• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 5
  • 2
  • Tagged with
  • 22
  • 22
  • 22
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chemical Mechanical Planarization: Study of Conditioner Abrasives and Synthesis of Nano-Zirconia for Potential Slurry Applications

Manocha, Chhavi 31 October 2008 (has links)
Chemical Mechanical Planarization (CMP) has emerged as the central technology for polishing wafers in the semiconductor manufacturing industry to make integrated multi-level devices. As the name suggests, both chemical and mechanical processes work simultaneously to achieve local and global planarization. In spite of extensive work done to understand the various components and parameters affecting the performance of this process, many aspects of CMP remain poorly understood. Among these aspects of CMP is the role of abrasives in the processes of conditioning and polishing. These abrasives are present in the chemical slurry between the wafer and the pad for polishing and play an important role during the conditioning to regenerate the clogged polishing pads. This thesis has focused on the study of abrasives, both in conditioning and polishing. The first part of the thesis concentrates on the effect of abrasive size for conditioning purposes. Diamond is being widely used as an abrasive for conditioning the polishing pad. Five different sizes of diamonds ranging from 0.25µm to 100µm were selected to condition the commercially available IC 1000 polishing pad. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) analysis were carried out on the pad to study the effect of the abrasive size on the pad morphology. In-situ 'coefficient of friction' was also monitored on the CETR bench top Tester. The final impact was seen in the form of surface defects on the polished copper wafers. As pad morphologies resulting from different conditioning affect contact areas, the second part of the thesis focuses on developing a simple method to quantify the area of contact between the wafer and pad using optical microscopy. Optical images that were obtained were analyzed for the change in contact area with the change in operating conditions. Finally, the third part of the thesis details the synthesis and characterization of nano-zirconia for potential slurry applications. Nano-zirconia was synthesized using the plasma route and then characterized using different analytical techniques like TEM and XRD. These nanoparticles were then used to make abrasive slurry for oxide CMP and the polished wafers were analyzed for surface defects.
12

Development of Techniques to Quantify Chemical and Mechanical Modifications of Polymer Surfaces: Application to Chemical Mechanical Polishing

Diao, Jie 01 December 2004 (has links)
This thesis is devoted to development of techniques to quantify chemical and mechanical influences during chemical mechanical polishing (CMP) near the surface of a polymer film, poly (biphenyl dianhydride-p-phenylenediamine) (BPDA-PDA). To quantify chemical modifications during CMP, an iterative algorithm has been proposed to extract depth profiles based on Ficks second law of diffusion in a multi-element system from data supplied by angle resolved x-ray photoelectron spectroscopy. It has been demonstrated that the technique can be used to quantify the depth of chemical modification of BPDA-PDA surfaces treated with alkaline solutions. Polymer chains near the surface realign themselves during CMP and polarized infrared spectroscopy is chosen in this thesis to quantify chain orientations induced by CMP to evaluate the mechanical influence. A theoretical framework based on a 44 matrix method for spectral simulation together with an oscillator model for BPDA-PDA has been used to obtain quantitative chain orientation information on a post-CMP BPDA-PDA sample by fitting simulated polarized infrared spectra to experimentally generated spectra. Verification of the oscillator model was established from the complex refractive indices of BPDA-PDA films, which were determined using a new method (R/T ratio method) developed in this thesis to extract complex refractive indices of films with biaxial symmetry from polarized transmission and reflection spectra.
13

Preparation of Inorganic Tubular Membranes and Their Applications in Treatment of Chemical Mechanical Polishing

Li, Cyuan-jia 12 February 2006 (has links)
In this study, the wastewater from oxide chemical mechanical polishing (oxide-CMP) process of semiconductor wafer fabrication was treated by crossflow electro-ultrafiltration with self-prepared tubular inorganic membranes. First of all, a recipe of alumina (72 wt%), bentonite (8 wt%) and water (20 wt%) was determined for the extrusion of green tubes. The porous ceramic green tubes of 200 mm in length thus obtained were subjected to further curing, drying, and sintering processes. The inner and outer radii of the porous ceramic supports were 6.0 mm and 10.0 mm, respectively. Then, nanoscale TiO2 (i.e., the slip) was prepared by sol-gel method. On the tops of porous ceramic supports thin layers of nanoscale TiO2 were applied by the dip-coating method. To analyze the microstructures of tubular inorganic membranes and confirm the nanoscale TiO2 films, a scanning electron microscope equipped with energy-dispersive X-ray analyzer (SEM-EDS) and X-ray diffractometer (XRD) were employed. The self-prepared tubular inorganic composite membranes (TICMs) were futher characterized by permporometry and Kelvin equation to determine their pore size distributions and nominal pore sizes. In addition, through the employment of polyethylene glycol (PEG) of different molecular weights and total organic carbon analysis method, the molecular weight cut-off (MWCO) and tightness coefficient of each TICM was determined. It was found that the self-prepared TICMs were suitable for ultrafiltration applications. In this work, wastewater from the oxide-CMP process of semiconductor wafer fabrication was treated by crossflow electro-ultrafiltration with self- prepared TICMs. The permeate qualities were evaluated. Experimental results have shown that permeate of a higher filtration rate, a turbidity of below 1 NTU, 90% removal of total suspended solids, and a removal efficiency of greater than 80% for soluable silica could be obtained under the conditions of an electric filed strength of 30 V/cm and transmembrane pressure of 5 kgf/cm2. For permeate to meet the feed water requirements for the ultrapure water system, it has to be further treated to lower its silica content to ¡Ø 6 mg/L. Overall speaking, by incorporation of the tubular inorganic composite membranes prepared in this work into the novel electrofiltration treatment module for the treatment of oxide-CMP wastewater would yield permeate suitable for the purpose of reclamation.
14

Preparation of a Novel Tubular Carbon/Ceramic Composite Membrane and Its Applications in Treating Chemical Mechanical Polishing Wastewaters by Coupling with a Simultaneous Electrocoagulation and Electrofiltration Process

Tsai, Chi-Ming 27 August 2008 (has links)
This study addresses three major parts: (1) to establish the technology for the preparation of tubular ceramic membrane substrates; (2) to establish the technology for the preparation of tubular carbon/ceramic membranes; and (3) to reclaim water from chemical mechanical polishing (CMP) wastewaters by a combined treatment system of a novel simultaneous electrocoagulation/electrofiltration (EC/EF) process coupled with laboratory-prepared tubular composite membranes (TCMs) and evaluate its feasibility of water recycling and operating cost. First, in this work the green substrates of tubular porous ceramic membranes consisting of corn starch were prepared using the extrusion method, followed by curing, drying, and sintering processes. Experimental results have demonstrated that an addition of starch granules to the raw materials would increase the porosity, pore size, and permeability of the sintered matrices but accompanied by a decrease of the compressive strength. It revealed that the membrane substrates with desired pore sizes and permeability could be obtained by adding a proper amount of corn starch. The nominal pore sizes of the prepared membrane substrates were ranging from 1 to 2 £gm. The membrane substrates thus obtained are suitable for crossflow microfiltration applications. Second, the carbon/alumina TCMs and carbon fibers/carbon/alumina TCMs were obtained by the chemical vapor deposition (CVD) method resulting in a pore size distribution of 2 to 20 nm and a nominal pore size ranging from 3 to 4 nm. Besides, during the CVD process the reaction temperature was found to be the main factor for influencing the pore size of carbon fibers/carbon/alumina TCMs and the type of carbon fibers. When the reaction temperature was above or equal to 1000 ¢J, the pore size of TCMs increased due to the pyrolysis of thin carbon layers. The ¡§Tip-Growth¡¨ mechanism was found for tubular carbon fibers formation under such conditions. On the other hand, ¡§Base-Growth¡¨ (also known as ¡§Root-Growth¡¨) mechanism was found for curved and irregular carbon fibers formation when reaction temperature was under or equal to 950 ¢J. Third, for reclaiming water from CMP wastewaters, experimental results of laboratory-prepared carbon/alumina TCMs incorporated into the custom-made EC/EF treatment module used was found to be capable of treating oxide-CMP wastewater in a proper manner. Permeate thus obtained had a turbidity of below 0.5 NTU and the removal efficiencies of TS (total solids content) and Si were 80% and 93 %, respectively. Further, for understanding the applicability of fractional factorial design and Taguchi experimental design, two laboratory-prepared carbon fibers/carbon/alumina TCMs (i.e., Tube B and Tube E obtained from two different preparation conditions) incorporated into the EC/EF treatment module were chosen for evaluating the performance of CMP wastewaters treatment. Permeate obtained based on the fractional factorial design of experiments had a turbidity of below 1.0 NTU and the removal efficiencies of TOC (total organic carbon), Cu and Si were all above 80 % except for the TS (i.e., ranging from 72 to 74%). Permeate obtained based on the Taguchi experimental design had a turbidity of below 0.3 NTU and the removal efficiencies of TS, TOC, Cu and Si were ranging from 82 to 91%. Apparently, similar optimum operating conditions were obtained from the fractional factorial design and Taguchi experimental design. Permeate thus obtained could be reused as the make-up water of cooling towers. The operating cost of Cu-CMP wastewater treatment based on a total water reclaim of 600 m3 per day was determined to be NT$ 98 (i.e., US$ 3.22) and NT$ 35 (i.e., US$ 1.05) per m3 of permeate for Case 1 (i.e., the filtration area of 0.0189 m2 in one EC/EF module) and Case 2 (i.e., the filtration area of 0.0801 m2 in one EC/EF module), respectively.
15

A study of the colloidal stability of mixed abrasive slurries of silica and ceria nanoparticles for chemical mechanical polishing

Lin, Fangjian Unknown Date
No description available.
16

Surface Optimization of the Silicon Templates for Monolithic Photonics Integration

Hu, Chen January 2011 (has links)
Silicon photonics is emerging as a potential field to achieve optical interconnects towards the realization of ultra high bandwidth. The indirect band-gap property of silicon still remains as a big challenge to incorporate silicon photonic active device, for example, silicon-based laser. In the Laboratory of Semiconductor Materials at KTH, a monolithic integration platform based on nano-epitaxial lateral overgrowth (nano-ELOG) technique has been proposed to integrate III-V semiconductor materials with silicon for light source application. The integration process involves uneven surface morphology at different stages. The surfaces of the indium phosphide seed layer on silicon used for ELOG, the mask deposited on it (the silicon/silicon dioxide waveguide) and the ELOG indium phosphide layer grown on it prior to laser growth are often rough. In this thesis work, we have optimized chemical mechanical polishing (CMP) technique in order to achieve an even surface. The same procedure is also necessary to reach the optimal thickness of different layers to enable effective coupling of light from the laser source into the waveguide. CMP of indium phosphide to obtain an average surface roughness of < 1 nm has been optimized by a two-step polishing using different slurries; it results in a step height of ca 3 nm. Similarly the surface of silicon/silicon dioxide “waveguide” has also been optimized with the roughness of ~ 0.5 nm. In the latter case, a step height of 40 nm is retained and this increase with respect to InP is identified to be mainly due to limitations of the polishing machine which is different from that used for indium phosphide. The reduction in step heights with polishing time is analyzed and compared with an existing theoretical model. Our results are in good qualitative agreement with the model. The optimized surface morphology obtained in this work was tested for its suitability for integration. For this evaluation, InP was grown by ELOG in a hydride vapour phase epitaxy reactor with and without CMP of the involved surfaces. The surface after CMP yields layers of better surface morphology with fewer defects as revealed by atomic force microscopy, surface profilometer and cathodoluminescence analysis. The results indicate that the CMP process is useful for monolithic integration for silicon photonics.
17

Identification des processus physico-chimiques à l’origine des défauts locaux des surfaces polies optique et superpolies / Physicochemical mechanisms causing defects of polished and superpolished optical surfaces

Henault, Bastien 27 April 2018 (has links)
Ce travail de thèse porte sur l’étude des mécanismes physico-chimiques mis en jeu lors du polissage mécano-chimique du Zerodur® (vitrocéramique) par un abrasif à base d’oxydes de cérium. Les défauts obtenus à l’issu du polissage ont été caractérisés en microscopie optique et par microscopie à force atomique (AFM). Il en ressort deux principales populations, à savoir des rayures de type « fines » (longitudinales et continues) causées par des débris de matière polie. La seconde est la typologie « rayure éclat » (fractures perpendiculaires au sens de la rayure) causées par des agglomérats d’abrasif. Des analyses en spectroscopie RX de l’abrasif montrent une augmentation du ratio Ce3+/Ce4+ après la phase de polissage, confirmant la part chimique du polissage du Zerodur®. Des analyses de potentiel zêta ont été menées sur ces mêmes abrasifs et montrent une évolution de la charge de surface des particules abrasives. Des observations AFM montrent que plus la part Ce4+ est importante et meilleure est la qualité finale de la surface polie. La surface polie a également été sondée en ToF-SIMS. Il en ressort la présence d’une couche enrichie en cérium de plusieurs dizaines de nanomètres, lieu de la réaction mécano-chimique de polissage. Plus précisément, cette réaction semble avoir lieu dans la phase vitreuse du Zerodur®. / This PhD work focuses on the study of the physicochemical mechanisms involved in the chemical-mechanical polishing of Zerodur® (glass-ceramics) with an abrasive based on cerium oxides. The defects observed after polishing were characterized by optical microscopy and atomic force microscopy (AFM). Two main populations were observed, namely "fine" (longitudinal and continuous stripes) caused by debris of polished material. The second is called "scratch" (perpendicular fractures) caused by abrasive agglomerates. RX spectroscopic analyzes of the abrasive showed an increase in the Ce3+/ Ce4+ ratio after the polishing phase. This point confirms the chemical part of Zerodur® polishing. Zeta potential analyzes were carried out on these same abrasives and show an evolution of the abrasive surface charge. AFM observations show that the higher the Ce4+ concentration, the better the final polished surface quality. The polished surface was also probed with ToF-SIMS analyzes. This shows the presence of a cerium-enriched layer of several tens of nanometers, which may be a site for the chemical-mechanical polishing reaction. More precisely, this reaction seems to take place in the glassy phase of Zerodur®.
18

Processing, Reliability And Integration Issues In Chemical Mechanical Planarization

Zantye, Parshuram B 15 July 2005 (has links)
Global planarization is one of the major demands of the semiconductor industry. Chemical mechanical polishing (CMP) is the planarization method of choice use to achieve the required stringent tolerances essential for successful fabrication of next generation Integrated Circuits (IC). The predominant reason for CMP defects is the shear and normal stresses during polishing to which the material is subjected. Understanding the process of CMP and factor that contribute to overall stress addition during polishing requires an approach that encompasses all the four major categories of variables, namely: a) machine parameters, b) material properties, c) polishing pad characteristics, and d) polishing slurry performance. In this research, we studied the utilized in-situ technique involving acoustic emission (AE) signal monitoring and coefficient of friction (COF) monitoring using a CETRTM Bench Top CMP Tester to evaluate the impact of variation in machine parameters on the CMP process. The mechanical and tribological properties of different candidate materials have been evaluated bring potential challenges in their integration to the fore. The study also involves destructive and non destructive testing of polishing pads performed for characterization and optimization of polishing pad architecture. Finally, the investigation concludes proposing novel nanoparticle CMP slurry which has a predominant chemical component in its polishing mechanism. It was found that the decrease in the mechanical shear and normal loading by: a) operating the process in the low stress regime, b) using potential materials that are mechanically stronger, c) using polishing pads with lesser variation in specific gravity and with a surface that is has its mechanical properties fine tuned to those of the wafer, and d) deploying polishing slurry with a significant chemical component mechanical removal, are some of the approaches that can be employed to meet the future challenges of the CMP process and reduce the defect associated with it.
19

Chemical Mechanical Polishing of Silicon and Silicon Dioxide in Front End Processing

Forsberg, Markus January 2004 (has links)
Chemical mechanical polishing (CMP) has been used for a long time in the manufacturing of prime silicon wafers for the IC industry. Lately, other substrates, such as silicon-on-insulator has become in use which requires a greater control of the silicon CMP process. CMP is used to planarize oxide interlevel dielectric and to remove excessive tungsten after plug filling in the Al interconnection technology. In Cu interconnection technology, the plugs and wiring are filled in one step and excessive Cu is removed by CMP. In front end processing, CMP is used to realize shallow trench isolation (STI), to planarize trench capacitors in dynamic random access memories (DRAM) and in novel gate concepts. This thesis is focused on CMP for front end processing, which is the processing on the device level and the starting material. The effects of dopants, crystal orientation and process parameters on silicon removal rate are investigated. CMP and silicon wafer bonding is investigated. Also, plasma assisted wafer bonding to form InP MOS structures is investigated. A complexity of using STI in bipolar and BiCMOS processes is the integration of STI with deep trench isolation (DTI). A process module to realize STI/DTI, which introduces a poly CMP step to planarize the deep trench filling, is presented. Another investigated front end application is to remove the overgrowth in selectively epitaxially grown collector for a SiGe heterojunction bipolar transistor. CMP is also investigated for rounding, which could be beneficial for stress reduction or to create microoptical devices, using a pad softer than pads used for planarization. An issue in CMP for planarization is glazing of the pad, which results in a decrease in removal rate. To retain a stable removal rate, the pad needs to be conditioned. This thesis introduces a geometrically defined abrasive surface for pad conditioning.
20

Multi-Functional Composite Materials for Catalysis and Chemical Mechanical Planarization

Coutinho, Cecil A 23 February 2009 (has links)
Composite materials formed from two or more functionally different materials offer a versatile avenue to create a tailored material with well defined traits. Within this dissertation research, multi-functional composites were synthesized based on organic and inorganic materials. The functionally of these composites was experimentally tested and a semi-empirical model describing the sedimentation behavior of these particles was developed. This first objective involved the fabrication of microcomposites consisting of titanium dioxide (TiO2) nanoparticles confined within porous, microgels of a thermo-responsive polymer for use in the photocatalytic treatment of wastewater. TiO2 has been shown to be an excellent photocatalyst with potential applications in advanced oxidative processes such as wastewater remediation. Upon UV irradiation, short-lived electron-hole pairs are generated, which produce oxidative species that degrade simple organic contaminants. The rapid sedimentation of these microcomposites provided an easy gravimetric separation after remediation. Methyl orange was used as a model organic contaminant to investigate the kinetics of photodegradation under a range of concentrations and pH conditions. Although after prolonged periods of UV irradiation (~8-13 hrs), the titania-microgels also degrade, regeneration of the microcomposites was straightforward via the addition of polymer microgels with no loss in photocatalytic activity of the reformed microcomposites. The second objective within this dissertation involved the systematic development of abrasive microcomposite particles containing well dispersed nanoparticles of ceria in an organic/inorganic hybrid polymeric particle for use in chemical mechanical polishing/planarization (CMP). A challenge in IC fabrication involves the defect-free planarization of silicon oxide films for successful multi-layer deposition. Planarization studies conducted with the microcomposites prepared in this research, yield very smooth, planar surfaces with removal rates that rival those of inorganic oxides slurries typically used in industry. The density and size of these ceria-microgel particles could be controlled by varying the temperature or composition during synthesis, leading to softer or harder polishing when desired.

Page generated in 0.1047 seconds