram algumas evidências do envolvimento da 0- manose no mecanismo de biossíntese do AA em plantas. / Since the first isolation of the Ascorbic Acid (AA) in 1928, a few papers have been published leading with the determination the AA biosynthetic pathway in plants. This pathway was a mystery until recently when in 1998 Wheeler, Jones and Smirnoff demonstrated that L-galactose is a key precursor of this important vitamin. Using radiolabeled and non-radiolabeled sugars we were capable of giving support to the Smirnoff-Wheeler pathway of AA biosynthesis. In this work we present the results reached using some putative precursors and some fruits and vegetables as strawberry, guava, papaya and broccoli some of them very rich in AA. The techniques used for the AA analysis included UVNIS spectrophotometry and HPLC methods. The fruits and vegetables were maintained in the solution of the non-radiolabeled precursors for 24 hours and then analyzed for the AA content. The results of the use of radiolabeled precursors were analyzed using liquid scintillation (LSC). The sugars extracted from broccoli , papaya and guava, that were supplied with D-[U-14C] mannose, L-[1-14C] galactose and D-[U-14C] glucose-1-P dipotassium salt were analyzed using HPLC amperometric method and LSC showed different pattern of distribution between the sugars involved in the Smirnoff-Wheeler AA biosynthesis pathway. In guava leaves we found a high content of dehydroascorbic acid and low amount of AA, unlikely of the content of AA in the fruit. Our results confirmed that L -galactono-1 ,4-lactone is a very effective precursor of AA in fruits and provided some evidence of the involvement of D-mannose in AA biosynthesis in plants.
566

Estudo químico e biossintético de Peperomias / Chemistry and biosynthetic study of Peperomias

Malquichagua Salazar, Karina Josefina 13 October 2009 (has links)
O estudo fitoquímico de Peperomia oreophila revelou a presençca de duas lignanas furofurânicas (7R, 8R, 7R, 8R)-3,4,5-trimetóxi-3,4-metilenodioxi-5-metóxi- 8.8,7.O.9,7.O.9-lignana (1), (7R, 8R, 7R, 8R)-3,4,5-trimetóxi-3,4,5-trimetóxi- 8.8,7.O.9,7.O.9-lignana (2); as duas amidas (2E)-N-isobutil-3-(5-metóxi-7,8- benzodioxol-1-il)acrilamida (3), (2E)-N-isobutil-3-(3,4,5-trimetóxifenil)acrilamida (4), três derivados de acido cinâmico (2E)-3-(3,4,5-trimetóxifenil)acrilato de metila (5), (2Z)-3- (3,4,5-trimetóxifenil)acrilato de metila (6), (2E)-3-(5-metóxi-7,8-benzodioxol-1-il)acrilato de metila (7); os dois policetídeos fenólicos [(2E)-3,7-dimetilocta-2,6-dien-1-il]-5- metil-2-(3-metilbut-2-en-1-il)benzeno-1,3-diol (8) (inédita) e [(2E)-3,7-dimetilocta- 2,6-dien-1-il]-2,2,7-trimetil-2H-cromen-5-ol (9); de P. arifolia: o policetídeo fenólico [(2E)-3,7-dimetilocta-2,6-dien-1-il]-5-metil-2-(3-metilbut-2-en-1-il) benzeno-1,3-diol, isolada também de P. oreophila (10) (inédita); de P. urocarpa: o policetídeo fenólico 5- metil-2-[(2E,6E)-3,7,11-trimetildodeca-2,6,10-trien-1-il] benzeno-1,3-diol (11) e o ácido 2,4-dihidróxi-6-metil-3-[(2E,6E)-3,7,11-trimetildodeca-2,6,10-trien-1-il] benzóico, (12); de P. nitida: o fenilpropanoide apiol (1-alil-3,6-dimetóxi-10,11- benzodioxol) (13), os cromenos 7-hidróxi-2,2,5-trimetil-2H-cromeno-carboxilato de metila (14) e o 7-metóxi-2,2,5-dimetil-2H-cromeno-6-carboxilato de metila (15). O policetídeo 2-hidróxi-4,6-dimetóxiacetofenona, principal metabólito das folhas de P. glabella, teve sua biossíntese investigada utilizando-se como precursores o acetil-CoA e o malonil-CoA. Foram realizados estudos de otimização da atividade de policetídeo sintase (PKS) em função do pH, tempo de reação, temperatura e saturação de substratos, além de estudos da variação circadiana. Estudos de genes de PKS resultaram em amplificações cujo seqüenciamento poderá determinar a identidade dessas regiões e homologia entre as seqüências dessas Peperomias e a região KS do gene AviM de Streptomyces viridochromogenes que expressa o ácido orselínico / The phytochemical investigation carried out on Peperomia oreophila revealed the accumulation of two furofuran lignans (7R,8R,7R,8R)-3,4,5-trimethoxy-3,4- methylenedioxy-8.8, 7.O.9, 9.O.7-lignan (1), (7, 8R, 7R, 8)-3,4,5-trimethoxy-3,4,5- trimethoxy-8.8-7.O.9, 9.O.7-lignan (2); two amides (2´E)-N-isobutyl-3´-(5-methoxy-7,8- benzodioxol-1-yl) acrylamide (3), (2E)-N-isobutyl-3-(3,4,5-trimethoxyphenyl)acrylamide (4), three derivate cinâmic acid methyl (2E)-3-(3,4,5-trimethoxyphenyl)acrylate (5), methyl (2Z)-3-(3,4,5-trimethoxyphenyl)acrylate (6), methyl (2E)-3-(5-methoxy-7,8- benzodioxol-1-yl)acrylate (7); two phenolic polyketides [(2E)-3,7-dimethylocta-2,6- dien-1-yl]-5-methyl-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (8) (novel), [(2´E)-3´,7´- dimethylocta-2´,6´-dien-1-yl]-2,2,7-trimethyl-2H-chromen-5-ol (9); P. arifolia, two phenolic polyketide [(2E)-3,7-dimethylocta-2,6-dien-1-yl]-5-methyl-2-(3-methylbut-2- en-1-yl)benzene-1,3-diol, also isolated from P. oreophila (10) (novel); P. urocarpa, the two phenolic polyketides 5-methyl-2-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1- yl]benzene-1,3-diol (11) and 2,4-dihydroxy-6-methyl-3-[(2E,6E)-3,7,11-trimethyldodeca- 2,6,10-trien-1-yl]benzoic acid (12); P. nitida, the phenylpropanoid apiole 1-allyl-3,6- dimethoxy-10,11-benzodioxole (13); the chromenes methyl 7-hydroxy-2,2,5-trimethyl- 2H-chromene-6-carboxylate (14) and methyl 7-methoxy-2,2,5-trimethyl-2H-chromene-6- carboxylate (15). The polyketide 2-hydroxy-4,6-dimethoxyacetophenone, the major compound in P. glabella leaves, had its biosynthetic origin investigated using acetyl-CoA and malonyl-CoA as precursors. The enzymatic activity of polyketide synthase was optimized to pH, incubation time, temperatures and substrate saturation, in addition to the analysis of circadian variation activity. The amplifications of putative PKS genes was based on primers from AviM gene of Streptomyces viridochromogenes that express for orsellinic acid. The sequencing will enable the identification of such regions and also to study the homology to fungi PKS
567

Análise da expressão de genes associados à via de biossíntese de ácidos graxos em Theobroma cacao e ao acúmulo de ácido esteárico / Expression analysis of genes associated with the fatty acid biosynthetic pathway in Theobroma cacao and with the accumulation of stearic acid

Pinheiro, Thaísa Tessutti 28 August 2009 (has links)
As sementes do cacaueiro (Theobroma cacao L.) constituem a única fonte de manteiga de cacau, matéria prima fundamental para as indústrias de chocolates e confeitos, farmacêutica e cosmética. Cerca de 50 % do peso seco das sementes é composto por gordura, caracterizada pelo alto nível de estearato (30-37%), em combinação com palmitato (24-31%) e de oleato (33-39%), conferindo-lhe uma composição triglicerídica única, responsável pelas suas propriedades de fusão, com aplicações específicas e especiais. Apesar dos genes que codificam as enzimas da via metabólica de biossíntese de ácidos graxos e triglicerídeos em plantas serem conhecidos, os mecanismos moleculares pelos quais as plantas controlam a produção de estearato e que diferenciam as plantas acumuladoras de estearato de todas as demais não estão claramente definidos. O objetivo deste trabalho foi analisar a composição de ácidos graxos nos frutos de Theobroma cacao e a expressão temporal de genes relacionados à via metabólica de ácidos graxos e triglicerídeos durante o desenvolvimento de sementes de T. cacao, com ênfase na acumulação de estearato. Em paralelo, foram eleitos os genes referências mais estáveis para os estudos em embriões e diversos tecidos de Theobroma cacao. Empregando-se a técnica de reação quantitativa da amplificação em cadeia de transcritos reversos de RNA (RT-qPCR), foram analisadas a expressão dos genes codificadores da proteína carregadora de acil A, B e C, \'beta\'-cetoacil-ACP sintase II, \'delta\'9estearoil-ACP desaturase A e B, Acil-ACP tioesterase A, acil-ACP tioesterase B, acil-CoA sintetase A e B e da proteína oleosina. Quando se estudou de expressão gênica apenas nos embriões de T. cacao, os três genes mais estáveis foram proteína ribossomal L35, proteína carregadora de acil A e gliceraldeído 3-fosfato desidrogenase. Quando se considerou diversos tecidos de plantas de Theobroma cacao, os melhores genes para a normalização dos valores de expressão foram os codificadores da proteína ribossomal L35, proteína carregadora de acil B e gliceraldeído 3-fosfato desidrogenase. A acumulação de transcritos da \'delta\'9estearoil-ACP desaturase foi relacionada ao aumento do ácido oleico. O aumento na quantidade deste ácido acontece pela ação conjunta da \'delta\'9estearoil-ACP desaturase, e acil-ACP tioesterase A, a qual mostra maiores níveis de transcritos entre 90 e 140 DAP com pico aos 100 DAP. O aumento de ácidos esteárico estaria relacionado com a ação conjunta e com transcrição temporalmente coordenada dos genes das enzimas \'beta\' -cetoacil-ACP sintase II, Acil-ACP tioesterase A e Acil-ACP tioesterase B. Transcritos da enzima \'beta\' -cetoacil-ACP sintase II apresenta pico aos 100 DAP, possivelmente com acúmulo máximo de substratos 18:0-ACP, que poderiam ser hidrolizado preferencialmente pela enzima acil-ACP tioesterase A, ou acil-ACP tioesterase B, O intervalo entre o pico de acúmulo de trasncritos entre \'beta\'-cetoacil-ACP sintase II (100 DAP) e Acil-ACP tioesterase A e \'delta\'9estearoil-ACP desaturase (110 DAP) sugere que poderia ocorrer um acúmulo de estearato resultante da ação dessas enzimas. Esses resultados corroboram o modelo de acumulação de estearato proposto por Silva (2005) / Cacao seeds (Theobroma cacao L.) are unique sources of cocoa butter, fundamental raw material for the chocolate, confectionary, cosmetic and pharmaceutical industries. Around 50% of the seed dry weight represents fat, characterized by the high levels of stearate (30-37%), in combination of palmitate (24-31%) and oleate (33-39%), giving a unique triacylglycerol compostion, responsible for the melting profile for special and specific applications. Despite the fact that genes encoding enzymes of the fatty acid and triglyceride biosynthetic pathway of plants are known, the mechanisms to control the accumulation of high levels of stearate, that differ from other species, are not clearly defined. The objective of this work was to analyse the composition of fatty acids and the expression of genes associated with fatty acid and triglyceride biosynthetic pathway during the development of cacao pods, with emphasis with stearate accumulation. In parallel, the establishment of stable reference genes to investigate gene expression in developing embryos and other cacao tissues were investigated. Using the quantitative amplification of reversed transcripts (RT-qPCR), the expresion of genes coding for the acyl-carrier protein A, B and C; \'beta\'-ketoacyl-ACP sinthase II; \'delta\'9stearoyl-ACP desaturase A and B; Acyl-ACP thioesterase A; Acyl-ACP thioesterase B; Acyl-CoA sintethase A and B; and oleosin. When gene expression was conductd only in developing cacao embryos, the three most stable genes were the ribosomal protein L35, acyl-carrier protein A and glyceraldehide 3-phosphate dehydrogenase. When various tissues were considered, the best reference genes for gene expression normalization were those encoding for the ribosomal protein L35, acyl carrier protein B and glyceraldehide 3-phosphate dehydrogenase. The accumulation of \'delta\'9stearoyl-ACP desaturase transcripts could be associated with the accumulation of oleate, together with the increase of acyl-ACP thioesterase A, with increased relative levels of transcripts between 90 and 140 DAP, peaking at 100 DAP. The increase in stearate might result from the joint activity of the \'delta\'9stearoyl-ACP desaturase and acyl-ACP thioesterase A, which presented higher accumulation of transcripts between 90 and 140 DAP, with peak at 110 DAP. The increase in stearate would associated with the joint and temporal coordinated expression of genes encoding \'beta\'-ketoacyl-ACP synthase II, and Acyl-ACP thioesterase A and B. Transcripts of the enzyme \'beta\'-ketoacyl-ACP synthase II peaked at 100 DAP, possibly with the maximum accumulation of substrates 18:0-ACP, that would be preferentially hydrolzyed by the enzyme acyl-ACP thioesterase A, or acyl-ACP thioesterase B, The gap between the peak in transcript accumulation between \'beta\'-ketoacyl-ACP synthase II (100 DAP) and acyl-ACP thioesterase A and \'delta\'9stearoyl-ACP desaturase (110 DAP) could lead to the accumulation of stearate. These results corroborated the model proposed by Silva (2005)
568

Oil-Rich Nonseed Tissues for Enhancing Plant Oil Production

Rahman, Mahbubur, Divi, Uday K., Liu, Qing, Ahou, Xue-Rong, Singh, Surinder, Kilaru, Aruna 01 October 2016 (has links)
Plants are being engineered for enhanced ethanol production; however, challenges remain in meeting the demand for bioenergy that is expected to double by 2030. Therefore, targeting carbon accumulation in the form of energy-dense oils in nonseed biomass is considered a superior alternative for bioenergy production. Although oils in the form of triacylglycerols (TAGs) are typically stored in seed tissues, various nonseed tissues such as mesocarp, tubers, stems and leaves also serve as storage tissues for TAG accumulation in plants. Moreover, the biomass of these tissues is generally far greater than seed biomass. In order to increase oil content in nonseed biomass for bioenergy and nutritional purposes, it is important to understand how such plants naturally accumulate TAG in nonseed tissues. Several molecular approaches, including transcriptomics, have been undertaken to elucidate the metabolic and regulatory mechanisms of carbon partitioning in oil-rich nonseed tissues. Such studies are expected to generate important transgenic tools that can be used to alter fatty acid metabolism and engineer plants to produce oil-rich biomass successfully. This review focuses on the potential of different oil-rich nonseed tissues and the strategies developed for enhancing oil biomass.
569

Microbial-Derived Oils and Value-Added Products: Biosynthesis and Applications for Biofuel Production

McCurdy, Alex T. 01 May 2015 (has links)
Efforts are being made to replace petroleum-derived fuels with biofuels in a cost competitive manner. It is apparent that the continued use of petroleum is futile as population and technological growth put increasing pressure on the demand for cheap energy and chemicals. Diminishing resources, civil unrest in the Middle East, and the impact of using petrochemicals on the environment are critical driving forces for research in generating renewable petroleum replacements that can be produced with a limited carbon-footprint. Today, biofuels are derived mostly from land-based plants, but their potential for displacing petroleum is limited due to the competition with available farmland used in food production as well as their relatively slow growth rates. Microorganisms as single-cell factories for the production of biofuels have a promising outlook since they do not compete with the food and feed supply and they lack the necessity of arable land used in cultivation. Viable biofuel production hinges upon obtaining sufficient biofuel yields, lowering the costs of processing, production of value-added products, and real-life evaluation of the produced fuels. Herein, the current understanding of microbial biochemistry as well as new findings in the role of ATP citrate lyase in lipid accumulation in oleaginous yeasts will be discussed. Also, description of a novel two-step process that generates biodiesel blends from oleaginous microbes will be given. To facilitate the viability of microbial biofuel production, concomitant production of heterologous lactoferrin using Kluyveromyces lactis will be described. Lastly, the real-life evaluation of these microbial biofuels in a diesel engine is reported. The focus of this dissertation will be directed towards addressing the issues related to microbial biofuel production in order to facilitate the viability of biofuel production such that petroleum use can be displaced by more renewable and clean methodologies.
570

DISCOVERY OF NOVEL MURAYMYCIN ANTIBIOTICS AND INSIGHT INTO THE BIOSYNTHETIC PATHWAY

Cui, Zheng 01 January 2018 (has links)
New antibiotics with novel targets or mechanisms of action are needed to counter the steady emergence of bacterial pathogens that are resistant to antibiotics used in the clinic. MraY, a promising novel target for antibiotic development, initiates the lipid cycle for the biosynthesis of peptidoglycan cell wall, which is essential for the survival of most, if-not-all, bacteria. MraY is an enzyme that catalyzes the transfer and attachment of phospho-MurNAc-pentapeptide to a lipid carrier, undecaprenylphosphate. Muraymycins are recently discovered lipopeptidyl nucleoside antibiotics that exhibit remarkable antibiotic activity against Gram-positive as well as Gram-negative bacteria by inhibiting MraY. We conducted a thorough examination of the metabolic profile of Streptomyces sp. strain NRRL 30473, a known producer of muraymycins. Eight muraymycins were isolated and characterized by a suite of spectroscopic methods, including three new members of muraymycin family named B8, B9 and C5. Muraymycins B8 and B9, which differ from other muraymycins by having an elongated fatty acid side chain, showed potent antibacterial activity against Escherichia coli ∆tolC mutant and pM IC50 against Staphylococcus aureus MraY. Muraymycin C5, which is characterized by an N-acetyl modification of the disaccharide’s primary amine, greatly reduced its antibacterial activity, which possibly indicates this modification is used for self-resistance. In addition to the discovery of new muraymycins, eleven enzymes from the biosynthetic pathway were functionally assigned and characterized in vitro. Six enzymes involved in the biosynthesis of amino ribofuranosylated uronic acid moiety of muraymycin were characterized: Mur16, a non-heme, Fe(II)-dependent α-ketoglutarate: UMP dioxygenase; Mur17, an L-threonine: uridine-5′-aldehyde transaldolase; Mur20, an L-methionine:1-aminotransferase; Mur26, a low specificity pyrimidine nucleoside phosphorylase; Mur18, a primary amine-requiring nucleotidylyltransferase; Mur19, a 5-amino-5-deoxyribosyltransferase. A one-pot enzyme reaction was utilized to produce this disaccharide moiety and its 2′′-deoxy analogue. Two muraymycin-modifying enzymes that confer self-resistance were functionally assigned and characterized: Mur28, a TmrB-like ATP-dependent muraymycin phosphotransferase, and Mur29, a muraymycin nucleotidyltransferase. Notably, Mur28 preferentially phosphorylates the intermediate, aminoribofuranosylated uronic acid, in the muraymycin biosynthetic pathway to produce a cryptic phosphorylated-dissacharide intermediate. Mur23 and Mur24 were assigned as two enzymes that modify the cryptic phosphorylated intermediate by attachment of an aminopropyl group. Mur24 catalyzes the incorporation of butyric acid into the phosphorylated-disaccharide. Following the incorporation, Mur23 catalyzes a PLP-dependent decarboxylation. Finally, Mur15, which belongs to the cupin family, is functionally assigned as a non-heme, Fe(II)-dependent α-ketoglutarate dioxygenase that catalyzes the β-hydroxylation of a leucine moiety in muraymycin D1 to form muraymycin C1. Mur15 can also hydroxylate the γ-position of leucine moiety to muraymycins with fatty acid chain in β-position.

Page generated in 0.2591 seconds