351 |
'Attract and reward' : combining a floral resource subsidy with a herbivore-induced plant volatile to enhance conservation biological controlOrre, G. U. S. January 2009 (has links)
Experiments were conducted to assess whether a concept termed 'attract and reward' (A&R) could enhance conservation biological control (CBC). In A&R, a synthetically-produced herbivore induced plant volatile (HIPV) ('attract') is combined with a floral resource ('reward'). It is anticipated that the two will work synergistically attracting natural enemies into the crop ('attract') and maintaining them within the crop ('reward'). The study system consists of brassica, the most commonly occurring brassica herbivores, their natural enemies and higher order natural enemies. The HIPV deployed is methyl salicylate (MeSA) and the floral resource is buckwheat Fagopyrum esculentum. The aim of the first two field experiments, in 2007 and 2008, was to evaluate the effects of MeSA and MeSA combined with buckwheat (A&R) on the abundance of arthropods from three trophic levels. In 2007, a field experiment was conducted using MeSA alone. The mean abundance of the leafmining fly Scaptomyza flava (trophic level 2), the diamondback moth (trophic level 2)(DBM) parasitoid Diadegma semiclausum (trophic level 2) and the hoverfly Melangyna novaezealandiae (trophic level 3) was increased in MeSA-treatments by up to 300% and for the brown lacewing parasitoid Anacharis zealandica a maximum mean increase of 600% was recorded. Significantly more females of the D. semiclausum and M. novaezealandiae were attracted to MeSA than males. When A&R was deployed in 2008, were arthropods from the third and fourth trophic levels affected. For none of the species was there a synergistic effect between 'attract' and 'reward' on their abundance. The brown lacewing Micromus tasmaniae (trophic level 3), two parasitoids of DBM and one of cabbage white butterfly Pieris rapae (trophic level 2) increased significantly in treatments with buckwheat. The hoverfly Melanostoma fasciatum (trophic level 3) was significantly more abundant in treatments with MeSA, but significantly less abundant in treatments with buckwheat. The effect of MeSA on the fourth trophic level parasitoid Anacharis zealandica (trophic level 4) was inconsistent between years. Here it significantly decreased its abundance, while treatments with buckwheat increased it. Significantly fewer male than female D. semiclausum were attracted to MeSA only treatments. These experiments show that MeSA and buckwheat can have unwanted effects on arthropod abundance which may disrupt CBC. To assess the effect of A&R on CBC a further field experiment evaluating herbivore densities, predation, parasitism and hyper-parasitism rates was conducted. The only effect was significantly higher aphid parasitism in treatments with MeSA. Based on the results from the field experiments it remained unclear whether it was MeSA or a blend of volatiles produced by MeSA-induced host plants that were attractive to the arthropods. An olfactory experiment was conducted to evaluate if the aphid parasitoid Aphidius colemani can be attracted to two different concentrations of MeSA diluted in Synertrol oil. Significantly more parasitoids were attracted to 2.0% MeSA than to air while the parasitoid did not respond to the 0.5% concentration. These results indicate that A&R has potential as a CBC technique, as long as any unwanted side effects can be managed. Although there were no synergistic effects between 'attract' and 'reward' on the abundance of individual natural enemies, combining MeSA and buckwheat could still be beneficial because the two techniques increase the abundance of different natural enemies.
|
352 |
Determining seed vigour in selected Brassica speciesLeeks, C. R. F. January 2006 (has links)
Variables for the accelerated ageing (AA) test, methods for reducing fungal contamination during the AA test, using the conductivity test as a vigour test, the effect of seed size on seed vigour and the relationship between laboratory test results and field perfonnance in selected Brassica spp were investigated. In the first experiment, three seed lots of turnip rape hybrid (B. rapa x campestris), turnip (B. campestris) and forage rape (B. napus); and seven seed lots of Asian rape (B. napus), six seed lots of Asian kale (B. oleraceae var. alboglabra L.) and five seed lots of choisum (B. rapa var. pekinensis) with germinations above 90% were aged at two different temperatures (41 and 42°C ± 0.3°C) and three ageing times (24, 48 and 72 ± 15 minutes). The second experiment was divided into three sections. In the first, the same seed lots and species were aged at one temperature (41°C) and time (72 h), but either 40 ml of saturated salts; KCl (83%RH), NaCl (76%RH), NaBr (55%RH); or distilled water (96%RH) were used as the ageing solutions. In the second, one turnip rape hyprid seed lot was aged at three temperatures (41, 42 and 45°C) and two times (72 and 96h), again using the three saturated salts and distilled water as ageing solutions. In the third, three turnip rape hybrid seed lots and three Asian kale seed lots were surface sterilised (1 % sodium hypochlorite) prior to ageing at one temperature (41°C) and time (72 h). In the third experiment, the same species and seed lots used in experiment one at their original seed moisture content (SMC) were tested for conductivity after soaking in deionised water for 4, 8, 12, 16, 20 and 24 h. They were then re-tested after the SMC had been adjusted to 8.5%. In the fourth experiment, three seed lots of forage rape and three seed lots of Asian kale were graded into three seed size categories; large (retained on a 2.0 mm screen), medium (retained on a 1.7 mm screen) and small (passed through a 1.7 mm screen). Graded seeds were then tested for standard germination, AA (41°C/48 h) and conductivity (measured at 16 and 24 h). In the final experiment, the relationships between laboratory tests for the six species (each consisting of three seed lots), field emergence from three sowings, and cold room emergence were evaluated. Both time and temperature influenced post-AA germination. Increasing the ageing period from 48 to 72 hours at 41°C, and 24 to 48 hours at 42°C resulted in decreased mean germination percentage for all species but not always clear separation of seed lots. While there were sometimes few differences between ageing at 41°C and 42°C, the former is preferred because it is already the temperature used for other species. For Asian rape, choisum and turnip, the previously recommended testing conditions of 41°C/72 h provided good seed lot separation, but for Asian kale and turnip rape hybrid, AA testing at 41°C/48 h provided better results. Seed moisture content after ageing ranged from 29-37% depending on species. Fungal growth on seeds during the ageing period appeared to reduce post-ageing germination in some seed lots . Substituting saturated salts for distilled water did not stress seed lots in the AA test, due to the lowered RH%, the exception being seed lots 1210 and 1296. For forage and Asian species, seed lot germination mostly remained above 90% when aged for 72 h at lowered RH%. Increasing the ageing duration from 72 to 96 hours resulted in some decreases in post-AA germination but no clear separation of seed lots. Surface sterilising the seeds prior to the AA test resulted in a lower incidence of contaminant fungi which was associated with a lower percentage of abnormal seedlings. The conductivity test was mostly able to identify vigour differences among forage and Asian vegetable brassica seed lots. Differences in conductivity readings were observed among seed lots in all species. Increasing the period of imbibition resulted in increased conductivity from most seed lots but radicle emergence occurred after 16-20 h of imbibition. Variation was observed in the time to reach 95% maximum of the imbibition curve for most species. Conductivity readings at 16 h would avoid possible influences of radicle emergence on results. Adjusting the SMC to 8.5% resulted in reduced variation in conductivity among replicates of seed lots, due to a reduction in imbibition damage. Seed size had a significant effect on both post-AA germination and conductivity results. In forage rape, large size seeds had higher post-AA germination cf. medium cf. small size seeds. In Asian kale, large size seeds had higher post-AA germination compared with small size seeds. For both forage rape and Asian kale, large size seeds had lower conductivity readings cf. small size seeds. The correlation analyses demonstrated significant relationships between AA testing and field emergence parameters (percentage emergence, emergence index and emergence rate). Significant relationships were also observed between conductivity testing and these field emergence parameters. Based on the correlation analysis, AA testing at 41°C/48 hand/or 42°C/48 h could be recommended to be used as an AA test for turnip and Asian rape; and 41°C/48 hand/or 41°C/72 h for Asian kale and choisum. Based on the correlation analysis, conductivity testing at 16 h can be used to predict the field emergence potential of forage and Asian vegetable seed lots. Vigour tests were consistently able to provide better indicators of field perfonnance than the standard germination test, although these relationships did vary with the different field sowings.
|
353 |
Untersuchungen zum Blatt- und Wurzelmetabolismus sowie zum Phloem- und Xylemtransport in Zusammenhang mit der Stickstoff-Effizienz bei Raps (Brassica napus L.) / Study on nitrogen efficiency of oilseed rape (Brassica napus L.) in relation to the metabolism in leaves and roots and to the transport in phloem and xylemZhou, Zewen 02 November 2000 (has links)
No description available.
|
354 |
Lethal and sublethal effects of insecticides on mortality, migration and host searching behaviour of tersilochine parasitoids on winter oilseed rape / Letale und subletale Effekte von Insektizidbehandlungen auf Mortalität, Migration und Wirtssuchverhalten der Parasitoide von RapsschädlingenNeumann, Nadine 26 January 2010 (has links)
No description available.
|
355 |
Geltonsėklių vasarinių rapsų (Brassica napus L.) kūrimas biotechnologiniais ir tradiciniais selekcijos metodais / Development of yellow-seeded rapeseed (Brassica napus L.) by biotechnological and cklassical breeding methodsKuprienė, Ramunė 21 November 2006 (has links)
Genotypes of rapeseeds producing yellow seeds were not found in nature. Breeders yellow-seeded rapeseeds have been developed applying different combinations of interspecific crosses. In the Laboratory of Genetics-Biotechnology at the Lithuanian Agricultural University, yellow-seeded spring rapeseeds were developed for the first time without interspecific crosses (Burbulis, 2001). All cultivars of yellow-seeded rapeseed have one essential drawback – unblocking of pigmentation takes place in other generations and seeds of different colours (yellowish brown, brown or black) are formed. Breeders, working with the cultivars of yellow-seeded rapeseed, admit that environmental temperature is one of the factors limiting the manifestation of the trait.
|
356 |
Response of local wild mustard (Brassica species) landraces to water stress.Mbatha, Thobile Precious. January 2010 (has links)
Wild mustard is an indigenous leafy vegetable. Its use is limited by a lack of knowledge of its agronomy. However, it is a rich source of nutrients and other minerals. Nowadays, the use of indigenous crops has been replaced by exotic crops. Climate change is affecting agricultural productivity. South Africa is a water scarce country with uneven rainfall distribution. Therefore, studies on water stress effects on plant growth were promoted by the Water Research Commission and the University of KwaZulu-Natal to understand plant responses to water stress for commercial and subsistence farming. The objective of the study was to characterise local wild mustard cultivars morphologically and physiologically with respect to production, and for the purposes of identifying their drought tolerance. Three experiments were conducted at the University of KwaZulu-Natal in order to evaluate the responses of local wild mustard cultivars to water stress. Seeds of wild mustard cultivars were characterised according to seed coat colour. Seed quality was determined by a standard germination test. Vigour was then tested using electrolyte conductivity. Seeds were sown in seedling trays under two water regimes of 25% field capacity (FC) and 75% (FC) on pine bark growing media. The experiment was terminated at 21 days when root and shoot lengths were measured. The effect of water stress on protein content and seedling growth parameters was determined.
Soil was collected from the University of KwaZulu-Natal Research Farm for a pot trial. Seeds of wild mustard were sown in 81 pots, each filled with 2 kg of soil, under three water regimes (25% FC, 50% FC and 75% FC). Pots were maintained at the
corresponding field capacity level by re-weighing the pots, three times a week. Measurements of plant height and leaf number were recorded weekly. The experiment was terminated at the flowering stage. At the end of the experiment, plant growth parameters (plant height, leaf area and number, dry and fresh mass) were measured in order to evaluate the effects of water stress at the vegetative stage. A field trial was conducted at the University of KwaZulu-Natal Ukulinga Research Farm in Pietermaritzburg. The experiment was conducted during the winter and spring of 2009. A completely randomised design was used for non-irrigated and irrigated (25 mm/week) trials. Emergence was measured as well as plant height and leaf number. Plant growth parameters were also measured at the end of the experiment. Leaf samples were taken for proline determination.
There was a significant interaction (p<0.05) between seed colour, landraces and days to germinate with respect to germination capacity. Isaha and Masihlalisane landraces showed higher germination percentages than Kwayimba. There was also a significant interaction (p<0.05) between landraces and seed colour with respect to electrolyte conductivity. Lighter seeds of wild mustard landraces showed higher solute leakage. Isaha and Masihlalisane had higher solute leakage than Kwayimba. Significant interactions (p<0.05) between landraces and field capacity with respect to emergence, leaf number, root and shoot length and total proteins were also observed. Isaha and Masihlalisane showed higher emergence than Kwayimba. Leaf number was reduced for all landraces under water stress. Total protein content was high in black seeded landraces under water stress. There was a significant interaction (p<0.05) between landraces and field capacity with respect to seedling fresh and dry
masses. Under moderate water stress conditions, Isaha and Masihlalisane showed increased biomass accumulation. There were highly significant differences (P<0.001) in plant height, leaf area, fresh and dry mass with respect to planting date. Plants performed significantly (p<0.05) better in spring than in winter. Isaha and Masihlalisane performed significantly (p<0.05) better than Kwayimba. There was a highly significant interaction (p<0.001) between landrace and irrigation treatments with respect to proline accumulation. Under water stress, Kwayimba black seeded landrace accumulated more proline. It is concluded that light-coloured seeds of wild mustard landraces were associated with good seed quality. Masihlalisane brown seeds have good early seedling establishment. Kwayimba black seeds showed tolerance to water stress through accumulation of proteins. Isaha and Masihlalisane showed an increase in biomass accumulation under moderate water stress. Water stress tolerance in some of wild mustard landraces was negatively correlated with proline accumulation. Masihlalisane brown type can grow well, with good yields, under water stress. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
357 |
Agronomic performance of wild mustard in an intercropping with green beans.Phiri, Nathan. January 2005 (has links)
Wild mustard (Brassica spp.) is used as an edible wild leafy vegetable by indigenous people
in South Africa. The potential of wild leafy vegetables in agriculture is not well understood,
because there is generally no agronomic research on their production practices. The objective
of this study was to examine the performance of three wild mustard species (herein referred
to as I, K and M) over four cropping seasons in an intercropping system with green beans
(Phaseolus vulgaris L. cv. Imbali). The crops were grown with and without organic fertiliser
under dryland conditions at two sites (The University of KwaZulu-Natal Research Farm,
Ukulinga and in a rural area of Umbumbulu, KwaZulu-Natal within the farmers' locality)
during autumn, winter, spring and summer of 2004 to 2005. Plant development (leaf number,
plant height and fresh biomass) during the first six weeks after sowing and seed yield were
used to determine agronomic performance of each species. Nutrient status of the rhizosphere
soil was determined at 42 days after sowing for each species to determine what effect
growing the species would have on mineral availability. Wild mustard production
significantly (P < 0.01) performed better at Ukulinga than Umbumbulu. Polyculture was
beneficial for wild mustard leaf accumulation and green bean production as determined by
land equivalent ratios greater than one for all species combinations, regardless of fertiliser
application. Cool environmental conditions occurring in autumn and spring were more
favourable (P < 0.05) for wild mustard and green bean biomass accumulation than summer
and winter conditions. However, wild mustard seed yield was highest in winter compared
with autumn and spring, and there was no measurable seed production in summer. Soil
analysis results at 42 days after sowing showed an increase in P, K, Cu and Mg in the
rhizosphere of wild mustard without organic fertiliser. Polyculture improved Zn, Cu, Mn and
K in wild mustard leaf tissue. It is concluded that wild mustard can be grown as a leafy
vegetable throughout the year, but it requires cool environmental conditions to enhance seed
yield. Species M significantly yielded better biomass and seeds than species I and K during
all the seasons. However, species K performed the least in all aspects. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
|
358 |
'Attract and reward' : combining a floral resource subsidy with a herbivore-induced plant volatile to enhance conservation biological controlOrre, G. U. S. January 2009 (has links)
Experiments were conducted to assess whether a concept termed 'attract and reward' (A&R) could enhance conservation biological control (CBC). In A&R, a synthetically-produced herbivore induced plant volatile (HIPV) ('attract') is combined with a floral resource ('reward'). It is anticipated that the two will work synergistically attracting natural enemies into the crop ('attract') and maintaining them within the crop ('reward'). The study system consists of brassica, the most commonly occurring brassica herbivores, their natural enemies and higher order natural enemies. The HIPV deployed is methyl salicylate (MeSA) and the floral resource is buckwheat Fagopyrum esculentum. The aim of the first two field experiments, in 2007 and 2008, was to evaluate the effects of MeSA and MeSA combined with buckwheat (A&R) on the abundance of arthropods from three trophic levels. In 2007, a field experiment was conducted using MeSA alone. The mean abundance of the leafmining fly Scaptomyza flava (trophic level 2), the diamondback moth (trophic level 2)(DBM) parasitoid Diadegma semiclausum (trophic level 2) and the hoverfly Melangyna novaezealandiae (trophic level 3) was increased in MeSA-treatments by up to 300% and for the brown lacewing parasitoid Anacharis zealandica a maximum mean increase of 600% was recorded. Significantly more females of the D. semiclausum and M. novaezealandiae were attracted to MeSA than males. When A&R was deployed in 2008, were arthropods from the third and fourth trophic levels affected. For none of the species was there a synergistic effect between 'attract' and 'reward' on their abundance. The brown lacewing Micromus tasmaniae (trophic level 3), two parasitoids of DBM and one of cabbage white butterfly Pieris rapae (trophic level 2) increased significantly in treatments with buckwheat. The hoverfly Melanostoma fasciatum (trophic level 3) was significantly more abundant in treatments with MeSA, but significantly less abundant in treatments with buckwheat. The effect of MeSA on the fourth trophic level parasitoid Anacharis zealandica (trophic level 4) was inconsistent between years. Here it significantly decreased its abundance, while treatments with buckwheat increased it. Significantly fewer male than female D. semiclausum were attracted to MeSA only treatments. These experiments show that MeSA and buckwheat can have unwanted effects on arthropod abundance which may disrupt CBC. To assess the effect of A&R on CBC a further field experiment evaluating herbivore densities, predation, parasitism and hyper-parasitism rates was conducted. The only effect was significantly higher aphid parasitism in treatments with MeSA. Based on the results from the field experiments it remained unclear whether it was MeSA or a blend of volatiles produced by MeSA-induced host plants that were attractive to the arthropods. An olfactory experiment was conducted to evaluate if the aphid parasitoid Aphidius colemani can be attracted to two different concentrations of MeSA diluted in Synertrol oil. Significantly more parasitoids were attracted to 2.0% MeSA than to air while the parasitoid did not respond to the 0.5% concentration. These results indicate that A&R has potential as a CBC technique, as long as any unwanted side effects can be managed. Although there were no synergistic effects between 'attract' and 'reward' on the abundance of individual natural enemies, combining MeSA and buckwheat could still be beneficial because the two techniques increase the abundance of different natural enemies.
|
359 |
Determining seed vigour in selected Brassica speciesLeeks, C. R. F. January 2006 (has links)
Variables for the accelerated ageing (AA) test, methods for reducing fungal contamination during the AA test, using the conductivity test as a vigour test, the effect of seed size on seed vigour and the relationship between laboratory test results and field perfonnance in selected Brassica spp were investigated. In the first experiment, three seed lots of turnip rape hybrid (B. rapa x campestris), turnip (B. campestris) and forage rape (B. napus); and seven seed lots of Asian rape (B. napus), six seed lots of Asian kale (B. oleraceae var. alboglabra L.) and five seed lots of choisum (B. rapa var. pekinensis) with germinations above 90% were aged at two different temperatures (41 and 42°C ± 0.3°C) and three ageing times (24, 48 and 72 ± 15 minutes). The second experiment was divided into three sections. In the first, the same seed lots and species were aged at one temperature (41°C) and time (72 h), but either 40 ml of saturated salts; KCl (83%RH), NaCl (76%RH), NaBr (55%RH); or distilled water (96%RH) were used as the ageing solutions. In the second, one turnip rape hyprid seed lot was aged at three temperatures (41, 42 and 45°C) and two times (72 and 96h), again using the three saturated salts and distilled water as ageing solutions. In the third, three turnip rape hybrid seed lots and three Asian kale seed lots were surface sterilised (1 % sodium hypochlorite) prior to ageing at one temperature (41°C) and time (72 h). In the third experiment, the same species and seed lots used in experiment one at their original seed moisture content (SMC) were tested for conductivity after soaking in deionised water for 4, 8, 12, 16, 20 and 24 h. They were then re-tested after the SMC had been adjusted to 8.5%. In the fourth experiment, three seed lots of forage rape and three seed lots of Asian kale were graded into three seed size categories; large (retained on a 2.0 mm screen), medium (retained on a 1.7 mm screen) and small (passed through a 1.7 mm screen). Graded seeds were then tested for standard germination, AA (41°C/48 h) and conductivity (measured at 16 and 24 h). In the final experiment, the relationships between laboratory tests for the six species (each consisting of three seed lots), field emergence from three sowings, and cold room emergence were evaluated. Both time and temperature influenced post-AA germination. Increasing the ageing period from 48 to 72 hours at 41°C, and 24 to 48 hours at 42°C resulted in decreased mean germination percentage for all species but not always clear separation of seed lots. While there were sometimes few differences between ageing at 41°C and 42°C, the former is preferred because it is already the temperature used for other species. For Asian rape, choisum and turnip, the previously recommended testing conditions of 41°C/72 h provided good seed lot separation, but for Asian kale and turnip rape hybrid, AA testing at 41°C/48 h provided better results. Seed moisture content after ageing ranged from 29-37% depending on species. Fungal growth on seeds during the ageing period appeared to reduce post-ageing germination in some seed lots . Substituting saturated salts for distilled water did not stress seed lots in the AA test, due to the lowered RH%, the exception being seed lots 1210 and 1296. For forage and Asian species, seed lot germination mostly remained above 90% when aged for 72 h at lowered RH%. Increasing the ageing duration from 72 to 96 hours resulted in some decreases in post-AA germination but no clear separation of seed lots. Surface sterilising the seeds prior to the AA test resulted in a lower incidence of contaminant fungi which was associated with a lower percentage of abnormal seedlings. The conductivity test was mostly able to identify vigour differences among forage and Asian vegetable brassica seed lots. Differences in conductivity readings were observed among seed lots in all species. Increasing the period of imbibition resulted in increased conductivity from most seed lots but radicle emergence occurred after 16-20 h of imbibition. Variation was observed in the time to reach 95% maximum of the imbibition curve for most species. Conductivity readings at 16 h would avoid possible influences of radicle emergence on results. Adjusting the SMC to 8.5% resulted in reduced variation in conductivity among replicates of seed lots, due to a reduction in imbibition damage. Seed size had a significant effect on both post-AA germination and conductivity results. In forage rape, large size seeds had higher post-AA germination cf. medium cf. small size seeds. In Asian kale, large size seeds had higher post-AA germination compared with small size seeds. For both forage rape and Asian kale, large size seeds had lower conductivity readings cf. small size seeds. The correlation analyses demonstrated significant relationships between AA testing and field emergence parameters (percentage emergence, emergence index and emergence rate). Significant relationships were also observed between conductivity testing and these field emergence parameters. Based on the correlation analysis, AA testing at 41°C/48 hand/or 42°C/48 h could be recommended to be used as an AA test for turnip and Asian rape; and 41°C/48 hand/or 41°C/72 h for Asian kale and choisum. Based on the correlation analysis, conductivity testing at 16 h can be used to predict the field emergence potential of forage and Asian vegetable seed lots. Vigour tests were consistently able to provide better indicators of field perfonnance than the standard germination test, although these relationships did vary with the different field sowings.
|
360 |
Matching the availability of N mineralised from green-manure crops with the N-demand of field vegetables /Båth, Birgitta, January 1900 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 4 uppsatser.
|
Page generated in 0.0568 seconds