• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 10
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 20
  • 20
  • 12
  • 12
  • 11
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Fate of Electronically Excited States : Ultrafast Electron and Energy Transfer in Solvated Donor-Acceptor Systems

Wallin, Staffan January 2005 (has links)
Processes where a molecule absorbs visible light and then disposes of the excess energy via electron/energy transfer reactions have an important role both in nature (e.g. in photosynthesis) and in many technical applications (e.g. in photography and photovoltaics). This thesis uses different spectroscopical techniques, mainly ultrafast transient absorption, to study such processes. The thesis can roughly be divided into three parts. In the first part, donor-acceptor systems linked by different conjugated bridges are studied. The objective was to see to what extent the conjugated link could enhance excited state energy or electron transfer, via so-called superexchange processes. The studied links do enhance the electron/energy transfer but in the electron transfer study the resulting charge separated state was very short lived. The second part explores the possibility of constructing acceptor-donor-acceptor triads where the direction of electron transfer is determined by the electronic state of the donor. Direct evidence of electron transfer in the form of radical absorption was found from both the first and the second excited states of the donor. In the last part, two common chromophores were investigated by transient absorption anisotropy. In the case of Ru(bpy)32+, it was found that the complex lost all memory of the polarization of the exciting light much faster than what was previously thought. This means that electron transfer between ligands is normally not the rate limiting step in electron transfer reactions involving this complex. In the case of zinc porphyrin, it was seen that the measured anisotropy differed depending on which electronic state was excited suggesting differences in the degree of coherence.
52

Poly(norbornene) supported side-chain coordination complexes: an efficient route to functionalized polymers

Carlise, Joseph Raymond 11 April 2006 (has links)
This thesis begins with a brief overview of current strategies used in the synthesis of side-chain functionalizad polymers and materials. The discussion then focuses more explicitly on transition metal-based motifs and methodologies that are employed in polymer functionalization and continues with a more detailed overview of this field. The primary hypothesis that is addressed herein is that combining the versatility and strength of metal-ligand interactions with the efficiency and functional group tolerance of ROMP comprises a useful method of generating a variety of functionalized polymers and materials via side-chain metal coordination. Thus, the goal is to test this hypothesis by synthesizing functionalized polymers with a range of useful properties to demonstrate the relevance and importance of this methodology, by employing several different strategies to show the synthetic ease by which the materials can be realized. The strategies and methods discussed in the synthesis of side-chain functionalized polymers are divided into three subgroups: (1) pre-polymerization functionalization, in which all of the modifications take place on the monomer with polymerization as the last step, (2) post-polymerization functionalization, in which the polymer itself is subsequently modified, and (3) combinations of the first two strategies. It is shown that useful functional polymers and materials can be synthesized by any of the above strategies, and representative examples of each are given in both the introduction and in the body of work presented. Modes of functionalization are all based on transition metal coordination, and polymerizations are primarily carried out via ROMP. Metal coordination is shown to be a useful technique for functionalizing polymers, to creating supported emissive complexes, to modulating solution viscosity. Finally, conclusions are drawn regarding the various strategies presented herein, and potential future directions are discussed.
53

Chiral Pyridine-Containing Ligands for Asymmetric Catalysis. Synthesis and Applications

Rahm, Fredrik January 2003 (has links)
<p>This thesis deals with the design and syntheses of chiral,enantiopure pyridinecontaining ligands and their applicationsin asymmetric catalyis.</p><p>Chiral pyridyl pyrrolidine ligands and pyridyl oxazolineligands were synthesized and employed in thepalladium-catalysed allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate. Theinfluence of the steric properties of the ligands wereinvestigated.</p><p>Ditopic ligands, containing crown ether units as structuralelements, were synthesized and some of the ligands were used asligands in the palladiumcatalysed allylic alkylation of1,3-diphenyl-2-propenyl acetate with dimethyl malonate. A smallrate enhancement was observed, compared with analogous ligandslacking the crown ether unit, when these ditopic ligands wereused in dilute systems.</p><p>A modular approach was used to synthesize chiralenantiomerically pure pyridyl alcohols and C2-symmetric2,2’-bipyridines, with the chirality originating from thechiral pool. Electronic and steric properties of the compoundswere varied and they were used as ligands in theenantioselective addition of diethylzinc to benzaldehyde. Thesense of asymmetric induction was found to be determined by theabsolute configuration of the carbinol carbon atom. Theelectronic properties of the ligands had a minor influence onthe levels of enantioselectivity induced by the ligands.</p><p>Chiral pyridyl phosphinite ligands and pyridyl phosphiteligands were synthesized from the pyridyl alcohols andevaluated as ligands in palladiumcatalysed allylic alkylations.With the phosphinite ligands, the sense of chiral induction wasfound to be determined by the absolute configuration of theformer carbinol carbon atom. A kinetic resolution of theracemic starting material was observed with one of thephosphite ligands. Moderate enantioselectivities wereachieved.</p><p><b>Kewords:</b>asymmetric catalysis, chiral ligand, chiralpool, oxazoline, crownether, ditopic receptor, bipyridine,pyridyl alcohol, modular approach, P,Nligand, diethylzinc,allylic alkylation.</p>
54

Reaction Enthalpy and Volume Profiles for Excited State Reactions Involving Electron Transfer and Proton-Coupled Electron Transfer

Maza, William Antonio 01 January 2013 (has links)
Electron transfer, ET, and proton-coupled electron transfer, PCET, reactions are central to biological reactions involving catalysis, energy conversion and energy storage. The movement of electrons and protons in either a sequential or concerted manner are coupled in a series of elementary reaction steps in respiration and photosynthesis to harvest and convert energy consumed in foodstuffs or by absorption of light into high energy chemi-cal bonds in the form of ATP. These electron transfer processes may be modulated by conformational dynamics within the protein matrix or at the protein-protein interface, the energetics of which are still not well understood. Photoacoustic calorimetry is an estab-lished method of obtaining time-resolved reaction enthalpy and volume changes on the nanosecond to microsecond timescale. Photoacoustic calorimetry is used here to probe 1) the energetics and volume changes for ET between the self-assembled anionic uroporphy-rin:cytochrome c complex and the role of the observed volume changes in modulating ET within the complex, 2) the enthalpy and volume change for the excited state PCET reac-tion of a tyramine functionalized ruthenium(II) bis-(2,2'-bipyridine)(4-carboxy-4'-methyl-2,2'-bipyrine) meant to be a model for the tyrosine PCET chemistry carried out by cyto-chrome c oxidase and photosystem II, 3) the enthalpy and volume changes related to car-bon monoxide and tryptophan migration in heme tryptophan catabolic enzyme indoleam-ine 2,3-dioxygenase.
55

Synthesis and Applications of Dynamic Multivalent Nanostructures

Neranon, Kitjanit January 2015 (has links)
This thesis focuses on the design, synthesis and development of dynamic multivalent nanostructures such as supramolecular dendrimers, liposomes and gold-functionalized nanostructures. These structures can be used for drug delivery and molecular sensing applications. This thesis is divided into three parts: In part one, a general introduction to self-assembly, dynamic systems, metalligand exchange, nanostructured dendritic scaffolds, liposomes and gold nanostructures is given. In part two, a microwave approach is presented as an efficient method for the regioselective deuteration of bipyridine scaffolds. Dynamic systems based on transition metal-bipyridine coordination complexes were investigated. The compositional self-adaptation and kinetics of these dynamic systems were successfully assessed by ESI-MS. Based on this amphiphilic dendrimers/metallodendrimers were also designed and synthesized via  a convergent strategy. Their ability to self-assemble into supramolecular assemblies and their controlled disassembly was effectively demonstrated. In part three, two types of drug delivery systems based on dynamic multivalent nanostructures of glycodendrimers/metalloglycodendrimers and drugpresenting liposomes were developed. The dynamic self-assembly of these architectures into supramolecular nanostructures with site-specific functionality through interacting carbohydrate or cholesterol moieties was assessed. The host-guest interaction/encapsulation and controlled release with external stimuli were studied using a fluorescent probe, as well as selected drug molecules. The antibacterial property of the drug delivery systems was also evaluated, demonstrating an enhanced bactericidal activity. A new, rapid and simple approach for the functionalization of plasmonic gold nanostructured surfaces was also developed. The optical performance and light-specific sensitivity of the fluorescent probe on the resulting nanostructures were also presented. / <p>QC 20151119</p>
56

Porphyrin-based [3]- and [4]rotaxanes : towards an adaptable molecular receptor

Roche, Cécile 20 April 2012 (has links) (PDF)
Rotaxanes and porphyrins are two particularly active fields of research in chemistry. However,molecules that combine the interesting properties of these types of structures are not so common. In this thesis we describe new porphyrin-based multi-rotaxanes, whose syntheses constitute interesting challenges.Porphyrins linked to two or four coordinating macrocycles were synthesised. The "gathering-andthreading" effect of copper(I) was used to thread molecular rods through the rings; the subsequent introduction of stoppers led to the formation of rotaxanes. In the case of the porphyrinic bis-macrocycle a [4]rotaxane was obtained. Host/guest complexation studies with rigid nitrogen ligands showed that the rotaxane behaves as a distensible molecular receptor that can adopt an "inflated" or "deflated" conformation and adjust its shape to the size of the guest. In the case of the porphyrinic tetra-macrocycle the formation of a [3]rotaxane of novel architecture was observed.The synthesis of a new, more rigid bis-macrocycle is in progress. This compound will be used for the construction of a [4]rotaxane that could act as a molecular press able to change the conformation of a guest substrate by compression.
57

Determinação espectrofotométrica de cobalto na presença de zinco, manganês e níquel / Spectrophotometric determination of cobalt in the presence of nickel, manganese and zinc

Simone Jaconetti Ydi 29 April 1994 (has links)
O ion Co2+, quando coordenado com ligante bipiridina (bipy), pode ser reduzido por ataque químico de redutores fortes, como NaBH4 (boroidreto de sódio), formando [Co(I) (bipy)3]+, azul. Este complexo pode ser determinado espectrofotometricamente por conferir um espectro na região do visível com &#955;max = 600 nm (&#949; = 5,8x103 L.mol-1 .cm-1). Somente cobalto estabiliza-se na forma de [M(i)(bipy)3]+, enquanto que outros metais como Mn, Ni e Zn reduzem-se ao estado metálico. A estabilização do NaBH4 foi conseguida em DMF (N,N´-dimetilformamida). Foi utilizado o método da adição de padrão, condicionando-se o sistema ao meio H20:DMF na proporção de 2:1 (v/v) , T = 25&#176;C, excesso de ligante e excesso de 240 vezes de NaBH4. Níquel interfere acima de 2,5x10-5 mol.L-1 , manganês acima de 5,0x10-5 mol.L-1 e zinco acima de 1,0x10-4 mol.L-1, quando CCO2+ = 5,0x10-5 mol.L-1. Este procedimento foi realizado em amostra NBS167, encontrando-se valores 1% menores que o valor certificado. / The cobalt (II) ion complexed with bipyridine (bipy) can be reduced chemically by reductant like sodium boronhydride yelding blue [Co(I)(bipy) 3]+. This complex can be determined spectrophotometrically using visible spectra at &#955; = 600 nm (&#949; = 5,8x103 L.mol-1 . cm-1). When Mn, Ni and Zn are present togheter with cobalt (II) and the mixture is complexed by bipyridine and furtherly treated by boronhydride, the ions of niekel, manganese and zinc are reduced to fundamental state remaining [Co(I)(bipy)3]+ soluble complex. The stabilization of NaBH4 was achieved in N,N\'-dimetilformamide (DMF). Interference studies showed for [Co2+] = 5,0x10-5 mol.L-1, 2:1 of H20:DMF, t = 25&#176;C, excess presence of bipyridine ligand and 240 times excess of NaBH4 : nickel start interfere at 2,5x10-5 mol.L-1, manganese at 5,0x10-5 mol.L-1 and zinc at 1,0x10-4 mol.L-1. The procedure was apllied at a cobalt alloy NBS167 using standard addition method and the recovery was 1% less than certificated value.
58

Síntese, estudos espectroscópicos e estruturais de complexos contendo o ligante 4,4’- bipiridina, o ânion barbiturato e os íons metálicos da primeira série de transição (Fe2+, Co2+, Ni2+, Cu2+ e Zn2+)

Garcia, Humberto Costa 30 March 2009 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-07-20T17:37:01Z No. of bitstreams: 1 humbertocostagarcia.pdf: 7846659 bytes, checksum: 34217a22d6ed991eb248916aa4a1c452 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-09T12:51:50Z (GMT) No. of bitstreams: 1 humbertocostagarcia.pdf: 7846659 bytes, checksum: 34217a22d6ed991eb248916aa4a1c452 (MD5) / Made available in DSpace on 2017-08-09T12:51:50Z (GMT). No. of bitstreams: 1 humbertocostagarcia.pdf: 7846659 bytes, checksum: 34217a22d6ed991eb248916aa4a1c452 (MD5) Previous issue date: 2009-03-30 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho descreve a síntese e caracterização de cinco novos complexos de metais de transição de fórmula geral MB2Bipi . 10H2O (onde M = Fe2+, Co2+, Ni2+, Cu2+ e Zn2+, B refere-se ao ânion barbiturato e Bipi a 4,4’-Bipiridina). Para caracterização dos compostos foram utilizadas as técnicas de análise elementar (CHN), análise térmica (TG/DTA), espectroscopia vibracional (Raman e infravermelho) e eletrônica (visível/Reflectância) e difração de raios X de monocristal. Os complexos FeB2Bipi . 10H2O (1), CoB2Bipi . 10H2O (2), NiB2Bipi . 10H2O (3), CuB2Bipi . 10H2O (4) e ZnB2Bipi . 10H2O (5) formam uma unidade básica polimérica, onde Fe(II), Co(II) e Zn(II) são isomorfos com grupo espacial P6422, diferentes de Ni(II) e Cu(II) também isomorfos, mas pertencentes ao grupo espacial P6522; no entanto todos os compostos apresentam a mesma estrutura molecular. O sítio metálico encontra-se em uma geometria octaédrica levemente distorcida, coordenado por dois átomos de nitrogênio do anel piridil e outros quatro átomos de oxigênio provenientes das moléculas de água. Cada estrutura exibe uma cadeia covalente linear [M(Bipi)(H2O)4]2+ unidimensional, a qual interage por interações de hidrogênio com o ânion barbiturato e moléculas de água de cristalização resultando em um arranjo tridimensional. A análise das estruturas dos complexos de Ni2+ e Cu2+ mostram uma interação de hidrogênio bidimensional formada por quatro ânions barbituratos e duas moléculas de água de cristalização, que pode ser considerada um hóspede enquanto a cadeia [M(bipi)(H2O)4]2+ unidimensional pode ser considerada o hospedeiro em uma intrigante e interessante estrutura. Os espectros vibracionais dos compostos são muito similares, e estão de acordo como os dados do cristal. Em todos os espectros na região do infravermelho, uma banda em torno de 1690 cm-1 é observada, atribuída ao estiramento CO [νCO] do ânion barbiturato. No espectro Raman as mais importantes bandas referentes ao ligante 4,4’bipiridina estão localizados em 1616, 1290 e 1020 cm-1, atribuídas aos modos νCC/CN, νring + δCH e νring respectivamente. Para caracterização do ânion barbiturato uma banda Raman de média intensidade é observada em torno de 680 cm-1, atribuído ao modo de respiração do anel. O sucesso na síntese dos compostos (1), (2), (3), (4) e (5) demonstra que a mistura de ligantes pode fornecer múltiplas forças de ligação, como covalente, eletrostática e as interações de hidrogênio, favorecendo a ordenação de uma arquitetura supramolecular multidimensional. Além disto, o uso do ânion barbiturato, o qual atua como doador de hidrogênio pelos grupos NH e CH, e aceptor pelo grupo CO, contribui com uma nova característica para expandir rapidamente a área da química supramolecular no nosso grupo de pesquisa. / This work describes the synthesis and characterization of five new transition metal complexes of general formula MB2Bipy.10H2O (where M = Fe2+, Co2+, Ni2+, Cu2+ and Zn2+, B is barbiturate anion and Bipy is 4,4’-bipyridine) . Several physical and spectroscopical techniques were used to characterize the compounds, such as elemental analysis (CHN), thermal analysis (TG/DTA), vibrational (Raman and infrared) and electronic (absorption and reflectance in the visible region) spectroscopy as well as single crystal X ray diffraction analysis. The FeB2Bipi . 10H2O (1), CoB2Bipi . 10H2O (2), NiB2Bipi . 10H2O (3), CuB2Bipi . 10H2O (4) and ZnB2Bipi . 10H2O (5) complexes give rise to polymeic basic units, where Fe(II), Co(II) and Zn(II) compounds are isomorphous belonging to P6422 space group, different from the Ni(II) and Cu(II) compounds which are also isomorphous, belonging to P6522 space group; however, all compounds present the same molecular structure. In each compound the metal site appears in a distorted octahedral geometry, coordinated by two pyridine nitrogen atoms and also to four oxygen atoms from the coordinated water molecules. Each structure shows a covalent linear [M(Bipy)(H2O)4]2+ one-dimensional chain , which interacts by hydrogen bond with the barbiturate anion and the crystallization waters, resulting in a tridimensional arrangement. The analysis of the Ni2+ and Cu2+ complexes structures shows flexible bidimensional hydrogen bonds networks being constructed by the four barbiturate anions and the two crystallization water molecules; this structure may be deemed to be the host, while the robust 1D [M(bipy)(H2O)4]2+ chains may be deemed to be the guest, in a very intriguing and interesting structure. The vibrational spectra of the compounds are very similar, in agreement to the crystallographic data. In all infrared spectra a medium intensity band at 1690 cm-1 has been observed, assigned to the CO stretch of the barbiturate anion. In the Raman spectra the most important bands referring to 4,4’-bipyridine ligand are the ones at 1616, 1290 and 1020 cm-1, assigned to νCC/CN, νring + δCH and νring modes, respectively. For characterization of barbiturate anion one medium Raman signal is observed around 680 cm-1 assigned to the ring breathing mode. The successful synthesis of the new (1), (2), (3), (4) and (5) compounds demonstrates that the introduction of mixed ligands may provide multiple binding forces such as coordinated covalent, electrostatic and hydrogen bonding interactions, which may endow an enormous potential for assembling multidimensional supramolecular architectures. Furthermore, the use of the barbiturate species, which act as H-donors by the NH and CH moieties, and H-acceptors by the CO groups, can contribute through new features and arrays to the rapidly expanding area of supramolecular chemistry by our research group.
59

Tuning proton behavior in a ternary molecular complex.

Thomas, L.H., Blagden, Nicholas, Gutmann, M.J., Kallay, A.A., Parkin, A., Seaton, Colin C., Wilson, C.C. 06 1900 (has links)
No / The multicomponent ternary complex of 4-dimethylaminobenzoic acid (4-DABA), 3,5-dinitrobenzoic acid (3,5-DNBA), and 4,40-bipyridine (BIPY) has been studied by variable temperature X-ray and neutron diffraction. Proton disorder is observed within the 4-DABA homodimers present and quantitatively evaluated from neutron data. The effect of the crystal environment and in particular the pyramidalization of the nitrogen atom within the 4-DABA molecule and the consequential effect on the presence of hydrogen atom disorder are discussed with reference to the previously determined pure 4-DABA structure and the binary cocrystal with 3,5-DNBA.
60

Synthesis and characterization of catalysts for photo-oxidation of water / Conception et caractérisation de nouveaux catalyseurs pour la photolyse de l’eau

Sheth, Sujitraj 11 December 2013 (has links)
La photosynthèse artificielle est considérée comme étant un atout capable de fournir des carburants alternatifs et renouvelables par conversion et stockage de l'énergie solaire. Une approche prometteuse consiste en un développement de photo-catalyseurs moléculaires inspirés par des enzymes photosynthétiques naturelles. La première partie de cette thèse concerne les modèles artificiels du photosystème II (qui catalyse l'oxydation d'eau), composé d'un chromophore et d’un relais d’électrons comme équivalent synthétique correspondant à l'ensemble P680-TyrZ/His190 du photosystème II. Trois complexes ruthénium polypyridyl - imidazole - phénol avec un groupe méthylique à différentes positions sur l'anneau phénolique (Ru-xMe) ont été synthétisés et caractérisés par des méthodes électrochimiques et photophysiques. L’augmentation, comparée aux complexes précédents, du potentiel redox des groupes phénols (0.20 V->0.9 V par rapport à l’électrode de ferrocène) rend leur fonction de relais d’électron dans un système photocatalytique pour l'oxydation d'eau thermodynamiquement possible. Des études d’absorption transitoire ont révélé que le transfert d’électron intramoléculaire est rapide (5-10 µs dans solvant aprotique et < 100 ns dans l'eau) malgré la faible force motrice, mettant en evidence l'importance de la liaison hydrogène entre le phénol et le groupe imidazole. Les légères différences entre les trois complexes Ru-xMe ainsi que l’étude de l'effet de bases externes nous ont permis d’établir un mécanisme dans laquelle l'imidazole est impliqué dans une réaction de transfert de proton en cascade. L'acceptation du proton phénolique durant l'oxydation du ligand rend son deuxième site azote plus acide et seulement la déprotonation de ce dernier bascule l’équilibre réactionnel complétement vers l'oxydation du ligand. La deuxième partie de cette thèse consiste en la synthèse d’un complexe chromophore-tryptophane en utilisant une approche de chimie dite « click ». On a montré que l'oxydation, induite par la lumière, du Trp au sein du complexe Ru-tryptophane suit un mécanisme ETPT. Selon le pH, les radicaux du tryptophane (Trp• ou TrpH•⁺) ont été détectés et les mesures spectrales à différents temps ont montrés la transition entre les deux formes radicalaires. La déprotonation du radical dépend de la concentration d'eau assurant la fonction d’accepteur de proton. La dernière partie de la thèse concerne nos efforts à lier, par une liaison covalente, une unité catalytique au module de chromophore- relais électronique caractérisé précédemment. L'approche de chimie « click » n’était pas efficace pour l’obtention de l’assemblage photocatalytique final. Donc, l'activation biomoléculaire d'un catalyseur Mn salen a été effectuée et la formation de l’espèce Mn(IV) a été observée. Etant une étape vers l'utilisation de ces types de photocatalyseurs dans une cellule photoélectrochimique, un chromophore [Ru(bpy)₃]²⁺ avec des groupes d’ancrage phosphonate a été synthétisé (Ru-phosphonate) et greffé sur la surface méso-poreuses d'un semi-conducteur de TiO₂ pour effectuer des mesures du photocourant. / Artificial photosynthesis is often considered to have great potential to provide alternative, renewable fuels by harvesting, conversion and storage of solar energy. One promising approach is the development of modular molecular photocatalysts inspired by natural photosynthetic enzymes. The first part of this thesis deals with artificial mimics of the water oxidizing photosystem II composed of a chromophore and an electron relay as synthetic counterpart of the P680-TyrZ/His190 ensemble of photosystem II. Three ruthenium polypyridyl – imidazole - phenol complexes with varying position of a methyl group on the phenol ring (Ru-xMe) were synthesized and characterized by electrochemical and photophysical methods. As an improvement compared to earlier complexes the increased redox potential (~0.9 V vs. Ferrocene) of the phenol groups makes their function as an electron relay in a photocatalytic system for water oxidation thermodynamically possible. Time-resolved absorption studies revealed fast intramolecular electron transfer (<5-10 µs in aprotic solvent and <100 ns in water) despite the low driving force and the importance of the hydrogen bond between the phenol and the imidazole group was put in evidence. Slight differences between the three Ru-xMe complexes and investigation of the effect of external bases allowed to derive a mechanistic picture in which the imidazole is involved in a “proton domino” reaction. Accepting the phenolic proton upon ligand oxidation (within the H-bond) renders its second nitrogen site more acidic and only deprotonation of this site pulls the overall equilibrium completely towards oxidation of the ligand. Another part of this thesis comprises a chromophore-tryptophan construct synthesized using a click chemistry approach. Light-induced oxidation of Trp in this Ru-tryptophan complex was shown to follow ETPT mechanism. Depending on the pH conditions tryptophan radicals, either Trp• or TrpH•⁺ were detected and spectral measurement at different time showed the transition between the two forms. Deprotonation of the radical was dependent on the concentration of water as proton acceptor. Later part of the thesis deals with efforts to covalently bind a catalytic unit to the previously characterized chromophore-electron relay module. The click chemistry approach was not successful to obtain the final photocatalytic assembly. Therefore bimolecular activation of a Mn salen catalyst was performed and formation of Mn(IV) species was observed. As a step towards utilization of these types of photocatalysts in a photoelectrochemical cell a [Ru(bpy)₃]²⁺ chromophore with phosphonate anchoring groups (Ru-Phosphonate) was synthesized and grafted on the surface of a TiO₂ mesoporous semiconductor surface anode to perform photocurrent measurements.

Page generated in 0.0551 seconds