• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 27
  • 12
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 139
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

[en] SOURCE APPOINTMENT OF FOSSIL FUELS AND BIOFUELS USING CARBON, HYDROGEN AND OXIGEN ISOTOPIC RATIOS / [pt] DIFERENCIAÇÃO DE FONTES DE COMBUSTÍVEIS FÓSSEIS E BIOCOMBUSTÍVEIS UTILIZANDO RAZÕES ISOTÓPICAS DE HIDROGÊNIO, CARBONO E OXIGÊNIO

GILSON CRUZ DA SILVA 11 April 2017 (has links)
[pt] A frota veicular brasileira utiliza largamente combustíveis fósseis, como a gasolina, e biocombustíveis, como o bioetanol, este último utilizado in natura, na forma hidratada, ou como aditivo para a gasolina, na forma anidra. Em caso de vazamento destes combustíveis leves para o meio ambiente, a correlação entre contaminantes e fontes suspeitas aplicando técnicas tradicionais, como a Cromatografia Gasosa acoplada à Espectrometria de Massas (GC-MS - Gas Chromatography coupled to Mass Spectrometry) é extremamente difícil, pois gasolinas não possuem biomarcadores e apresentam distribuições de hidrocarbonetos semelhantes, enquanto a diferenciação inequívoca do etanol é inviável. Uma alternativa analítica recente é a Análise de Isótopos Estáveis de Compostos Específicos (CSIA - Compound-specific stable isotope analysis) por meio de Espectrometria de Massas de Razão Isotópica em Fluxo Contínuo (CF-IRMS - Continuous Flow Isotope Ratio Mass Spectrometry). Neste trabalho, uma metodologia de análise isotópica aplicável à gasolina foi implementada utilizando também a extração em Headspace (HS-CF-IRMS). A introdução de amostras por Micro Extração em Fase Sólida (SPME - Solid Phase Micro Extraction), como alternativa ao Headspace, também foi avaliada, apresentando, no entanto, problemas técnicos que restringiram seu uso apenas aos padrões de BTEX, inviabilizando sua aplicação em amostras de gasolina nas condições testadas. Foram analisadas as razões isotópicas de hidrogênio (delta elevado a 2 H) de tolueno, etilbenzeno e xilenos de 38 amostras de gasolina coletadas em 12 refinarias brasileiras ao longo de várias campanhas de amostragem, visando avaliar a existência de assinaturas isotópicas específicas para cada refinaria pesquisada. Os resultados foram avaliados estatisticamente utilizando Análise de Variância (ANOVA), na qual foram encontrados grupos de dados estatisticamente homogêneos. A representação e análise gráfica tridimensional destes grupos de dados permitiu identificar seis refinarias com razões isotópicas específicas, assim como dois conjuntos de refinarias agrupadas por similaridade de assinaturas isotópicas na maioria dos gráficos estudados. No entanto, devido a valores discrepantes entre campanhas distintas para algumas refinarias, os resultados preliminares obtidos neste estudo são válidos somente para as campanhas não excluídas no tratamento estatístico, não podendo, portanto, ser entendidos como uma regra geral. Com relação ao etanol, marcadores isotópicos foram utilizados e testados como ferramenta para identificação de sua origem geográfica. Neste caso, foram avaliadas as razões isotópicas de carbono (delta elevado a 13 C) e hidrogênio (elevado a 2 H) do biocombustível produzido em quatro usinas localizadas em áreas de cultivo dos estados do Amazonas (Norte), Mato Grosso (Centro-Oeste), São Paulo (Sudeste) e Rio Grande do Sul (Sul), bem como os valores de delta13C da cana-de-açúcar coletada nos respectivos canaviais. A técnica empregada foi CF-IRMS. Também foram determinados os perfis isotópicos de oxigênio (delta elevado a 18 O) e hidrogênio em água da planta, do solo de cultivo, da precipitação pluviométrica e de corpos d água associados aos canaviais das respectivas usinas, através da técnica de Espectroscopia de Infravermelho de Razão Isotópica (IRIS – Isotope Ratio Infrared Spectroscopy). O etanol apresentou variações sazonais de delta2H similares às observadas para a água da planta, ressaltando a influência do ciclo hidrológico na sua razão isotópica. Foi constatado que a influência substancial e complexa do ciclo hidrológico sobre delta elevado a 2 H, aliada à pequena variação de delta elevado a 13 C, dificulta o uso destes isótopos como marcadores de origem do etanol. / [en] Brazilian vehicle fleet makes wide use of fossil fuels and biofuels such as gasoline and bioethanol, the latter used neat, hydrated, or as gasoline additive, anhydrous. In case of leakage of such light fuels to the environment, correlation between contaminants and suspicious sources applying traditional techniques such as Gas Chromatography coupled to Mass Spectrometry (GC-MS) is extremely difficult, since gasoline does not have biomarkers and presents similar hydrocarbons distributions, while unambiguous differentiation of ethanol is unfeasible. A recent analytical alternative is the Compound-Specific Stable Isotope Analysis (CSIA) by Continuous Flow Isotope Ratio Mass Spectrometry (CF-IRMS). In this work, a methodology for isotopic analysis suitable to gasoline was implemented using also headspace extraction (HS-CF-IRMS). Sample introduction using Solid Phase Micro-Extraction (SPME) as an alternative to Headspace was also evaluated, presenting, however, technical problems which restricted its use only to BTEX standards, preventing its application in gasoline samples under the tested conditions. Analyses of hydrogen isotopic ratios (delta 2 H) for toluene, ethylbenzene and xylenes present in the composition of 38 gasoline samples collected in 12 Brazilian refineries were performed along several sampling campaigns, aiming at the assessment of the existence of specific isotopic signatures for each refinery studed. Results obtained were statistically evaluated using Analysis of Variance (ANOVA), yielding statistically homogeneous groups of data. Graphical representation analysis in 3D of these data sets allowed the identification of six refineries with specific isotopic ratios, as well as two sets grouped by similarity of their isotopic ratios in most of the studied plots. However, due to inconsistent values between different campaigns for some refineries, the preliminary results obtained in this study are valid only for the campaigns not excluded in the statistical treatment, therefore they cannot be understood as a general rule. Regarding to ethanol, isotopic markers were used and tested as a tool for identification of its geographical origin. In this case carbon and hydrogen isotopic ratios (delta 13 C and delta 2 H) were evaluated in the biofuel produced in four sugarcane mills located in crop areas from the states of Amazonas (North), Mato Grosso (Center-West), São Paulo (Southeast) and Rio Grande do Sul (South), as well as delta 13 C values in plants collected in respective sugarcane fields. The technique used was CF-IRMS. Also, oxygen (delta 18 O) and hydrogen isotopic patterns were determined in plant-water, soil-water, rainwater, and water from reservoirs and some rivers associated to each sugarcane mill, through Isotope Ratio Infrared Spectroscopy (IRIS). Ethanol showed similar seasonal variation of delta 2 H as those observed for plant-water, highlighting the influence of hydrological cycle on the isotopic fingerprint of the alcohol. It was found that the substantial and complex influence of the hydrological cycle on delta 2 H and the small variations on delta 13 C constrain the use of isotopes as tracers for ethanol origin.
82

Compréhension du fonctionnement biologique et physico-chimique d'un biofiltre végétalisé pour le traitement de polluants atmosphériques urbains gazeux / Understanding of biological and physico-chemical operation of planted biofilter for the treatment of urban gaseous pollutants

Rondeau, Anne 01 February 2013 (has links)
En ville, les parcs de stationnement couverts représentent un milieu confiné dans lequel s'accumule une pollution importante et complexe. Ils constituent également une source de pollution pour leurs abords puisqu'aucune obligation de traitement n'est imposée sur la qualité de l'air rejeté dans l'atmosphère par les systèmes de ventilation. Dans le cadre du traitement de l'air, l'utilisation d'un biofiltre végétalisé, faisant intervenir des bactéries et des plantes en association, constitue une solution innovante contribuant à l'amélioration de la qualité de l'air en ville en réduisant la dispersion de polluants gazeux dans l'atmosphère. Dans un contexte de « recherche et développement », l'objectif est de comprendre le fonctionnement biologique et physico-chimique du biofiltre dans le but d'en améliorer la maitrise opérationnelle. Le caractère innovant de l'étude porte sur le traitement d'importants volumes d'air viciés contenant de faibles concentrations de polluants, tels que les NOx et les COV (de l'ordre de 100 à 200 µg/m3), par un biofiltre planté d'épaisseur modeste. L'utilisation d'une unité pilote de biofiltration a permis d'évaluer l'influence de la présence de plante, ainsi que la nécessité d'un apport d'engrais, sur les capacités d'épuration d'un tel système. Afin d'optimiser les volumes d'air traités tout en limitant l'empreinte au sol des biofiltres végétalisés, la vitesse de passage de l'air a été augmentée et l'épaisseur de garnissage réduite. Le rôle des bactéries indigènes a été caractérisé par une étude fonctionnelle des communautés bactériennes impliquées dans la dégradation des NOx et des TEX d'une part, et par une étude quantitative et qualitative de la communauté bactérienne totale, en utilisant des approches de biologie moléculaire, telles que l'amplification par PCR en temps réel et le pyroséquençage à partir de l'ADN métagénomique / In town, underground car parks are confined spaces in witch large and complex pollution are accumulated. They are also a source of contamination of the external environment since the treatment of the air pumped out by ventilation system sis not regulated. In the framework of air treatment, using planted biofilter, combining bacteria and plants, is an innovative solution contributing to the improvement of urban air quality by reducing the dispersion of gaseous pollutants in the atmosphere. In a « research and development » context, the objective is to understand the biological and physico-chemical operation for improving operational control. This innovative study focuses on the treatment of high volumes of air containing a low concentrations of pollutants, such as NOx, VOCs (about 100 à 200 µg.m-3) through a thin planted biofilter. The use of a pilot-scale unit of biofiltration allowed to evaluate the influence of the plant, as well as the necessity of a fertilization, on the removal efficiency of such a system. In order to maximize the volumes of treated air while limiting the footprint of the planted biofilters, the superficial gas velocity has been increased and the thickness of the packing material decreased. The indigenous bacteria have been characterized by a functional study of the bacterial communities involved in the degradation of NOx and TEX on one part, and by a quantitative and qualitative study of the total bacterial community on the other part, by using molecular biology approaches, such a real-time PCR amplification, and pyrosequencing from metagenomic DNA. Results on pilot-scale unit have shown a removal efficiency greater than 97%, in all environmental conditions tested. Consequently, it seems possible to treat high volumes of air containing low concentrations of TEX through a thin planted biofilter. The presence of plants does not seem to have short-term impacts on the removal efficiency when a fertilizer promotes the nitrogen availability in the packing material. The evaluation of the global microbiological functioning showed the potential of microbial communities in the biodegradation of NOx and TEX in planted biofilters. The indigenous bacterial communities of the packing material and the mound of soil are rapidly able to adapt to the functioning conditions of such a system
83

Étude de l'accumulation et des effets des composés organiques volatils (BTEX) chez les bryophytes

Fabure, Juliette 16 October 2009 (has links) (PDF)
Les conséquences sanitaires et environnementales de la pollution atmosphérique sont devenues au cours des dernières décennies un des problèmes majeurs de notre société. Sensibilisée à cette problématique, la région Nord Pas-de-Calais a été l'une des premières régions à soutenir et à valoriser la biosurveillance végétale de la qualité de l'air. Les travaux scientifiques réalisés dans le cadre de cette thèse ont pour objectif d'étudier les phénomènes d'accumulation et les impacts des composés organiques volatils (COV) chez les bryophytes. Articulées autour de deux axes, les recherches menées visaient à étudier, d'une part, l'accumulation des benzène, toluène, ethylbenzène et xylènes (BTEX), d'autre part, des effets au niveau cellulaire, du benzène chez Tortula ruralis, par l'analyse des variations de l'expression de biomarqueurs de stress oxydant. Des expérimentations complémentaires in situ , sur le littoral dunkerquois, et en conditions contrôlées ont permis d'établir des phénomènes d'équilibre des concentrations en BTEX entre notre modèle végétal et l'air. In situ, les teneurs en BTEX chez les mousses sont fortement conditionnées par les paramètres météorologiques, et principalement la force des vents. De plus, les concentrations atmosphériques en particules PM10 favoriseraient l'accumulation des BTEX chez la mousse. Mais d'une manière générale, les mousses n'accumulent pas les BTEX de façon corrélée aux teneurs dans l'atmosphère. Concernant l'expression des biomarqueurs de stress oxydant, des variations naturelles des paramètres biologiques mesurés sont observées chez la mousse. Ces variations seraient liées à la nature poïkilohydrique des mousses, leur capacité de reviviscence et aux aptitudes qu'elles ont développées pour résister aux variations de leur état d'hydratation. Ainsi, les biomarqueurs de stress oxydant souvent recherchés dans les études d'écotoxicologie, ne seraient pas adaptés pour l'étude des effets chez les bryophytes terrestres.
84

Estudos microbiológicos para tratamento de água subterrânea de áreas contaminadas por hidrocarbonetos

Reschke, Karina Schu dos Santos 27 February 2012 (has links)
Submitted by Mariana Dornelles Vargas (marianadv) on 2015-03-23T18:24:55Z No. of bitstreams: 1 estudos_microbiologicos.pdf: 1899296 bytes, checksum: fc614dda615f2e763955219f31df88d4 (MD5) / Made available in DSpace on 2015-03-23T18:24:55Z (GMT). No. of bitstreams: 1 estudos_microbiologicos.pdf: 1899296 bytes, checksum: fc614dda615f2e763955219f31df88d4 (MD5) Previous issue date: 2012-02-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / FINEP - Financiadora de Estudos e Projetos / FIERGS - Federação das Indústrias do Rio Grande do Sul / Sebrae - Serviço Brasileiro de Apoio à Micro e Pequenas Empresas / Os compostos conhecidos como TPH (Total Petroleum Hydrocarbon) e BTEX (Benzeno, Tolueno, Etilbenzeno e Xileno) são contaminantes oriundos de derivados do petróleo como a gasolina e o diesel. Eles são provenientes de problemas que ocorrem com o armazenamento subterrâneo de combustíveis, principalmente em postos de abastecimento. São encontrados em águas subterrâneas de áreas contaminadas por hidrocarbonetos, que causam impacto ambiental. Exemplos destes impactos podem ser: inutilização dos pontos de captação de água potável, mortandade de flora e fauna aquática, inutilização de lavouras e plantações, impermeabilização de solos, redução de microrganismos do solo, morte de plantas e árvores, além de riscos de explosão devido à evaporação do produto. A presente pesquisa avaliou, por meio de métodos microbiológicos, como por exemplo: crescimento microbiano, meio seletivo para fungos, isolamento, detecção de ramnolipídios e teste de degradabilidade, os processos envolvidos com a recuperação de áreas degradadas por hidrocarbonetos através do isolamento e caracterização dos microrganismos presentes no local contaminado. Foram testadas diferentes concentrações de diesel (1%, 2%, 3%, 5%, 10%, 30% e 50%) para avaliação do crescimento de microrganismos indígenas de áreas contaminadas de postos de combustíveis, além de verificar-se o potencial de degradação de hidrocarbonetos. Acompanhamentos visuais e microscópicos, além do monitoramento do decréscimo do parâmetro TPH em diversos ensaios foram realizados. Os resultados mostraram que foi possível isolar e caracterizar os microrganismos presentes no local contaminado, tendo sido verificado dois diferentes morfotipos: bactérias e fungos. No total dos ensaios realizados 81,8% eram bactérias Gram negativas, 4,5% bactérias Gram positivas e 13,7% fungos. Nos ensaios com menor concentração de diesel (1%) houve o melhor crescimento de microrganismos o que resultou em maior eficiência no decréscimo do parâmetro de TPH. Esses resultados indicam a possibilidade de degradação de diesel em áreas contaminadas por via biológica, com ressalvas para altas concentrações do hidrocarboneto, quando o crescimento microbiano, nas condições ensaiadas, foi afetado. / The compounds known as TPH (Total Petroleum Hydrocarbon) and BTEX (Benzene, Toluene, Ethylbenzene and Xylene) contaminants are derived from petroleum products like gasoline and diesel. They are problems that occur from the underground storage of fuels, especially in gas stations. They are found in areas of groundwater contaminated with hydrocarbons, which cause environmental impact. Examples of these impacts may include: destruction of the points of capitation of drinking water, the death of aquatic flora and fauna, destruction of crops and plantations, soil sealing, reduction of soil microorganisms, death of plants and trees, and hazards of explosion due to the evaporation of the product. This research evaluated through microbiological methods, such as: microbial growth, selective medium for fungi, isolation, detection ramnoli and biodegradability test, the processes involved in the recovery of degraded sites by hydrocarbons through at the isolation and characterization of microorganisms present on the site contaminated. Different concentrations of diesel oil (1%, 2%, 3%, 5%, 10%, 30% and 50%) were tested to assess the growth of microorganisms indigenous of contaminated gas station, and to identify the potential degradation of hydrocarbons. Accompaniments visual and microscopic, in addition to monitoring the reduction of the parameter TPH in several tests were performed. The results showed that it was possible to isolate and characterize microorganisms in the contaminated site, where two different morphotypes were observed: bacteria and fungi, and 81.8% Gram-negative bacteria, Gram-positive bacteria 4.5% and 13.7% fungi. In tests with lower concentrations of diesel oil (1%) had the better growth of microorganisms resulting in greater efficiency in reduction of TPH. These results indicate the possibility of degradation of diesel in areas contaminated by biological, with exceptions for high concentrations of hydrocarbon, when microbial growth was affected.
85

Adsorção de BTEX - benzeno, tolueno, etilbenzeno e xileno - em cinza de casca de arroz e carvão ativado

Kieling, Amanda Gonçalves January 2016 (has links)
Um grande passivo ambiental da atualidade refere-se à contaminação dos recursos hídricos por hidrocarbonetos. Os atuais sistemas de remediação buscam a utilização de adsorventes alternativos para remoção destes poluentes. O objetivo desta tese de doutorado foi avaliar o uso da cinza de casca de arroz (CCA) e de carvão ativado (CA) na adsorção de BTEX – benzeno, tolueno, etilbenzeno e xileno em soluções aquosas. A CCA foi gerada a partir do processo de queima de casca de arroz para aproveitamento energético e o CA obtido comercialmente. As propriedades físicas, químicas e microestruturais da CCA e do CA foram caracterizadas através de análises de distribuição granulométrica, área superficial, porosidade, massa específica, capacidade de hidratação, pH, ponto de carga zero, perda ao fogo, carbono total, composição química elementar, determinação de fases cristalinas, determinação de grupos funcionais e análise de imagem. Estudos de adsorção cinéticos e de equilíbrio (isotermas) foram efetuados com soluções padrões de benzeno, tolueno, xileno e etilbenzeno em sistemas monocompostos e em misturas BTEX. A quantificação foi realizada por por cromatografia gasosa com detector de ionização de chama. Na cinética de adsorção, foram avaliadas as variáveis: tempo de contato adsorvente-adsorbato (15, 30, 60, 120 e 240 minutos); concentração inicial do adsorbato (1, 5, 10 e 20 mg/L) e dosagem do adsorvente (10 e 20 g/L). Os modelos cinéticos de Pseudo-primeira ordem, Pseudo-segunda ordem e Difusão intrapartícula foram ajustados aos dados experimentais. Isotermas experimentais foram obtidas para cada composto e para a mistura BTEX. Os modelos de Langmuir, Freundlich e Sips foram ajustados aos resultados experimentais para os sistemas com monocompostos. A caracterização das amostras indicou que o CA apresenta microestrutura uniforme com grande área superficial formada por micro e mesoporos e alto teor de carbono. Já a CCA apresenta uma microestrutura heterogênea formada por macroporos e com alto teor de sílica. Os estudos cinéticos demonstraram que a CCA e o CA apresentam capacidades de adsorção altas e semelhantes no tempo de equilíbrio de 120 minutos. De forma geral, a remoção de cada composto na mistura foi menor que a remoção obtida quando em sistemas de monocompostos, onde a capacidade de adsorção se deu na seguinte ordem (em massa de adsorbato por massa de adsorvente): etilbenzeno > xileno > tolueno > benzeno. O modelo cinético de Pseudo-segunda ordem apresentou a melhor correlação para todos os ensaios. As isotermas experimentais obtidas para os monocompostos caracterizam a adsorção em superfícies porosas com formação de monocamada. Os ajustes aos modelos teóricos não apresentaram unanimidade, observando em algumas situações uma correlação adequada para Langmuir e Freundlich. Nas misturas BTEX, as isotermas experimentais para a CCA indicam uma competição pelos sítios ativos do adsorvente entre benzeno/tolueno e entre etilbenzeno/xileno. Os resultados obtidos sugerem que a adsorção de BTEX ocorre preferencialmente através de efeito hidrofóbico já que o CA é um material carbonoso e a CCA configura-se como uma matriz de sílica com fração carbonosa. Os valores de remoção ficaram entre 78,8 e 100%, demonstrando que a CCA apresenta-se como um material alternativo para a adsorção de benzeno, tolueno, etilbenzeno e xileno presente em solução aquosas. / The contamination of water resources by hydrocarbons is considered a significant environmental impact. The remediation systems currently search alternative adsorbents to remove this pollutants. The aim of this work was to investigate the use of rice husk ash (RHA) and activated carbon (AC) in the removal of BTEX (benzene, toluene, ethylbenzene, and xylene) from aqueous solutions. The RHA used was generated as a byproduct of the combustion of rice husk for energy generation, while AC was purchased from the market. Samples of both materials were characterized based on physical, chemical, and microstructural standards (grain size distribution, surface area, porosity, specific weight, hydration capacity, pH, zero load test, loss on ignition, total carbon, chemical composition, crystalline phases, functional groups, and image analysis). The adsorption assays were carried out using standard benzene, toluene, xylene, and ethylbenzene individually and mixed. Quantification of compounds was conducted by gas chromatography with Flame Ionization Detector. Adsorption kinetics was evaluated based on the variables contact time between adsorbent and adsorbate (15, 30, 60, 120, and 240 min), initial adsorbate concentration (1, 5, 10, and 20 mg/L), and adsorbent dose (10 and 20 g/L). The kinetic models pseudo 1st order, pseudo 2nd order, and intra-particle diffusion were adjusted to experimental data. Experimental isotherms were obtained for each compound and for the BTEX mixture. The Langmuir, Freundlich, and Sips models were adjusted to the experimental results for the systems that used one compound at a time. Sample characterization revealed the differences in composition, microstructure, surface area, and pore size between RHA and AC. Kinetic studies showed that RHA and AC have high and similar adsorption capacities at the equilibrium time of 120 min. Generally, the amount of each hydrocarbon removed from the mixture was lower than the removal achieved in the single-compound systems, for which removal rate followed the sequence (adsorbate mass/ adsorbent mass) ethylbenzene > xylene > toluene > benzene. The pseudo 2nd order kinetics model presented the best correlation for all assays. The experimental isotherms obtained for single-compound systems characterized the adsorption on porous surfaces, forming monolayers. No overall concordance was observed in the adjustment of the theoretical models, and in some situations the Langmiur and Freundlich models presented appropriate correlation coefficients. Considering the BTEX mixtures, the experimental isotherms constructed for RHA indicated the existence of competition for active sites of the adsorbent material between benzene and toluene and between ethylbenzene and xylene. The results obtained suggest that BTEX adsorption occurs preferentially through the hydrophobic effect, since AC is a carbonaceous material, while RHA is composed mainly of silica, with a carbonaceous fraction. Removal rates were between 78.8% and 100%, indicating that RHA is an interesting alternative in the removal of benzene, toluene, ethylbenzene, and xylene from aqueous solutions.
86

Non-Methane Hydrocarbon Source Apportionment and BTEX Risk Assessment of Winter 2015 in Roosevelt, Utah

Lamb, Jerimiah 01 December 2017 (has links)
Non-Methane Hydrocarbons (NMHC) monitored in Roosevelt Utah including Benzene, Toluene, Ethylbenzene and Xylene (collectively known as BTEX) are associated with deleterious effects including cancer. This study was designed to assess the origin and effect of the toxicants and addressed two points: 1) Source identification using the USEPA’s Positive Matrix Factorization (PMF) and NOAA’s Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and 2) A human health risk assessment based on ambient concentrations of BTEX collected at the Roosevelt site. Model fit indicated that the primary contributor to total NMHCs was local oil and gas operations and was supported by previous assessments. Assessment of ambient BTEX concentrations was associated with slightly elevated carcinogenic risk.
87

Spatial and Temporal Extent of a Subsurface Hydrocarbon Intrusion Following the Deepwater Horizon Blowout

Watson, Kathleen 01 May 2014 (has links)
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) released an estimated 4.9 million barrels of oil between April 20, 2010 and July 15, 2010. An estimated 36% of the oil formed a neutrally buoyant intrusion, containing both dissolved compounds and oil microdroplets, between 1000 and 1300 m depth. This study used geographic information systems software, and data from water samples that were collected as part of the National Resource Damage Assessment (NRDA), to determine that an area of at least 1,600 km2 was exposed to DWH oil. Toxic BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds and polycyclic aromatic hydrocarbons (PAHs) reached concentrations 950 and 50 times higher than maximum background concentrations, respectively. BTEX and n-alkane concentrations above pre-2010 values were present through late August, more than a month after the wellhead was capped. This study is the first to examine the DWH intrusion over such a large temporal and spatial extent. We further estimated that an area between 500 and 1000 km2 may have been exposed to harmful PAH concentrations, based on studies of PAH toxicity and U.S. Environmental Protection Agency (EPA) guidelines. We also found evidence of aggregation and deposition of oil near the DWH wellhead, as well as an area of 400 km2 where the intrusion may have impinged on the seafloor. While relative rates of dilution, degradation, and deposition in the intrusion are unknown, we have shown evidence that supports two previously proposed processes that may have deposited DWH oil from this deep intrusion onto sediments, where toxic compounds could be resuspended and continue to be bioavailable to benthic organisms.
88

Fate of Chlorinated Compounds in a Sedimentary Fractured Rock Aquifer in South Central Wisconsin

Miao, Ziheng January 2008 (has links)
A study was carried out in a sedimentary fractured rock site located in south central Wisconsin, US, which was impacted by DNAPL releases estimated to occur in the 1950’s and 1960’s. The majority of the DNAPL has accumulated in the upper portion of the Lone Rock Formation at a depth between 140 and 180 ft bgs referred as Layer 5 in this study. A groundwater VOC plume of more than 3km long has formed in this Layer. The DNAPL is mainly composed of 1,1,1-TCA, PCE, TCE and BTEX, while large amounts of biodegradation products such as cis-DCE and 1,1-DCA are present in the plume. Long term VOC data have been collected at the site and diverse geological and hydrogeological techniques have been applied to have a better understanding of the DNAPL history and behavior of the VOC plume. Evidence of biodegradation was also documented near the DNAPL source in these studies. The thesis objectives of the present study aimed first to have a better understanding of the long term contaminant distribution and degradation history at the site. This objective was accomplished reviewing the VOC historical concentration data collected from 1992 to 2006 in the wells tapping the most contaminated. hydrogeological unit in the bedrock (Layer 5) and in the overburden aquifer (referred as Layer 2). The second objective aimed to evaluate the current degree or extent of biodegradation of chlorinated compounds, which was accomplished evaluating the current groundwater redox conditions and using a combined analysis of VOC concentration and carbon isotope data collected in groundwater in September 2007. The historical data collected between1992 to 2006 showed the degradation of the VOC plume in Layer 5 was controlled by the availability of electron acceptors and redox conditions in the fracture bedrock aquifer. This pattern and the extension of the VOC plume were linked to different DNALP pumping events in the source zone and the operation of a Hydraulic Barrier System. The current geochemical and isotope study showed a different pattern of biodegradation of chlorinated compounds in different parts of the plume. The cis-DCE tend to accumulate in the area from the source to the middle of the plume and around 80 % of biodegradation of 1,1,1-TCA to 1,1-DCA was observed in this area. The fringes of the plume were characterized by a dominant presence of TCE and 1,1,1 TCA. These patterns were linked to different redox conditions and amount of electron acceptors. The cis-DCE dominated area is characterized by anaerobic conditions and the presence of relative high amount of BTEX. The TCE-dominated area is under aerobic condition and no BTEX was found in this area. The operation of the Hydraulic Barrier System seems to have change redox condition which influenced the extent of degradation in the plume, especially in the area between the extraction wells. The formation of large amounts of VC in Layer 2 and the more reducing (at least sulfate reducing and maybe methanogenic conditions) of the groundwater in this Layer compared to Layer 5 confirmed the extent of VOC biodegradation is linked to the availability of electron donors. This study provides information about the current degree of the biodegradation of chlorinated compounds at a fracture rock site. This information is very valuable for the evaluation of natural attenuation as strategy for long term plume management or for future remediation strategies such as biostimulation or bioaugmentation at the site. This study also shows the present and long term behavior of the chlorinated compounds (degradation history) in the most contaminated hydrogeologic unit (Layer 5), has mainly been controlled by plume management strategies including DNAPL pumping in the source and the creation of a Hydraulic Barrier System. The ketones and BTEX, that acted as electron donors and carbon substrate for the microbial community responsible for the dechlorination of chlorinated compounds were shown to have controlled the past and current redox conditions and thus the degree and potential of biodegradation of chlorinated ethenes and chlorinated ethanes at the study site.
89

Fate of Chlorinated Compounds in a Sedimentary Fractured Rock Aquifer in South Central Wisconsin

Miao, Ziheng January 2008 (has links)
A study was carried out in a sedimentary fractured rock site located in south central Wisconsin, US, which was impacted by DNAPL releases estimated to occur in the 1950’s and 1960’s. The majority of the DNAPL has accumulated in the upper portion of the Lone Rock Formation at a depth between 140 and 180 ft bgs referred as Layer 5 in this study. A groundwater VOC plume of more than 3km long has formed in this Layer. The DNAPL is mainly composed of 1,1,1-TCA, PCE, TCE and BTEX, while large amounts of biodegradation products such as cis-DCE and 1,1-DCA are present in the plume. Long term VOC data have been collected at the site and diverse geological and hydrogeological techniques have been applied to have a better understanding of the DNAPL history and behavior of the VOC plume. Evidence of biodegradation was also documented near the DNAPL source in these studies. The thesis objectives of the present study aimed first to have a better understanding of the long term contaminant distribution and degradation history at the site. This objective was accomplished reviewing the VOC historical concentration data collected from 1992 to 2006 in the wells tapping the most contaminated. hydrogeological unit in the bedrock (Layer 5) and in the overburden aquifer (referred as Layer 2). The second objective aimed to evaluate the current degree or extent of biodegradation of chlorinated compounds, which was accomplished evaluating the current groundwater redox conditions and using a combined analysis of VOC concentration and carbon isotope data collected in groundwater in September 2007. The historical data collected between1992 to 2006 showed the degradation of the VOC plume in Layer 5 was controlled by the availability of electron acceptors and redox conditions in the fracture bedrock aquifer. This pattern and the extension of the VOC plume were linked to different DNALP pumping events in the source zone and the operation of a Hydraulic Barrier System. The current geochemical and isotope study showed a different pattern of biodegradation of chlorinated compounds in different parts of the plume. The cis-DCE tend to accumulate in the area from the source to the middle of the plume and around 80 % of biodegradation of 1,1,1-TCA to 1,1-DCA was observed in this area. The fringes of the plume were characterized by a dominant presence of TCE and 1,1,1 TCA. These patterns were linked to different redox conditions and amount of electron acceptors. The cis-DCE dominated area is characterized by anaerobic conditions and the presence of relative high amount of BTEX. The TCE-dominated area is under aerobic condition and no BTEX was found in this area. The operation of the Hydraulic Barrier System seems to have change redox condition which influenced the extent of degradation in the plume, especially in the area between the extraction wells. The formation of large amounts of VC in Layer 2 and the more reducing (at least sulfate reducing and maybe methanogenic conditions) of the groundwater in this Layer compared to Layer 5 confirmed the extent of VOC biodegradation is linked to the availability of electron donors. This study provides information about the current degree of the biodegradation of chlorinated compounds at a fracture rock site. This information is very valuable for the evaluation of natural attenuation as strategy for long term plume management or for future remediation strategies such as biostimulation or bioaugmentation at the site. This study also shows the present and long term behavior of the chlorinated compounds (degradation history) in the most contaminated hydrogeologic unit (Layer 5), has mainly been controlled by plume management strategies including DNAPL pumping in the source and the creation of a Hydraulic Barrier System. The ketones and BTEX, that acted as electron donors and carbon substrate for the microbial community responsible for the dechlorination of chlorinated compounds were shown to have controlled the past and current redox conditions and thus the degree and potential of biodegradation of chlorinated ethenes and chlorinated ethanes at the study site.
90

Persulfate Persistence and Treatability of Gasoline Compounds

Sra, Kanwartej Singh January 2010 (has links)
Petroleum hydrocarbons (PHCs) such as gasoline are ubiquitous organic compounds present at contaminated sites throughout the world. Accidental spills and leakage from underground storage tanks results in the formation of PHC source zones that release hundreds of organic compounds, including the high impact, acutely toxic and highly persistent aromatics (e.g., benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) into groundwater. Contamination by these compounds continues to persist until the PHC source zone is treated in place or removed. In situ chemical oxidation (ISCO) employing persulfate was identified as a potentially viable technology for the treatment of PHC source zones. The effectiveness and efficiency and, therefore, the overall economic feasibility of a persulfate-based ISCO treatment system depend upon the reactivity of the target organic compounds and the interaction of persulfate with aquifer media. The objective of this research was to investigate the persistence of unactivated and activated persulfate in the presence of aquifer materials, and to examine persulfate oxidation of PHC compounds at both the bench- and pilot-scales. A series of bench-scale studies were performed to estimate persulfate degradation kinetic parameters in the presence of seven well-characterized, uncontaminated aquifer materials and to quantify the changes in specific properties of these materials. Batch experiments were conducted in an experimental system containing 100 g of solids and 100 mL of persulfate solution at 1 or 20 g/L. Column experiments were designed to mimic in situ conditions with respect to oxidant to solids mass ratio and were performed in a stop-flow mode using a 1 g/L persulfate solution. The degradation of persulfate followed a first-order rate law for all aquifer materials investigated. An order of magnitude decrease in reaction rate coefficients was observed for systems that used a persulfate concentration of 20 g/L as compared to those that used 1 g/L due to ionic strength effects. As expected, the column experiments yielded higher reaction rate coefficients than batch experiments for the same persulfate concentration due to the lower oxidant to solids mass ratio. Bench-scale data was used to develop a kinetic model to estimate the kinetic response of persulfate degradation during these tests. The push-pull tests involved the injection of persulfate (1 or 20 g/L) and a conservative tracer into a hydraulically isolated portion of the sandy aquifer at CFB Borden, Canada. The kinetic model developed from the bench-scale data was able to reproduce the observed persulfate temporal profiles from these push-pull tests. This implies that persulfate degradation kinetics is scalable from bench-scale to in situ scale, and bench tests can be employed to anticipate in situ degradation. The estimated reaction rate coefficients indicate that persulfate is a persistent oxidant for the range of aquifer materials explored with half lives ranging from 2 to 600 days, and therefore in situ longevity of persulfate will permit advective and diffusive transport in the subsurface. This is critical for successful delivery of oxidant to dispersed residuals in the subsurface. Activation of persulfate is generally recommended to enhance its oxidation potential and reactivity towards organic compounds. This approach may influence the stability of persulfate-activator system in the presence of aquifer materials. A series of batch tests were performed to investigate persistence of persulfate at two concentrations (1 or 20 g/L) using three contemporary activation strategies (citric acid chelated-ferrous, peroxide and high pH ) in the presence of 4 well-characterized, uncontaminated aquifer materials. Chelation by citric acid was ineffective in controlling the interaction between persulfate and Fe(II) and a rapid loss in persulfate concentration was observed. Higher Fe(II) concentration (600 mg/L) led to greater destabilization of persulfate than lower Fe(II) concentration (150 mg/L) and the persulfate loss was stoichiometrically equivalent to the Fe(II) concentration employed. Subsequent to this rapid loss of persulfate, first-order degradation rate coefficients (kobs) were estimated which were up to 4 times higher than the unactivated case due to the interaction with Fe(III) and CA. Total oxidation strength (TOS) was measured for peroxide activation experiments and was observed to decrease rapidly at early time due peroxide degradation. This was followed by slow degradation kinetics similar to that of unactivated persulfate implying that the initial TOS degradation was peroxide dominated and the long-term kinetics were dominated by persulfate degradation. The kobs used to capture TOS degradation for later time were shown to depend upon unactivated persulfate and peroxide degradation rate coefficients, and peroxide concentration. Either a slow peroxide degradation rate and/or higher peroxide concentration allow a longer time for peroxide and persulfate to interact which led to kobs ~1 to 100 times higher than kobs for unactivated persulfate. For alkaline activation, kobs were only 1 to 4 times higher than unactivated persulfate and therefore alkaline conditions demonstrated the least impact on persulfate degradation among the various activation strategies used. For all activation trials, lower stability of persulfate was observed at 1 g/L as compared to 20 g/L due to insufficient persulfate and/or ionic strength effects. A series of batch reactor trials were designed to observe the behavior of the nine high impact gasoline compounds and the bulk PHC fraction measures subjected to various persulfate activation strategies over a 28-day period. This bench-scale treatability used unactivated persulfate (1 or 20 g/L) and activated persulfate (20 g/L). Activation employed chelated-Fe(II), peroxide, high pH or two aquifer materials as activators. No significant oxidation of the monitored compounds was observed for unactivated persulfate at 1 g/L, but 20 g/L persulfate concentration resulted in their near-complete oxidation. Oxidation rates were enhanced by 2 to 18 times by activation with peroxide or chelated-Fe(II). For alkaline activation, pH 11 trials demonstrated ~2 times higher oxidation rates than the unactivated results. For pH 13 activation the oxidation rates of benzene, toluene and ethylbenzene were reduced by 50% while for the remaining monitored compounds they were enhanced by 5 to 100%. Natural activation by both aquifer materials produced oxidation rates similar to the unactivated results, implying that either activation by minerals associated with aquifer material was not significant or that any potential activation was offset by radical scavenging from aquifer material constituents. Acid-catalyzation at pH <3 may enhance oxidation rates in weakly buffered systems. Oxidation of the monitored compounds followed first-order reaction kinetics and rate coefficients were estimated for all the trials. Overall, activated and unactivated persulfate appear to be suitable for in situ treatment of gasoline. Persulfate under unactivated or naturally activated conditions demonstrated significant destruction of gasoline compounds and showed higher persulfate persistence when in contact with aquifer solids as compared to chelated-Fe(II) or peroxide-activated persulfate systems. This observation was used as the basis for selecting unactivated sodium persulfate for a pilot-scale treatment of gasoline-contaminated source zone at CFB Borden, Canada where a ~2000 L solution of persulfate (20 g/L) was injected into a PHC source zone. Concentration of organics and inorganics were frequently monitored over a 4 month period across a 90 point monitoring fence line installed down-gradient. Treatment performance was measured by estimating organic and inorganic mass loading across the monitoring fence. Increased mass loading for sodium was observed over time as the treatment volume moved across the fence-line indicating transport of the inorganic slug created upon oxidant injection. The mass loading also increased for sulfate which is a by-product generated either due to persulfate degradation during oxidation of organic compounds or during its interaction with aquifer materials. Oxidation of organic compounds was evident from the enhanced mass loading of dissolved carbon dioxide. More importantly, a significant (45 to 86%) decrease in mass loading of monitored compounds was observed due to oxidation by injected persulfate. The cumulative mass crossing the monitoring fence-line was 20 to 50% lower than that expected without persulfate treatment. As the inorganic slug was flushed through the source zone and beyond the monitoring fence, the mass loading rate of sodium, sulfate and carbon dioxide decreased and approached background condition. Mass loading of the monitored compounds increased to within 40 to 80% of the pre-treatment conditions, suggesting partial rebound. These investigations assessed the impact of activation on persulfate persistence and treatability of gasoline and served to establish guidelines for anticipating field-scale persulfate behavior under similar conditions. In summary, unactivated persulfate is a stable oxidant in the presence of aquifer materials and its persistence depends upon TOC and Fe(Am) content of the materials, ionic strength, and aquifer to solids mass ratio. Persulfate exhibits significant destruction of gasoline compounds and can be employed for the remediation of gasoline-contaminated sites. Peroxide and chelated-Fe(II) enhance oxidation rates of these compounds, but reduce stability of the persulfate-activator system. Persulfate activation using high pH conditions does not significantly impact persulfate persistence but reduces the overall destruction of gasoline compounds. Therefore, activation imposes a trade-off between enhanced oxidation rates and reduced persulfate persistence. Kinetic model is representative of persulfate degradation at bench- and pilot-scales and can be used for estimation of in situ degradation. The quantification of oxidation rates for gasoline compounds under activated and unactivated persulfate conditions will assist decision-making for identification of appropriate remediation options when targeting contamination by gasoline or by specific high impact gasoline compounds. While persulfate oxidation resulted in partial treatment of a small gasoline source zone, aggressive persulfate load will be required during injection for a complete clean-up. Overall, persulfate-based in situ chemical oxidation was demonstrated to be an effective and a viable technology for the remediation of contaminated soil and groundwater.

Page generated in 0.1196 seconds