• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 9
  • 3
  • 2
  • Tagged with
  • 44
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uniform controllability of discrete partial differential equations / Contrôlabilité uniforme des équations aux dérivées partielles disécrétisées

Nguyen, Thi Nhu Thuy 26 October 2012 (has links)
Dans cette thèse, nous étudions les propriétés de contrôlabilité uniforme des semidiscrets approximations de systèmes paraboliques. Dans une première partie, nous nous intéressons à la minimisation de Lq-norme (q > 2) des contrôles semidiscrete pour l'équation parabolique. Notre objectif est de dépasser la limitation de [LT06] à propos de l'ordre ½ de l'absence de limites d'opérateur de contrôle. Plus précisément, nous montrons que la propriété d'observabilité uniforme est également titulaire dans Lq (q > 2), même dans le cas d'un degré d'absence de limites supérieure à 1/2. En outre, une procédure de minimisation pour calculer les commandes d'approximation est fournie. L'étude de l'optimalité Lq dans lapremière partie est dans un contexte général. Cependant, les inégalités d'observabilité discrets qui sont obtenus ne sont pas aussi précises que celles dérivées puis avec des estimations de Carleman. Dans une seconde partie, dans le contexte particulier de unidimensionnels-finis différences nous démontrons une inégalité de Carleman pour une version semi-discret de l'opérateur parabole @t − @x(c@x) qui permet pour dériver les inégalités d'observabilité qui sont beaucoup plus précis. On considère ici que dans le cas où le coefficient de diffusion a un saut qui donne une formulation du problème de transmission. Conséquence de cette inégalité de Carleman, on en déduit cohérentes nul contrôlabilité des résultats pour les classes de linéaires et semi-linéaire des équations paraboliques. / In this thesis, we study uniform controllability properties of semi-discrete approximations for parabolic systems. In a first part, we address the minimization of the Lq-norm (q > 2) of semidiscrete controls for parabolic equation. Our goal is to overcome the limitation of [LT06] about the order 1/2 of unboundedness of the control operator. Namely, we show that the uniform observability property also holds in Lq (q > 2) even in the case of a degree of unboundedness greater than 1/2. Moreover, a minimization procedure to compute the approximation controls is provided. The study of Lq optimality in the first part is in a general context. However, the discrete observability inequalities that are obtained are not so precise than the ones derived then with Carleman estimates. In a second part, in the discrete setting of one-dimensional finite-differences we prove a Carleman estimate for a semi discrete version of the parabolic operator @t − @x(c@x) which allows one to derive observability inequalities that are far more precise. Here we consider in case that the diffusion coefficient has a jump which yields a transmission problem formulation. Consequence of this Carleman estimate, we deduce consistent null-controllability results for classes of linear and semi-linear parabolic equations.
2

Sur le contrôle de Stackelberg de problèmes d'évolution / On the Stackelberg control evolution problems

Mercan, Michelle 05 December 2014 (has links)
De type parabolique et soumis à l’action d’un couple de contrôles (h, k) où h et k jouent des rôles différents ; le contrôle k étant de type "contrôlabilité" et h de type "contrôle optimal".Il est alors naturel de considérer un problème d’optimisation multi-critères. Il existe plusieurs façons d’étudier de tels problèmes. Nous proposons, dans cette thèse, le contrôle de Stackelberg. Il s’agit d’une notion d’optimisation hiérarchique avec, ici, h qui est le "Leader" et k le "Follower". / In this thesis, we are interested in evolution problems governed by parabolic equations subjected to the action of a pair of controls (h, k) where h and k play different roles : the control k being of "controllability" type and h of "optimal control" type.It is then natural to consider a multi-criteria optimization problem. There are several ways to study such problems. We propose in this thesis, the Stackelberg control which is a notion of hierarchical optimization with here, h which is the "Leader" and k the "Follower".
3

Inégalités de Carleman pour des systèmes paraboliques et applications aux problèmes inverses et à la contrôlabilité : contribution à la diffraction d'ondes acoustiques dans un demi-plan homogène.

Ramoul, Hichem 15 March 2011 (has links)
Dans la première partie, on démontre des inégalités de Carleman pour des systèmes paraboliques. Au chapitre 1, on démontre des inégalités de stabilité pour un système parabolique 2 x 2 en utilisant des inégalités de Carleman avec une seule observation. Il s'agit d'un problème inverse pour l'identification des coefficients et les conditions initiales du système. Le chapitre2 est consacré aux inégalités de Carleman pour des systèmes paraboliques dont les coefficients de diffusion sont de classe C1 par morceaux ou à variations bornées. A la fin, on donne quelques applications à la contrôlabilité à zéro. La seconde partie est consacrée à l'étude d'un problème de diffraction d'ondes acoustiques dans un demi-plan homogène. Il s'agit d'un problème aux limites associé à l'équation de Helmholtz dans le demi-plan supérieur avec une donnée de Neumann non homogène au bord. On apporte des éléments de réponse sur la question d'unicité et d'existence des solutions pour certaines classes de la donnée au bord. / In the first part, we prove Carleman estimates for parabolic systems. In chapter1, we prove stability inequalities for 2 x 2 parabolic system using Carleman estimates with one observation. It is concerns to the identification of the coefficients and initial conditions of the system. The chapter2 is devoted to th Carleman estimates of parabolic systems for which the diffusion coefficients are assumed to be ofclass piecewise C1 or with bounded variations. In the end, we give some applications to the null controllability. The second part is devoted to the study of the scattering problem of acoustics waves in a homogeneous half-plane. It is about a boundary value problem associated to the Helmholtz equation in theupper half-plane with a nonhomogeneous Neumann boundary data. We provide some answers to the question of uniqueness and existence of solutions for some classes of the boundary data.
4

INEGALITES DE MARKOV SINGULIERES ET APPROXIMATION DES FONCTIONS HOLOMORPHES DE LA CLASSE M

GENDRE, LAURENT 02 June 2005 (has links) (PDF)
En premier, nous montrons l'existence d'inégalités de Markov sur les courbes algébriques singulières de Rn. Nous donnons une signification géométrique à l'exposant de Markov en montrant qu'il est minoré par la multiplicité de la singularité de la courbe complexifiée dans Cn. Nous construisons une paramétrisation de Puiseux en la singularité réelle de la courbe complexifiée. Nous la prolongeons à un ouvert de C partout dense, afin d'obtenir la propriété d'HCP de la fonction de Green avec pôle à l'infini dans la courbe complexifiée, via la métrique des géodésiques. En second, nous montrons un théorème de type Bernstein pour les classes de fonctions intermédiaires entre les fonctions holomorphes et les fonctions indéfiniment différentiables sur des classes de compacts s-H convexes de Cn . Pour démontrer ce résultat, nous donnons une représentation intégrale sur les compacts s-H convexes de Cn des fonctions de A¥(K) via un noyau adéquat , nous approchons ce noyau par les noyaux à poids de type Henkin-Ramirez. Nous proposons une nouvelle propriété géométrique de la fonction de Green avec pôle à l'infini. Pour finir nous donnons quelques applications et corollaires.
5

Estudio de problemas inversos en ecuaciones hiperbólicas provenientes del análisis en flexura litosférica

Palacios Farías, Benjamín Pablo January 2012 (has links)
Ingeniero Civil Matemático / Los resultados obtenidos en esta memoria pertenecen al área de problemas inversos en ecuaciones en derivadas parciales. El objetivo principal fue estudiar la estabilidad de parámetros en dos modelos de placas provenientes de la elasticidad lineal, en función de los datos en la frontera. Más especificamente, se estudiaron dos modelos de placas provenientes de la teoría de elasticidad lineal, para los cuales se encontraron desigualdades de estabilidad sobre potenciales en $L^\infty(\Omega)$ y $W^{1,\infty}(\Omega)$ respectivamente. La herramienta fundamental que se utilizó en las demostraciones y que también forman parte de los resultados principales son dos estimaciones de Carleman. Este tipo de desigualdades son ampliamente utilizadas en problemas inversos para probar estabilidad de parámetros y también en control para obtener desigualdades de observabilidad. Para $\Omega$ un dominio acotado de $\RR^N$ con frontera regular, $N\geq 2$ y $T>0$, se consideró la ecuación de placas de Kirchhoff-Love: $$ \begin{array}{l l} w_{tt} - \gamma_0\Delta w_{tt} + \Delta^2w + q(x)w= {g(x,t)} & \mbox{en } \Omega\times(0,T),\\ \end{array} $$ con condiciones de borde Navier (i.e. sobre $w|_{\partial\Omega}$ y $\Delta w|_{\partial\Omega}$). Aquí, $g$ es la fuente, $\gamma_0$ es una constante positiva, $q$ es un potencial en $L^\infty(\Omega)$ y en el caso $N=2$, $w$ representa la flexura de una placa delgada con respecto al plano horizontal. Para este problema se construyó una desigualdad de Carleman para funciones regulares, con observaciones en un segmento de la frontera del dominio. Como aplicación de lo anterior, se obtuvo una desigualdad de estabilidad Lipschitz, en donde se logró acotar la diferencia de dos potenciales en norma $L^2$ por la diferencia de las observaciones en norma $H^2(0,T;L^2(\partial\Omega))$ y $H^1(0,T;L^2(\partial\Omega))$. El segundo problema abordado en esta memoria fue el modelo de placas de Reissner-Mindlin: \begin{equation*} \left\{ \begin{array}{l l} \theta_{tt} - \mbox{div}(\sigma(\theta)) -\displaystyle \mu^*(x)\,h_0^{-2}(\nabla w - \theta) = f(x,t) & \mbox{en } \Omega\times(0,T) \\ w_{tt} - \mbox{div}(\mu(x)(\nabla w - \theta)) + q(x)w = g(x,t) & \mbox{en } \Omega\times(0,T),\\ \end{array}\right. \end{equation*} con condiciones de borde Dirichlet y donde suponemos $\Omega$ dominio acotado en $\RR^2$ con frontera regular. El operador $\sigma(\cdot)$ est\'a relacionado con el tensor de esfuerzos de la elasticidad, $f$ y $g$ son fuentes, $h_0$ es una constante positiva que representa el espesor de la placa, $\mu^*$ se relaciona con los parámetros de Lamé y $q$ es un potencial en $W^(\Omega)$. Análogamente a los primeros resultados, se construyó una desigualdad de Carleman para este sistema, también con observaciones en la frontera y suponiendo funciones suficientemente regulares, la que luego fue aplicada en la obtención de la estabilidad H\"older del potencial $q$ en norma $L^2$ en función de las observaciones sobre el borde de $\Omega$ con normas $H^2(0,T;(L^2(\partial\Omega))^3)$ y $H^2(0,T;(H^1(\partial\Omega))^3)$. Se probó además la existencia, unicidad y regularidad de las soluciones para el sistema de Reissner-Mindlin, utilizando un método clásico que permite obtener resultados de este tipo. Este resultado resulta orignal ya que se consideran los parámetros de Lamé variables.
6

Estudio de Algunos Problemas Inversos y de Controlabilidad: Transmisión de Ondas y Transporte-Difusión

Mercado Saucedo, Alberto Carlos January 2007 (has links)
No description available.
7

Problèmes inverses pour des problèmes d'évolution paraboliques à coefficients périodiques / Inverse problems for parabolic evolution problems with periodic coefficients

Kaddouri, Isma 23 June 2014 (has links)
Ce travail de thèse est constitué de l'étude de deux problèmes inverses associés à des équations paraboliques à coefficients périodiques. Dans la première partie, on a considéré une équation parabolique à coefficients et condition initiale périodiques. Notre travail a consisté à aborder le cas de coefficient à régularité faible et à minimiser les contraintes d'observations requises pour établir notre résultat de reconstruction du potentiel. On a commencé par établir un résultat d'existence et d'unicité de la solution dans un espace d'énergie adéquat. Ensuite, on a énoncé un principe du maximum adapté aux hypothèses du problème étudié et on a travaillé avec des coefficients mesurables et bornés. Enfin, on a reconstruit le potentiel en établissant une inégalité de Carleman. Le résultat d'identification a été obtenu via une inégalité de stabilité de type Lipschitz. Dans le second travail, on s'est intéressé à la détermination d'un coefficient périodique en espace du terme de réaction dans une équation de réaction-diffusion définie dans l'espace entier $mathbb{R}$. On établit un résultat d'unicité en utilisant un nouveau type d'observations. La nature du problème étudié, posé dans l'espace $mathbb{R}$, nous a permis d'utiliser la notion de vitesse asymptotique de propagation. On a prouvé l'existence de cette vitesse et on l'a caractérisé. On a surdéterminé le problème inverse en choisissant une famille de conditions initiales à décroi-ssance exponentielle. Notre principal résultat est que ce coefficient est déterminé de façon unique, à une symétrie près, par l'observation d'un continuum de vitesses asymptotiques de propagation. / This thesis consists in the study of two problems associated to inverse para-bolic equations with periodic coefficients. We are interested in identifying one coefficient by using two different methods. In the first part, we consider a parabolic equation with periodic coefficients and periodic initial condition. Our work consists to consider the case of coefficient with weak regularity and to minimize the constraints of observations which are required to establish our reconstruction result. We establish a result of existence and uniqueness of the solution in adequate energy space. Then we prove a maximum principle adapted to the hypothesis of the problem studied and we work with measurable and bounded coefficients. Finally, we reconstruct the potential by establishing a Carleman estimate. The identification result was achieved via an inequality of stability. In the second work, we are interested to determine a periodic coefficient of the reaction term defined in the whole space $mathbb{R}$. We establish a uniqueness result by using a new type of observations. The nature of the studied problem allowed us to use the notion of asymptotic speed of propagation. We prove the existence of this speed and we give its characterization. We overdetermin the inverse problem by choosing a family of initial conditions exponentially decaying. Our main result is that the coefficient is uniquely determined up to a symmetry, by the observation of a continuum of asymptotic speed of propagation.
8

Desigualdade de Carleman global para uma Equação da Onda de Transmissão e Aplicação a um Problema Inverso

Sousa Neto, Gilcenio Rodrigues de 10 May 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1506315 bytes, checksum: c118c0832159e55c3a04343c6d51f74a (MD5) Previous issue date: 2012-05-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / We consider a transmission wave equation in two embedded domains in R2, where the speed is a1 > 0 in the inner domain and a2 > 0 in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strongly convex and a1 > a2. As a consequence of this inequality, uniqueness and Lipschitz stability are obtained for the inverse problem of retrieving a stationary potential for the wave equation with Dirichlet data and discontinuous principal coeficient from a single time dependent Neumann boundary measurement. / Considerando uma equação da onda de transmissão em dois domínios imersos em R2, onde a velocidade é a1 > 0 no domínio interior e a2 > 0 no domínio exterior, provamos uma desigualdade de Carleman global para este problema sobre a hipótese de o domínio interior ser fortemente convexo e a1 > a2. Como consequência dessa desigualdade, são obtidas a unicidade e a estabilidade lipschitziana para o problema inverso de retomar um potencial estacionário para a equação da onda com dados de Dirichlet e coeficiente principal descontínuo. Estes dois resultados são obtidos a partir de um único dado (dependente do tempo) de Neumann na fronteira.
9

Desigualdade de Carleman e Controlabilidade Nula para uma EDP com Coeficientes Complexos / Carleman Inequality and null controllability for a PDE with complex coefficients

Santos, Maurício Cardoso 31 August 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1803826 bytes, checksum: 7e6b888ce249e6a65e6ceb39484c36e5 (MD5) Previous issue date: 2010-08-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present work, we study controllability results for two problems on the theory of the partial differential equations. We use global Carleman inequalities to show the null controllability for the heat equation and for a PDE with complex principal part. We obtain the control of minimal norm solving a dual minimization problem. / No presente trabalho, estudaremos resultados de controlabilidade para dois problemas da teoria das equações diferenciais parciais. Por meio de estimativas globais de Carleman, mostraremos detalhadamente a controlabilidade nula para a equação do calor e para uma equação diferencial parcial com parte principal complexa. Obteremos o controle de norma mínima resolvendo um problema dual de minimização.
10

Contrôlabilité d'une équation de Korteweg-de Vries et d'un système d'équations paraboliques couplées. Stabilisation en temps fini par des feedbacks instationnaires / Null controllability of a Korteweg-de Vries equation and of a coupled parabolic equations system. Stabilisation in finite time by means of non-stationary feedback

Guilleron, Jean-Philippe 14 November 2016 (has links)
Ce doctorat porte sur trois domaines de la théorie du contrôle : le contrôle par le bord d'une équation de Korteweg-de Vries, le contrôle de trois équations de la chaleur couplées par des termes cubiques et la stabilisation en temps fini de trois systèmes classiques de dimension finie. Pour l'équation de Korteweg-de Vries, on démontre d'abord une inégalité de Carleman en utilisant un poids exponentiel bien choisi, puis on en déduit la contrôlabilité à 0 de l'équation. Pour le système de trois équations de la chaleur couplées par des termes cubiques, on montre la contrôlabilité à 0 globale alors que le linéarisé autour de 0 n'est pas contrôlable. On applique la méthode du retour pour obtenir la contrôlabilité locale : on construit des trajectoires du système de contrôle allant de 0 à 0 et ayant un linéarisé contrôlable. Puis un changement d'échelle permet d'obtenir un résultat global. Enfin, concernant les trois systèmes de dimension finie, il s'agit de systèmes contrôlables mais à linéarisés non contrôlables et qui ne sont pas stabilisables à l'aide de feedbacks stationnaires (continus). On construit des feedbacks explicites dépendant du temps conduisant à une stabilisation en temps fini. Pour cela on s'occupe de différentes parties du systèmes pendant différents intervalles de temps. / This doctoral thesis focuses on three fields of Control Theory: the control on the edge of the Korteweg-de Vries equation, the control of three heat equations coupled by cubic terms, and the stabilisation in finite time of three classic systems of finite dimension. For the KdV equation, we first demonstrate a Carleman inequality using a well-chosen exponential weight, then we deduce the controllability at zero of the equation. For the system of three heat equations coupled by cubic terms, we show the global controllability at zero even though the linearized system around zero is not controllable. We apply the return method to obtain local controllability: we build control system trajectories going from zero to zero and whose linearised systems are controllable. Then a scale change allows us to obtain a global result. Finally, concerning the three systems of finite dimension, these systems are controllable systems but the linearised systems are not controllable and are not stabilised with means of continuous stationary feedback. We construct an explicit time-dependent feedback leading to a stabilisation in finite time. For this we deal with different parts of systems during different intervals of time.

Page generated in 0.0541 seconds