• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vibrational spectroscopy of cation and anion channelrhodopsins

Yi, Adrian 16 January 2018 (has links)
Optogenetics is a technique to control and monitor cell activity with light by expression of specific microbial rhodopsins. Cation channelrhodopsins (CCRs) and anion channelrhodopsins (ACRs) have been demonstrated to activate and silence cell activity, respectively. In this dissertation, the molecular mechanisms of two channelrhodopsins are studied: a CCR from Chlamydomonas augustae (CaChR1) and an ACR from Guillardia theta (GtACR1). The recently discovered GtACR1 is especially interesting, as it achieves neural silencing with 1/1000th of the light intensity compared to previous microbial rhodopsin silencing ion pumps. Static and time-resolved resonance Raman, FTIR difference, and UV-visible spectroscopies were utilized in addition to various biochemical and genetic techniques to explore the molecular mechanisms of these channelrhodopsins. In CaChR1, Glu169 and Asp299 residues are located nearby the Schiff base (SB) similar to the homologous residues Asp85 and Asp212, which exist in an ionized state in unphotolyzed bacteriorhodopsin (BR) and play a key role in proton pumping. We observe significant changes in the protonation states of the SB, Glu169, and Asp299 of CaChR1 leading up to the open-channel P2 state, where all three groups exist in a charge neutral state. This unusual charge neutrality along with the position of these groups in the CaChR1 ion channel suggests that charge neutrality plays an important role in cation gating and selectivity in these low efficiency CCRs. Significant differences exist in the photocycle and protonation/hydrogen bonding states of key residues in GtACR1 compared to BR and CaChR1. Resonance Raman studies reveal that in the unphotolyzed state of GtACR1, residues Glu68, Ser97 (BR Asp85 homolog), and Asp234 (BR Asp212 homolog) located near the SB exist in charge neutral states. Furthermore, upon K formation, these residues do not change their protonation states. At room temperature, a slow decay of the red-shifted K intermediate is observed, which exists in equilibrium with the L intermediate. At 80 K, a lower thermal barrier for K → L transition is observed compared to BR and CaChR1. This effect may be due to substitution of a Met residue at position 105 for the highly conserved Leu or Ile residue.
2

Elektrophysiologische Untersuchung des gerichteten Protonentransportes in mikrobiellen Rhodopsinen

Vogt, Arend 06 March 2017 (has links)
Mikrobielle Rhodopsine sind lichtsensitive Membranproteine und agieren als Sensoren, Biokatalysatoren oder Ionentransporter. Die Ionentransporter unterteilen sich in lichtgetriebene Ionenpumpen und in lichtaktivierte Kanalrhodopsine. Besonders die Protonenpumpe Bakteriorhodopsin steht schon lange im Fokus biophysikalischer Untersuchungen. Obwohl die Protonenpumpen seit über 40 Jahren intensiv untersucht werden, ist das Wissen über deren elektrophysiologische Eigenschaften noch immer gering. Aus diesem Grund widmete sich diese Arbeit der elektrophysiologischen Charakterisierung der mikrobiellen Rhodopsine mit dem Fokus auf Protonenpumpen. Hierfür wurden vor allem „Two-Electrode Voltage Clamp“ -Messungen (TEVC) an Oozyten des afrikanischen Krallenfrosches Xenopus leavis durchgeführt. Die Untersuchung verschiedener Protonenpumpen hat gezeigt, dass diese eine unerwartet große Diversität in ihren elektrophysiologischen Eigenschaften aufweisen. Von besonderem Interesse war die Beobachtung, dass einige Protonenpumpen neben Pumpströmen auch passive einwärts gerichtete Photoströme zeigten. Besonders deutlich war der „Pump-Kanal-Dualismus“ bei dem Gloeobacter-Rhodopsin ausgeprägt. Andere Protonenpumpen, wie das Bakteriorhodopsin oder Coccomyxa-Rhodopsin, zeigten keine einwärts gerichteten Photoströme. Das Coccomyxa-Rhodopsin wurde aufgrund seiner hohen Photostrom-Amplituden in Oozyten für eine Mutationsanalyse ausgewählt. Diese Mutationsanalyse verhalf die strukturellen Ursachen für die funktionalen Unterschiede zu identifizieren, welche sowohl zwischen den Protonenpumpen untereinander als auch gegenüber Kanalrhodopsinen beobachtet wurden. Mutationen im Gegenion-Komplex führen zu rein passiven oder inaktiven Transportern. Dagegen übernimmt der extrazelluläre Halbkanal in Protonenpumpe die Aufgabe einen passiven Protonen-Rückfluss während des Pumpzyklus zu verhindern, denn Mutationen in dieser Region verursachen passive Photoströme zusätzlich zum aktiven Pumpstrom. / Microbial rhodopsins are light-sensitive membrane proteins and operate as sensors, enzymes or ion-transporters. The ion transporters are subdivided into light-driven ion pumps and light-gated channels. Biophysical research has put focus on the proton pump bacteriorhodopsin for long time. Despite the fact that light-driven proton pumps are investigated for over 40 years, the knowledge about their electrophysiological properties is surprisingly low. For this reason, this thesis is devoted to the electrophysiological characterization of microbial rhodopsins with special focus on light-driven proton pumps. For this purpose, “Two-Electrode Voltage Clamp”-recordings (TEVC) were primarily performed using oocytes from African clawed frog Xenopus leavis. The investigation of diverse proton pumps has shown that the differences in their electrophysiological behaviors are unexpectedly high. Special interest was laid on proton pumps which show passive inward directed photocurrents when the electrochemical load exceeds a certain level. The dualism of pump and channel activity was particularly pronounced in the proton pump Gloeobacter-rhodopsin. Other proton pumps, for instance bacteriorhodopsin or Coccomyxa-rhodopsin, do not show inward directed photocurrents. Due to high photocurrent amplitudes, the Coccomyxa-rhodopsin was selected for an efficient mutagenesis study. This study allowed the identification of structural key determinants for the differences among proton pumps themselves and for the differences of proton pumps in comparison with light-gated ion channels (channelrhodopsins). Therefore, mutations of the counter-ion-complex cause inactive or purely passive transporters. The extracellular half-channel is the key element in proton pumps which prevents passive proton-backflow during the pump-cycle. Mutations in this region lead to passive leak-currents in overlap with the remaining pump-activity.
3

FTIR spectroscopic study on the photocycle mechanism of Channelrhodopsins

Kaufmann, Joel Christoph David 02 January 2020 (has links)
Kanalrhodopsine (ChRs) sind lichtgesteuerte Ionenkanäle aus einzelligen Grünalgen, die in der Optogenetik verwendet werden. Photonabsorption führt zur Isomerisierung des Retinal-Kofaktors, was eine Reihe von Reaktionen auslöst, die als Photozyklus bezeichnet werden und die Bildung des leitenden Zustands umfassen. In dieser Arbeit wurde der Photozyklus-Mechanismus ausgewählter ChRs mittels FTIR (Fourier Transform Infrarot)- und UV-Vis-Spektroskopie, sowie Retinalextraktion und HPLC (Hochleistungsflüssigkeitschromatographie)-Analyse untersucht. Photorezeptoren sind dafür optimiert, Lichtenergie zu nutzen, um Konformationsänderungen des Proteins hervorzurufen. Dafür wird ein Teil der Lichtenergie durch eine transiente Verdrillung des Chromophors gespeichert. In dieser Arbeit wird gezeigt, dass der Transfer der gespeicherten Energie zum Protein in ReaChR stark vom Protonierungszustand von Glu163 beeinflusst wird; er wird durch eine erhöhte Rigidität des aktiven Zentrums bei protoniertem Glu163 verlangsamt. In Chrimson hingegen relaxiert der Chromophor nach Photoisomerisierung, was auf einen verdrillten Chromophor im Dunkelzustand hinweist, was vermutlich für die bathochrome Verschiebung von Bedeutung ist. Zusätzlich zur Chromophorgeometrie beeinflusst der Protonierungszustand von Glu163 in ReaChR und dem homologen Glu165 in Chrimson die Stereoselektivität der Photoreaktion. Ein weiterer Faktor der Stereoselektivität ist Asp196 in ReaChR (Asp195 in C1C2), welches im Photozyklus deprotoniert. Die Bildung des leitenden Zustands in C1C2 und ReaChR geht mit einem Wassereinstrom ins Protein einher, welcher den Transport größerer Kationen erleichtert. Die Deprotonierung von Glu130 in ReaChR (Glu129 in C1C2) verändert die Ionenselektivität des Kanals, wie aus elektrophysiologischen Messungen bekannt ist. In Chrimson ist das Ausmaß des Wassereinstroms deutlich reduziert, was – in Übereinstimmung mit elektrophysiologischen Experimenten – den Transport von Protonen begünstigt. / Channelrhodopsins (ChRs) are light-gated ion channels found in single-cell algae and used in optogenetics. Photon absorption leads to isomerization of the retinal cofactor, initiating a number of reactions that are referred to as photocycle and involve formation of the ion-conducting state. In this thesis, the photocycle mechanism of selected ChRs was investigated using FTIR (Fourier Transform Infrared) and UV-Vis spectroscopy, as well as retinal extraction and subsequent HPLC (High Performance Liquid Chromatography) analysis. Photoreceptors are optimized to use photon energy to drive conformational changes of the protein. Therefore, a fraction of the photon energy is stored by a transient distortion of the chromophore. In this thesis, it is shown that in ReaChR the transfer of the stored energy to the protein is largely affected by the protonation state of Glu163, being decelerated by protonated Glu163 due to an enhanced rigidity of the active site. In contrast, the chromophore in Chrimson relaxes upon photoisomerization, hinting at a distorted retinal geometry in the dark state, which is probably essential for its unprecedented bathochromic absorption. In addition to the chromophore geometry, the protonation state of Glu163 in ReaChR and the homologue Glu165 in Chrimson affects the stereoselectivity of the photoreaction. Another factor for stereoselectivity is Asp196 in ReaChR (Asp195 in C1C2) which deprotonates in the photocycle. Formation of the ion-conducting state in C1C2 and ReaChR involves water influx into the protein, facilitating transport of larger cations. Deprotonation of Glu130 in ReaChR (Glu129 in C1C2) alters the ion selectivity of the channel as known from electrophysiological experiments. In Chrimson, the extent of water influx is drastically reduced which favors the conductance of protons in agreement with electrophysiological characterization.

Page generated in 0.0554 seconds