Spelling suggestions: "subject:"cabra"" "subject:"cabal""
1 |
Um estudo sobre o uso de régua, compasso e um software de geometria dinâmica no ensino da geometria hiperbólicaRossini, Marcela Aparecida Penteado [UNESP] 12 April 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-04-12Bitstream added on 2014-06-13T20:52:49Z : No. of bitstreams: 1
rossini_map_me_rcla.pdf: 3173837 bytes, checksum: 262f12484461eccfd7aff81dfec3e0c2 (MD5) / O principal objetivo deste trabalho foi contribuir para o ensino e aprendizagem da geometria hiperbólica, apresentando uma proposta que visa à introdução do estudo dessa geometria, utilizando o software Cabri - Géomètre II (menu hiperbólico) e, também, a régua e o compasso na abordagem dos conceitos fundamentais. Procedemos desta maneira por entendermos que estes recursos integrados podem cooperar para uma melhor compreensão e assimilação das noções apresentadas. Esta pesquisa tem abordagem do tipo qualitativa e foi desenvolvida seguindo a proposta metodológica de Romberg, e a coleta de dados se deu por meio de observações, anotações e fotos. A metodologia de resolução de problemas foi utilizada na elaboração das atividades, as quais foram aplicadas a alunos de um curso de graduação em engenharia elétrica. Os dados coletados foram analisados qualitativamente, buscando compreender como tais instrumentos educacionais associados podem auxiliar no processo ensino-aprendizagem desta geometria não-euclidiana. Ressaltamos que na evolução desta proposta foi possível reforçar o entendimento de conceitos da geometria euclidiana que são usados nas construções hiperbólicas / The ultimate goal of this essay is to contribute to the teaching and learning process of the hyperbolic geometry,introducing a proposal that aims for the presentation of the study of this geometry,making use of the software entitled Geomere Cabri ll ( hyperbolic menu ) and , also ,the ruler and the compasses in the approach of essential concepts. We followed this way of working as we understand that such resources when integrated, may cooperate in a better understanding and assimilation of those presented notions.This research has a qualitative kind of approach and was developed following the methodological proposal of Romberg, and we collect data by watching ,writing down notes and taking pictures.The methodology of problem solutions was deployed in the activities elaboration which were applied to students in an Electric Engineering degree course.The collected data were analyzed taking into account the quality, trying to understand how such educational tools together may help in the teaching- learningprocess of these no - Euclidian geometry concepts which are used in the hyperbolic constructions
|
2 |
O uso das isometrias do Software Cabri-Gèométre como recurso no processo de prova e demonstraçãoVaz, Regina de Lourdes 07 May 2004 (has links)
Made available in DSpace on 2016-04-27T16:58:01Z (GMT). No. of bitstreams: 1
dissertacao_regina_vaz.pdf: 13662771 bytes, checksum: 4a684bcd2f203660704a00783a912e57 (MD5)
Previous issue date: 2004-05-07 / This work aims to investigate an approach to the teaching and learning of proof using the geometrical transformation tools of the software Cabri-Géomètre. Previous research related suggests that neither approaches emphasising predominately inductive aspects nor those privileging the deductive, are sufficient to enable learners to construct robust meaning for the notions involved in constructing valid proofs. With this in mind, the approach developed in this study seeks to engage students in activities that favour spontaneous movement between induction and deduction in a computer-based environment Cabri-Géomètre in which action and its formalisation can occur simultaneously (Healy, 2000). To this end, a teaching experiment was conducted with students of the 7th and 8th grades of a private school in the city of São Paulo. This experiment comprised two phases, design and analysis. During the design phase, three activity sets were developed and piloted. In the analysis phase, theoretical support was drawn from the theory of Piaget and Garcia (1987) concerning the development of geometrical notions, the classification of proofs in Balacheff (1988) and the distinctions figure/drawing and robust/soft in relation to constructions in Cabri-Géomètre. Through the interactions of the students with the research situations, the role of the transformation tools in different aspects of the proof process was explored, from the appropriation of notions of geometrical dependency to the construction of formally-presented proofs. Analysis of the results indicated that the dynamism of the software had an important role in encouraging figures to be seen as general rather than specific cases. It was also found that that students were incorporating some facts, especially those of an intrafigural nature, established in the first activities sets in the proofs written during the final set, although the justifications they elaborated were locally but not globally valid / Este trabalho tem como objetivo a investigação de uma abordagem sobre o ensino e a aprendizagem da prova, baseada no uso das ferramentas de transformação geométrica do software Cabri-Géomètre. Pesquisas já realizadas sobre este tema verificaram que, tanto a ênfase predominantemente nos aspectos indutivos, quanto nos dedutivos, não são suficientes para que os aprendizes construam significados robustos para as noções envolvidas. Por esta razão, nesta pesquisa, pretendeu-se engajar os estudantes em atividades que favorecem os movimentos espontâneos entre as abordagens dedutiva e indutiva num ambiente informatizado Cabri-Géomètre no qual a ação e sua formalização podem ocorrer simultaneamente (Healy, 2000). Para esse fim foi elaborado um experimento de ensino envolvendo estudantes de 7a e 8ª séries de uma escola particular da cidade de São Paulo. Tal experimento foi composto de duas fases, o design e a análise. Na fase de design, três conjuntos de atividades foram elaborados e testados. A fase de análise foi apoiada na teoria de Piaget & Garcia (1987) sobre o desenvolvimento das noções geométricas, na classificação de prova de Balacheff (1988), na distinção entre figura/desenho e construção mole/robusta no software Cabri-Géomètre. Através das interações dos estudantes nestas situações, explorou-se o papel das ferramentas de transformação nos diferentes aspectos do processo de prova, desde a apropriação das noções de dependência geométrica até a construção de provas formalmente apresentadas. Como resultados, obteve-se a importância do dinamismo do software para que seja dado um tratamento geral ao diagrama, a incorporação de fatos advindos de atividades anteriores nas provas construídas pelos alunos, em especial, aqueles que enfatizam os aspectos intrafigurais e a elaboração de justificativas válidas apenas localmente nas provas construídas
|
3 |
Εκπαιδευτικό υλικό με χρήση δυναμικών περιβαλλόντων γεωμετρίας / Educational material using dynamic geometry systemsΜαστρογιάννης, Αλέξιος 19 April 2010 (has links)
Αρχικά, η παρούσα εργασία ξεκινά μια ιστορική αναδρομή, με σταθμούς τις κεφαλαιώδεις ανακαλύψεις, οι οποίες συνέβαλαν στη γρήγορη και αποτελεσματική εκτέλεση υπολογισμών. Από την εποχή των πρώτων υπολογιστικών συσκευών, διατρέχει αρχαίους πολιτισμούς, μέσω των αριθμητικών συστημάτων τους, μελετά τους λογαρίθμους, αναφέρεται στην επινόηση των δεκαδικών αριθμών και καταλήγει στο σημερινό υπολογιστή.
Ακολούθως, πραγματεύεται την έλευση της λεγόμενης εκπαιδευτικής τεχνολογίας στον εκπαιδευτικό χώρο, ενώ μελετά και τις επιδράσεις των θεωριών μάθησης, στη κατασκευή και δημιουργία τύπων και μορφών εκπαιδευτικού λογισμικού καθώς και στη χρησιμοποίηση των ΤΠΕ στην εκπαιδευτική διαδικασία.
Οι εκπαιδευτικές χρήσεις των τεχνολογιών πληροφορίας και των επικοινωνιών (ΤΠΕ) χωρίζονται αδρομερώς σε 3 κατηγορίες. Η πρώτη κατηγορία αφορά στην ανάπτυξη βασικών δεξιοτήτων και στην εξοικείωση με την Τεχνολογία. Επίσης οι μαθητές μαθαίνουν να χρησιμοποιούν λογισμικά. Η δεύτερη περίπτωση επικεντρώνεται σε λογισμικά εξάσκησης και επανάληψης. Τέλος η τελευταία κατηγορία χρήσεων των ΤΠΕ περιλαμβάνει περισσότερο κονστρουκτιβιστικές προσεγγίσεις.
Ο εποικοδομισμός (κονστρουκτιβισμός) που αποτελεί την επικρατέστερη θεωρία της εποχής μας, επαγγέλλεται τα ενιαιοποιημένα σχήματα αναλυτικού προγράμματος και διδακτικής παρέμβασης. Προτρέπει, η μάθηση να συντελείται μέσα σε αυθεντικές καταστάσεις, ομαδοσυνεργατικά, οργανώνοντας το αναλυτικό πρόγραμμα με θέματα προσωπικού ενδιαφέροντος Ακόμα παραδέχεται ότι η γνώση δε μεταβιβάζεται αλλά «οικοδομείται» από το μαθητή, αφού οι νέες πληροφορίες εντάσσονται στα προϋπάρχοντα νοητικά σχήματα τα οποία με τη σειρά τους τροποποιούνται, εξαιτίας, βέβαια, της άφιξης των νέων δεδομένων. Το βασικό, λοιπόν, αξίωμα τού κονστρουκτιβισμού είναι ότι ο άνθρωπος κατασκευάζει τη γνώση, μέσα από μια συνεχή ενεργητική διαδικασία και δεν τη δέχεται παθητικά.
Οι ΤΠΕ (πρέπει να) χρησιμοποιούνται και να αξιοποιούνται στο Σύγχρονο Σχολείο. Τα μαθησιακά οφέλη τους διαχέονται μέσω των ολοκληρωμένων (ολιστικών) μοντέλων, σε όλα σχεδόν τα γνωστικά αντικείμενα. Ειδικότερα για την Πρωτοβάθμια Εκπαίδευση, είναι επιβεβαιωμένο το ενδιαφέρον των μαθητών ως προς την χρήση των ΤΠΕ, στην εκπαιδευτική διαδικασία.
Ειδικότερα, ως προς τα Μαθηματικά, ο εποικοδομισμός πρεσβεύει πως οι μαθητές εφευρίσκουν ειδικές- προσωπικές μεθόδους κατά την επίλυση μαθηματικών προβλημάτων και ότι η μάθηση των Μαθηματικών συντελείται μέσα από τις προσπάθειες επίλυσής τους.
Το περιβάλλον Δυναμικής Γεωμετρίας Cabri-Geometry II παρέχει δυνατότητες κατασκευής και πραγματοποίησης μαθησιακών δραστηριοτήτων σύμφωνα με τις σύγχρονες κοινωνικές και εποικοδομιστικές θεωρήσεις για τη γνώση και τη μάθηση. Σύμφωνα με αυτές τις θεωρήσεις η μάθηση είναι μια ενεργητική, υποκειμενική και κατασκευαστική δραστηριότητα στην οποία καταλυτικό ρόλο παίζει το πλαίσιο συμφραζομένων στο οποίο πραγματοποιείται και ειδικότερα οι μαθησιακές δραστηριότητες και τα εργαλεία τα οποία παρέχονται προς χρήση στους μαθητές.
Είναι γνωστές οι 6 τύποι ποικίλων και διάφορων διερευνητικών, διδακτικών, αλληλεπιδραστικών δραστηριοτήτων μάθησης, που παρέχονται μέσω των λειτουργιών και εργαλείων τού εκπαιδευτικού λογισμικού Cabri Geometry II.
Ειδικότερα, οι δραστηριότητες «βιωματικού τύπου» που μελετούν πραγματικά προβλήματα ζωής (real life problems), μπορούν να βοηθήσουν τους μαθητές να αναπτύξουν ισχυρό κίνητρο, για τη μάθηση των μαθηματικών και την προσέγγισή τους, ως ανθρώπινη δραστηριότητα. Επίσης οι μαθηματικές έννοιες τίθενται σε ένα διεπιστημονικό-διαθεματκό πλαίσιο. Η αξιοποίηση του Cabri Geometry II, παρέχει δυνατότητες δημιουργίας περιβαλλόντων μάθησης, όπου μεταφέρονται αυθεντικά σενάρια πραγματικής ζωής, ώστε να συνδεθούν οι πληροφορίες του σχολείου με καθημερινές καταστάσεις.
Η εργασία αυτή και με «σύμμαχο» το περιβάλλον Δυναμικής Γεωμετρίας Cabri-Geometry II, προτείνει τρόπους «μεταφοράς» της σχολικής γνώσης με στόχο να αντιληφθεί ο μαθητής ότι η γνώση αυτή, είναι χρήσιμη στην καθημερινή ζωή.
Για παράδειγμα κατασκευάστηκαν μια σειρά από αλληλεπιδραστικές δραστηριότητες «βιωματικού-αυθεντικού» χαρακτήρα, για την αποσαφήνιση της έννοιας της μονάδας μέτρησης του εμβαδού, για την υποστήριξη τής μάθησης τής έννοιας τού ύψους στα τρίγωνα και της ελάχιστης απόστασης μεταξύ σημείου και ευθείας. Ακόμα σχεδιάστηκαν δραστηριότητες που αφορούν σε μετασχηματισμούς, σε εύρεση εμβαδών διάφορων σχημάτων, σε αποδείξεις απλών ταυτοτήτων αλλά και σε αναπαραστάσεις κλασμάτων, μέσω της μελέτης σημαιών διάφορων χωρών του κόσμου. Σε μια περίπτωση, οι προτεινόμενες αλληλεπιδραστικές κατασκευές και ερωτήσεις δοκιμάσθηκαν στην τάξη και προέκυψε ανατροφοδότηση, στηριζόμενη σε πραγματικά δεδομένα. Μάλιστα, μελετήθηκε η προστιθέμενη αξία και τα παιδαγωγικά και διδακτικά οφέλη της χρήσης των ΤΠΕ στο σχολείο, δεδομένου ότι έγινε σύγκριση μαθησιακών δεδομένων και αποτελεσμάτων που αντλήθηκαν μέσω παραδοσιακών μεθόδων διδασκαλίας.
Τέλος, μερικές από τις κατασκευές- δραστηριότητες, απέκτησαν περισσότερο δυναμικό χαρακτήρα, μέσω της «κινηματογραφικής κίνησης» των πρωταγωνιστών τους. / Initially, this project begins with an historical retrospection using as marks the fundamental discoveries that contributed to the fast and effective implementation of calculations. From the age of the first calculating machines, the retrospection goes through ancient civilizations and their number systems, studies the logarithms, reports the invention of decimal numbers and leads to today’s computer.
Afterwards, it deals with the arrival of the said educational technology in the educational area, while it also studies the effects of learning theories in the creation of types and forms of educational software as well as in the utilisation of ICT in the educational process.
Cabri Geometry II is a widely known Dynamic Geometry system that provides students with potential opportunities in the creation of training activities according to the current social and constructivist aspects about Knowledge and learning.
According to these regards, learning is an energetic, subjective and constructional activity and the frame context, in which it is implemented, plays a catalytic role. Specifically, training activities and tools which are provided to be used by students are essential and determinative.
Six types of various exploratory, instructive and interactive learning activities are known and provided via the operations and tools of Cabri Geometry.
More specifically, the constructions simulating real life problems can help students to develop powerful motives in learning mathematics and to approach mathematics as a human activity. The exploitation of Cabri Geometry provides us with new possibilities in the creation of learning environments, where authentic real-life scenarios are transferred to, so that school information can be connected with daily situations.
Working with the Dynamic Geometry System of Cabri-Geometry II as an "ally" constitutes a new way of transferring school knowledge in order that students will realize that this knowledge is useful in their daily life.
For example, a series of interactive activities of “experiential-authentic” type was constructed in order to clarify the significance of the unit for measuring an area, to support learning the concept of height in triangles and the minimal distance between a point and a straight line. Furthermore, several activities were designed that concern geometric transformations, measuring the size of various shapes, proofs of simple identities and also representations of fractions via studying flags of various countries in the world. In one case, the proposed activities and questions were tested in class and feedback was produced, supported on real data.
|
4 |
Simetria axial : uma seqüência didática para alunos da 6ª série com o uso de software de geometria dinâmicaSocorro Alves, Dayse January 2005 (has links)
Made available in DSpace on 2014-06-12T17:22:21Z (GMT). No. of bitstreams: 2
arquivo5751_1.pdf: 3149146 bytes, checksum: 57a28c5fc903c6caa60e16df268f8cd2 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2005 / Inserindo-se no âmbito do ensino e aprendizagem da Geometria, esta pesquisa propõe a
investigação dos efeitos de uma seqüência didática sobre o conceito de um tipo de Isometria,
a Reflexão Axial, com treze alunos da 6ª série de uma escola pública, em um ambiente de
geometria dinâmica, o Cabri-Géomètre. Para isto, fundamentamo-nos nos preceitos teóricos
de Hershkowith e Laborde no que diz respeito à visualização em Geometria e ao uso do
Cabri-Géomètre de Hölzl sobre o arrastamento de figuras no Cabri e Artigue acerca da
importância da seqüência didática como prática de pesquisa. Com este objetivo, procuramos,
primeiramente, identificar os enfoques dos livros didáticos de 5ª a 8ª série, dos currículos
americanos e franceses, do PCN de Matemática e posteriormente as concepções prévias dos
alunos acerca do conceito, levando em conta as variáveis didáticas como eixo de reflexão,
posição da figura, papel de base e propriedades da Reflexão Axial. Os resultados da seqüência
apontaram a influência do Cabri-Géomètre no desempenho dos alunos quanto à construção de
figuras simétricas assim como à associação entre os desenhos geométricos da tela e no que
concerne às propriedades da Reflexão Axial. A seqüência didática foi eficiente quanto à
identificação das características de pontos e figuras simétricas obtidos através da reflexão em
torno de uma reta, do eixo de simetria, todavia, precisa ser retomada quanto às questões que
visam à generalização das propriedades da Simetria Axial pelos alunos
|
5 |
Argumentação e prova: uma situação experimental sobre quadriláteros e suas propriedadesAmorim, Márcia Cristina dos Santos 20 October 2009 (has links)
Made available in DSpace on 2016-04-27T16:58:57Z (GMT). No. of bitstreams: 1
MARCIA CRISTINA DOS SANTOS AMORIM.pdf: 3371817 bytes, checksum: cbce7dedf280961f108d7f7e5606f8b7 (MD5)
Previous issue date: 2009-10-20 / The presente work has a objective a sequence of activities which, with the help of dynamic geometry provided by the Cabri Geometry software, might empower high school students with new ways of thinking and establishing links between information and properties within a meaningful approach to mathematical reasoning. The sequence of activities is linked to the properties of a quadrilateral, which are of an empirical and exploratory nature so as to encourage a deductive approach in students. Our hypothesis is that these activities help students understand quadrilateral concepts and properties, and with the aid of the software tools, enable them to simulate and manipulate objects. Thus, these activities make for a meaningful and effective way of learning and dealing with Mathematics. It is hoped that with this sequence of activities students probe and discuss their conjectures, and put forth mathematically-grounded arguments and justifications to bear them out. The methodology adopted for the elaboration of activities is based on the principles of didactic engineering, which furnished analytical tools for the study of each activity devised. The results were examined according to Balacheff's (1988) classification of proof types. The conclusion drawn is that, thanks to all involved experimentation, manipulation and investigation, dynamic geometry has laid on a meaningful learning environment. As to reasoning and proof, it appears that students find it difficult to break free from specific cases when sustaining their arguments. Developing teaching-learning skills so as to improve construction of mathematical proof is of paramount importance / O presente trabalho tem como objetivo apresentar uma seqüência de atividades que possibilitem a alunos do Ensino Médio novas formas de pensar, relacionar informações e propriedades em uma abordagem significativa para justificativas matemáticas, com o auxílio da geometria dinâmica proporcionada pelo software Cabri-Géomètre. A sequência de atividades está relacionada com as propriedades dos quadriláteros e tem um caráter empírico e exploratório com a preocupação de fomentar no aluno a necessidade da demonstração dedutiva. Temos como hipótese que o desenvolvimento de atividades contribui para auxiliar o aluno na compreensão dos conceitos e propriedades dos quadriláteros, assim, com o uso das ferramentas do software será possível simular e manipular objetos oportunizando uma maneira eficiente e significativa de aprender e fazer Matemática. Com esta seqüência de atividades, esperamos que os alunos investiguem, discutam suas conjecturas e produzam argumentos ou justificativas matemáticas que as validem ou não. A metodologia utilizada para a elaboração das seqüências se baseou em noções da engenharia didática, que forneceu subsídios como fonte de observação para realizarmos uma análise de cada atividade aplicada. Os resultados foram examinados segundo a classificação dos tipos de provas de Balacheff (1988).Concluímos que a geometria dinâmica proporcionou um ambiente de aprendizagem significativo, com base na experimentação, manipulação e investigação. Quanto à argumentação e prova, percebemos que o aluno não consegue desprender-se dos casos particulares para concretizar a argumentação. Após este trabalho refletimos que desenvolver habilidades para elevar o nível de conhecimento quanto à construção de provas em Matemática é elemento essencial no processo de ensino e aprendizagem
|
6 |
Analyse et propagation des incertitudes associées à la dépressurisation de l’Hélium 3 sur les transitoires de puissance du réacteur CABRI / Analysis and propagation of uncertainties associated with Helium-3 depressurization on the characteristics of power transients in the CABRI reactorClamens, Olivier 26 October 2018 (has links)
CABRI est un réacteur piscine conçu pour tester du combustible irradié dans des conditions accidentelles de type RIA, c'est à dire d'insertion intempestive de réactivité.Un circuit dédié de dépressurisation d'hélium 3, contenu dans les barres transitoires, permet d'injecter jusqu'à 4 $ de réactivité contrée majoritairement par l'effet Doppler quand la puissance atteint en quelques millisecondes jusqu'à 200000 fois la puissance initiale de 100 kW.La thèse présente les améliorations apportées à la prédiction des transitoires et les études d'incertitudes qui en découlent.Le calcul par cinétique ponctuelle couplée à la thermohydraulique 1D et échanges de chaleur des transitoires de puissance CABRI a été renforcé par l'ajout de métamodèles basés sur des analyses expérimentales et des calculs Best-Estimate de la dépressurisation d'hélium 3, des effets en réactivité et des paramètres cinétiques.L'amélioration de la modélisation des transitoires de puissance a eu un impact positif sur la prédiction des essais CABRI.Le code SPARTE, associé à la plate-forme URANIE, ont permis de propager les incertitudes expérimentales et de modélisation.Finalement, l'optimisation des transitoires pour améliorer la conception d'expériences dans CABRI est abordée. / CABRI is a pool type pulsed reactor designed for studying pre-irradiated nuclear fuel behavior under RIA (Reactivity Initiated Accident) conditions.The helium-3 depressurization from the transient rods system allows the insertion of up to 4 $ reactivity mainly countered by the Doppler effect when the power reaches in few milliseconds up to 200,000 times the initial 100~kW power.This thesis presents the improvements added to the power transients prediction and the associated uncertainties studies.The point kinetics calculation coupled with 1D thermal-hydraulics and heat transfer has been improved by the addition of surrogate models based on experimental analysis and Best-Estimate calculations of the helium-3 depressurization and of the reactivity effects and of the kinetics parameters.The power transients modeling improvements have a positiv impact on the CABRI tests prediction.The propagation of the experimental and of the modeling uncertainties was realized with the SPARTE code and the URANIE uncertainty platform.Finally, the power transients characteristics optimization is approached in order to improve the CABRI experiments designing.
|
7 |
Um estudo exploratório sobre o uso da informática na resolução de problemas trigonométricosSormani Junior, Celio [UNESP] January 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:48Z (GMT). No. of bitstreams: 0
Previous issue date: 2006Bitstream added on 2014-06-13T20:13:08Z : No. of bitstreams: 1
sormanijunior_c_me_bauru.pdf: 2771677 bytes, checksum: 6c78b6bdd60558599211c466a6c06903 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta dissertação, elaborada com abordagem qualitativa e delineamento exploratório, quatro sujeitos, alunos da segunda série do segundo grau de uma escola pública do interior do Estado de São Paulo, foram observados enquanto resolviam problemas de trigonometria, usando o software Cabri Géomètre II, como o objetivo de se obter informações sobre como o uso de recursos tecnológicos poderia influenciar este processo e fornecer subsídios para a elaboração de estratégias educacionais que contemplassem o uso de tecnologia. A fundamentação teórica baseou-se na teoria da formação de conceitos de Klausmeier e Goodwin (1977), na teoria de Sternberg (2000) sobre a resolução de problemas e na teoria de Ausubel (1980) sobre a aprendizagem significativa. Os resultados obtidos indicaram que o uso do Cabri, dentro de estratégias educacionais elaboradas pelo professor, pode conduzir à aprendizagem significativa, em virtude de sua alta potencialidade significativa, principalmente pela utilização dos recursos de geometria dinâmica e dos recursos de registro. / On this work, prepared with qualifying approach and exploratory outline, four second-grade students from a Public High School in the interior of the state of São Paulo were observed while solving trigonometry problems using Cabri Géomètre II software in order to obtain information about how the use of technological resources could influence this process as well as supply subsidies to the elaboration of educational strategies which contemplate the use of technology. The theoretical fundamentals were based in the Klausmeier e Goodwin's theory of notions (1977), the Sternberg's theory of solving problems (2000) and the Ausubel's theory of significative learning (1980). The results obtained indicate that the use of Cabri within the educational strategies prepared by the teacher can lead to significative learning due to its high meaningful potential, especially through the use of dynamic geometry and register resources.
|
8 |
Stejnolehlost s podporou Cabri ve středoškolské geometrii / The homothety with Cabri support in secondary school geometryJANÁČEK, Petr January 2009 (has links)
The theme of this graduation thesis is the education of homothety using CABRI II Plus. It includes interactive files on CD and methodical instruction how to use them. It is also very useful tool for self-education.
|
9 |
A Educação Matemática e o software Cabri: uma pesquisa-ação com alunos de 7ª série do ensino fundamental / Mathematics Education and the software Cabri: a research-action with students from 7th grade of Elementary SchoolDelatorre, Paula Cristiane Stuchi 26 January 2007 (has links)
Made available in DSpace on 2016-01-26T18:49:56Z (GMT). No. of bitstreams: 1
PAULA_stuch_DISSERTACAO_EDUCACAO_novo.pdf: 548465 bytes, checksum: 01bf3ed10087e3663bd575d2282c0ca8 (MD5)
Previous issue date: 2007-01-26 / The present work is a research about the influence of the software Cabri-Géomètre in Geometry teaching. It has as goal to verify if Cabri-Géomètre collaborates with the learning of geometric concepts in Ensino Fundamental. The adopted methodology was of qualitative nature of the kind research-action of Phenomenologic approach. The research was accomplished in the State School Colonel Francisco Whitacker, in Anhumas SP, it was developed in 13 sessions of 50 minutes and it had as participants 27 students from 7th grade, all them with ages among 13 and 14 years. About the theoretical foundation we punctuated some ideas that were taken as categories of analysis: a) explore what the student have already known collaborating the significative learning; b) aspects that difficults or makes impossible the learning; c) the importance of the didactic contract which establishes teacher and student s reciprocal obligations; d) use the computer as tool to help on the learning; e) allow the student to discover and construct his own ideas, giving emphasis to the concrete knowledge according to the construcionist approach; f) work the sequence of five levels of the model Van Hiele: visualization, analysis, informal deduction, formal deduction and inflexibility. As result, we verify that the software brings contributions to the learning because it helps to establish na inviting didactic contract for good terms in classroom, allows the exploration of previous knowledge, it is na environment that helps the hypothesis be formulated and testified and it also can be used in a construcionist environment. / A presente dissertação trata de uma pesquisa sobre a influência do software Cabri-Géomètre no ensino de Geometria. Teve como objetivo verificar se o Cabri-Géomètre favorece a aprendizagem de conceitos geométricos no Ensino Fundamental. A metodologia adotada foi de natureza qualitativa do tipo pesquisa-ação de abordagem Fenomenológica. A pesquisa foi realizada na Escola Estadual Coronel Francisco Whitacker, de Anhumas SP, desenvolveu-se ao longo de 13 sessões de 50 minutos e teve como participantes 27 alunos de 7ª série, todos eles com idades entre 13 e 14 anos. Da fundamentação teórica pontuamos algumas idéias que foram tomadas como categorias de análise: a) explorar o que o aluno já sabe favorecendo a aprendizagem significativa; b) aspectos que dificultam ou impossibilitam a aprendizagem; c) a importância do contrato didático que estabelece as obrigações recíprocas do professor e do aluno; d) utilizar o computador como ferramenta para auxiliar na aprendizagem; e) permitir que o aluno descubra, pesquise e construa suas próprias idéias, dando ênfase ao conhecimento concreto segundo a abordagem construcionista; f) trabalhar a seqüência dos cinco níveis do modelo Van Hiele: visualização, análise, dedução informal, dedução formal e rigor. Como resultado, constatamos que o software traz contribuições para a aprendizagem, pois ele ajuda a estabelecer um contrato didático convidativo a boas relações em sala de aula, permite a exploração de conhecimentos prévios, é um ambiente que favorece que as hipóteses sejam formuladas e testadas e também pode ser usado em um ambiente construcionista.
|
10 |
A Educação Matemática e o software Cabri: uma pesquisa-ação com alunos de 7ª série do ensino fundamental / Mathematics Education and the software Cabri: a research-action with students from 7th grade of Elementary SchoolDelatorre, Paula Cristiane Stuchi 26 January 2007 (has links)
Made available in DSpace on 2016-07-18T17:54:23Z (GMT). No. of bitstreams: 1
PAULA_stuch_DISSERTACAO_EDUCACAO_novo.pdf: 548465 bytes, checksum: 01bf3ed10087e3663bd575d2282c0ca8 (MD5)
Previous issue date: 2007-01-26 / The present work is a research about the influence of the software Cabri-Géomètre in Geometry teaching. It has as goal to verify if Cabri-Géomètre collaborates with the learning of geometric concepts in Ensino Fundamental. The adopted methodology was of qualitative nature of the kind research-action of Phenomenologic approach. The research was accomplished in the State School Colonel Francisco Whitacker, in Anhumas SP, it was developed in 13 sessions of 50 minutes and it had as participants 27 students from 7th grade, all them with ages among 13 and 14 years. About the theoretical foundation we punctuated some ideas that were taken as categories of analysis: a) explore what the student have already known collaborating the significative learning; b) aspects that difficults or makes impossible the learning; c) the importance of the didactic contract which establishes teacher and student s reciprocal obligations; d) use the computer as tool to help on the learning; e) allow the student to discover and construct his own ideas, giving emphasis to the concrete knowledge according to the construcionist approach; f) work the sequence of five levels of the model Van Hiele: visualization, analysis, informal deduction, formal deduction and inflexibility. As result, we verify that the software brings contributions to the learning because it helps to establish na inviting didactic contract for good terms in classroom, allows the exploration of previous knowledge, it is na environment that helps the hypothesis be formulated and testified and it also can be used in a construcionist environment. / A presente dissertação trata de uma pesquisa sobre a influência do software Cabri-Géomètre no ensino de Geometria. Teve como objetivo verificar se o Cabri-Géomètre favorece a aprendizagem de conceitos geométricos no Ensino Fundamental. A metodologia adotada foi de natureza qualitativa do tipo pesquisa-ação de abordagem Fenomenológica. A pesquisa foi realizada na Escola Estadual Coronel Francisco Whitacker, de Anhumas SP, desenvolveu-se ao longo de 13 sessões de 50 minutos e teve como participantes 27 alunos de 7ª série, todos eles com idades entre 13 e 14 anos. Da fundamentação teórica pontuamos algumas idéias que foram tomadas como categorias de análise: a) explorar o que o aluno já sabe favorecendo a aprendizagem significativa; b) aspectos que dificultam ou impossibilitam a aprendizagem; c) a importância do contrato didático que estabelece as obrigações recíprocas do professor e do aluno; d) utilizar o computador como ferramenta para auxiliar na aprendizagem; e) permitir que o aluno descubra, pesquise e construa suas próprias idéias, dando ênfase ao conhecimento concreto segundo a abordagem construcionista; f) trabalhar a seqüência dos cinco níveis do modelo Van Hiele: visualização, análise, dedução informal, dedução formal e rigor. Como resultado, constatamos que o software traz contribuições para a aprendizagem, pois ele ajuda a estabelecer um contrato didático convidativo a boas relações em sala de aula, permite a exploração de conhecimentos prévios, é um ambiente que favorece que as hipóteses sejam formuladas e testadas e também pode ser usado em um ambiente construcionista.
|
Page generated in 0.0356 seconds