Spelling suggestions: "subject:"carles""
41 |
The Calderón problem for connectionsCekić, Mihajlo January 2017 (has links)
This thesis is concerned with the inverse problem of determining a unitary connection $A$ on a Hermitian vector bundle $E$ of rank $m$ over a compact Riemannian manifold $(M, g)$ from the Dirichlet-to-Neumann (DN) map $\Lambda_A$ of the associated connection Laplacian $d_A^*d_A$. The connection is to be determined up to a unitary gauge equivalence equal to the identity at the boundary. In our first approach to the problem, we restrict our attention to conformally transversally anisotropic (cylindrical) manifolds $M \Subset \mathbb{R}\times M_0$. Our strategy can be described as follows: we construct the special Complex Geometric Optics solutions oscillating in the vertical direction, that concentrate near geodesics and use their density in an integral identity to reduce the problem to a suitable $X$-ray transform on $M_0$. The construction is based on our proof of existence of Gaussian Beams on $M_0$, which are a family of smooth approximate solutions to $d_A^*d_Au = 0$ depending on a parameter $\tau \in \mathbb{R}$, bounded in $L^2$ norm and concentrating in measure along geodesics when $\tau \to \infty$, whereas the small remainder (that makes the solution exact) can be shown to exist by using suitable Carleman estimates. In the case $m = 1$, we prove the recovery of the connection given the injectivity of the $X$-ray transform on $0$ and $1$-forms on $M_0$. For $m > 1$ and $M_0$ simple we reduce the problem to a certain two dimensional $\textit{new non-abelian ray transform}$. In our second approach, we assume that the connection $A$ is a $\textit{Yang-Mills connection}$ and no additional assumption on $M$. We construct a global gauge for $A$ (possibly singular at some points) that ties well with the DN map and in which the Yang-Mills equations become elliptic. By using the unique continuation property for elliptic systems and the fact that the singular set is suitably small, we are able to propagate the gauges globally. For the case $m = 1$ we are able to reconstruct the connection, whereas for $m > 1$ we are forced to make the technical assumption that $(M, g)$ is analytic in order to prove the recovery. Finally, in both approaches we are using the vital fact that is proved in this work: $\Lambda_A$ is a pseudodifferential operator of order $1$ acting on sections of $E|_{\partial M}$, whose full symbol determines the full Taylor expansion of $A$ at the boundary.
|
42 |
Quelques problèmes de contrôle d'équations aux dérivées partielles : inégalités spectrales, systèmes couplés et limites singulièresLéautaud, Matthieu 22 June 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse à la contrôlabilité de différentes équations aux dérivées partielles. La première partie est consacrée à la méthode de Lebeau-Robbiano pour le contrôle des équations paraboliques linéaires. On étend tout d'abord cette méthode à des opérateurs elliptiques non-autoadjoints, montrant une inégalité spectrale ainsi que la contrôlabilité de l'équation parabolique associée. On prouve ensuite ces deux propriétés pour un modèle de transmission à travers une interface, pour lequel la condition de transmission implique une diffusion tangentielle. La preuve repose sur une inégalité de Carleman, uniforme par rapport au petit paramètre représentant l'épaisseur de l'interface. Dans la deuxième partie, on analyse les propriétés de certains systèmes d'équations aux dérivées partielles linéaires couplées par des termes d'ordre zéro. Après avoir étudié la stabilisation de deux équations d'ondes, dont une seulement est amortie, on montre la contrôlabilité en temps grand d'un système similaire au moyen d'un seul contrôle, sous des conditions géométriques optimales sur les zones de contrôle et de couplage. Par des méthodes d'analyse microlocale, on obtient de plus la contrôlabilité de systèmes d'ondes en cascade, ainsi que l'expression exacte du temps minimal de contrôle. On déduit de ces résultats la contrôlabilité des systèmes paraboliques associés, dans des situations où les zones de contrôle et de couplage sont disjointes. Enfin, dans la troisième partie, on étudie la contrôlabilité uniforme de perturbations visqueuses de lois de conservation scalaires, dans la limite de viscosité évanescente. On montre la contrôlabilité exacte globale aux états constants au moyen de contrôles uniformément bornés lorsque la viscosité tend vers zéro.
|
43 |
Contrôlabilité de systèmes gouvernés par des équations aux dérivées partiellesMauffrey, Karine 23 October 2012 (has links) (PDF)
Contrôlabilité de systèmes gouvernés par des équations aux dérivées partielles
|
44 |
Controle hierárquico via estratégia de Stackelberg-Nash para controlabilidade de sistemas parabólicos e hiperbólicosSilva, Luciano Cipriano da 31 March 2017 (has links)
Submitted by Leonardo Cavalcante (leo.ocavalcante@gmail.com) on 2018-05-03T13:44:12Z
No. of bitstreams: 1
Arquivototal.pdf: 1150863 bytes, checksum: a7e25ab87986c9d088c0fe224303f97f (MD5) / Made available in DSpace on 2018-05-03T13:44:12Z (GMT). No. of bitstreams: 1
Arquivototal.pdf: 1150863 bytes, checksum: a7e25ab87986c9d088c0fe224303f97f (MD5)
Previous issue date: 2017-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis we presents results on the exact controllability of the partial Di erential Equations
(PDEs) of the parabolic and hyperbolic type, in the context of hierarchic control, using
the Stackelberg-Nash strategy. In every problems we consider a main control (leader) and
two secondary controls (followers). To each leader we obtain a correnponding Nash equilibrium,
associated to a bi-objective optimal control problem; then we look for a leader of
minimal cost that solves the exact controllability problem. For the parabolic problems we
have distributed and boundary controls, now in the hyperbolics every controls are distributed.
We consider linear and semilinear cases, which we solve using observability inequality
obtained combining right Carleman inequalities. Also we use a xed point method. / Nesta tese apresentamos resultados sobre controlabilidade exata de Equações Diferenciais
Parciais (EDPs) dos tipos parabólico e hiperbólico, no contexto de controle hierárquico,
usando a estratégia de Stackelberg-Nash. Em todos os problemas consideramos um controle
principal (líder) e dois controles secundários (seguidores). Para cada líder obtemos um equil
íbrio de Nash correspondente, associado a um problema de controle ótimo bi-objetivo; então
buscamos o líder de custo que resolve o problema de controlabilidade. Para os problemas
parabólicos temos controles distribuídos e na fronteira, já nos hiperbólico todos os controles
são distribuídos. Consideramos casos lineares e semilineares, os quais resolvemos usando
desigualdade de observabilidade obtidas combinando desigualdades de Carleman adequadas.
Também usamos um método de ponto xo.
|
Page generated in 0.0471 seconds