• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 118
  • 21
  • Tagged with
  • 326
  • 187
  • 73
  • 58
  • 57
  • 47
  • 46
  • 45
  • 45
  • 44
  • 39
  • 39
  • 35
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Mechanisms of transcriptional repression by pure antiestrogens in breast cancer cells

Traboulsi, Tatiana 08 1900 (has links)
No description available.
292

Chromatin assembly by CAF-1 during homologous recombination : a novel step of regulation / Nouveau mécanisme de régulation de la recombinaison homologue par le complexe d'assemblage des nucléosomes caf-1

Pietrobon, Violena 14 December 2012 (has links)
La réplication des chromosomes est altérée par les facteurs endogènes et/ou exogènes qui perturbent la progression des fourches de réplication. Les cellules doivent donc coordonner la synthèse d’ADN avec des mécanismes assurant la stabilité et le rétablissement des fourches bloquées. La recombinaison homologue (RH) est un mécanisme universel qui permet la réparation de l’ADN et participe au maintien de la réplication des chromosomes. Néanmoins, les mécanismes qui régulent la RH, notamment la RH ectopique versus la RH allélique, restent mal compris. Un autre mécanisme essentiel assurant la stabilité des génomes est l’assemblage de l’ADN néo-synthétisé autour de nucléosomes, conduisant à la constitution de fibres chromatiniennes nécessaires à l’organisation structurale du matériel génétique. Chez Saccharomyces cerevisiae, des défauts d’assemblage de la chromatine conduisent à une instabilité des fourches de réplication et augmentent le taux de RH. Sachant que les chaperonnes d’histones jouent un rôle crucial durant l’assemblage de la chromatine, j'ai décidé de me concentrer sur le rôle de la chaperonne d’histones H3-H4 appelé Chromatin Assembly Factor 1 (CAF-1) dans les mécanismes de RH, chez Schizosaccharomyces pombe. En effet, la RH est associée à une étape de synthèse de l’ADN, et peu de choses sont connues sur l’assemblage de la chromatine au cours de cette synthèse. Mes résultats ont exclu un rôle de CAF-1 dans la recombinaison allelique et le maintien de la stabilité des fourches de réplication. Par contre, CAF-1 joue un rôle important dans les mécanismes de recombinaisons ectopique et dans la formation de réarrangements chromosomiques induits par des blocages de fourches. Mes données suggèrent un modèle selon lequel CAF-1 permet la stabilisation d’intermédiaires de recombinaison précoces (D-loop), via le dépôt de nucleosomes au cours de l’extension par polymérisation de ces intermédiaires. Ainsi CAF-1 neutralise la dissociation des intermédiaires de recombinaison précoces par l’ADN helicase Rqh1. CAF-1 ferait partie d'un équilibre qui règle la stabilité/dissociation des intermédiaires de recombinaison précoces. J'ai montré que le rôle de CAF-1 dans cet équilibre a une importance toute particulière pendant la recombinaison non-allelique, révélant ainsi un nouveau niveau de régulation des mécanismes de RH par l'assemblage de la chromatine. / The replication of chromosomes can be challenged by endogenous and environmental factors, interfering with the progression of replication forks. Therefore, cells have to coordinate DNA synthesis with mechanisms ensuring the stability and the recovery of halted forks. Homologous recombination (HR) is a universal mechanism that supports DNA repair and the robustness of DNA replication. Nonetheless, mechanisms regulating HR pathways, such as ectopic versus allelic recombination, remain poorly understood. Another essential pathway for genome stability is the wrapping of newly replicated DNA around nucleosomes, leading to the constitution of a chromatin fibre, which allows the structural organization of the genetic material. In Saccharomyces cerevisiae, deficiencies in chromatin assembly pathways lead to replication forks instability and consequent increase in the rate of HR. Histone chaperones play a crucial role during chromatin assembly, thus I decided to focus on the H3-H4 histone chaperone Chromatin Assembly Factor 1 (CAF-1), to study its role in HR processes in Schizosaccharomyces pombe. Indeed, HR includes a DNA synthesis step and little is known about the associated chromatin assembly. My data excluded a role for CAF-1 in allelic recombination and in the maintenance of forks stability. However, CAF-1 was found to play an important role during ectopic recombination, in promoting chromosomal rearrangements induced by halted replication forks. My data support a model according to which CAF-1 allows the stabilization of early recombination intermediates (D-loop), via nucleosome deposition during the elongation of these intermediates. Doing so, CAF-1 counteracts the dissociation of early recombination intermediates by the helicase Rqh1. Therefore, CAF-1 appears to be part of an equilibrium that regulates stability/dissociation of early steps of recombination events. Importantly, I found that the role of CAF-1 in this equilibrium is of particular importance during non-allelic recombination, revealing a novel regulation level of HR mechanisms and outcomes by chromatin assembly.
293

Étude de la fonction de l’histone méthyltransférase SET-2 et de ses interacteurs dans le maintien de la lignée germinale de Caenorhabditis elegans / Study of the Caenorhabditis elegans SET-2 histone methyltransferase and its interactors in germline maintenance

Herbette, Marion 28 June 2019 (has links)
Les modifications post-traductionelles des histones contribuent à l’expression génique et à la stabilité du génome. La méthylation de la lysine 4 de l’histone H3 (H3K4me), une marque associée aux promoteurs de gènes transcrits, est déposé par les methyltransferases hautement conservées de la famille SET1, dans le contexte du complexe COMPASS. SET-2, l’homologue de SET1 chez Caenorhabditis elegans, est responsable de la déposition de H3K4me dans la lignée germinale, et son inactivation provoque une perte progressive de la fertilité. Le but de mon travail de thèse a été d’étudier comment SET-2 et la méthylation de H3K4 contribuent au maintien de la lignée germinale. J’ai montré que l’absence de SET-2 provoque une sensibilité accrue aux dommages à l’ADN. Cependant, les voies de signalisation et de réparation de ces dommages sont fonctionnelles dans le mutant set-2. Par séquençage de l’ADN, j’ai par ailleurs montré que la stérilité progressive observée en l’absence de set-2 n’est pas due à une capacité de réparation réduite. L’ensemble de mes résultats suggère que H3K4me pourrait agir en aval de la signalisation de dommages à l’ADN, en influençant l’organisation de la chromatine aux sites des cassures double brin. J’ai d’autre part mis en évidence une nouvelle fonction pour la méthylation de H3K4 dans l’organisation de la chromatine en montrant que set-2 interagit génétiquement avec le complexe Condensine II et la Topoisomérase II, facteurs clefs de l’organisation mitotique des chromosomes. Des expériences de microscopie par FLIM-FRET ont d’ailleurs validé une fonction de H3K4 méthylée dans l’organisation de la chromatine dans la lignée germinale. Enfin, j’ai montré par analyses transcriptomiques que la protéine CFP-1 du complexe COMPASS est impliquée dans la régulation du programme transcriptionnel de la lignée germinale et que cette fonction est indépendante de SET-2. L’ensemble de mes résultats montre comment la régulation chromatinienne impacte le maintien d’une lignée germinale fonctionnelle à plusieurs niveaux. / Post-translational modifications of histones contribute to gene expression and genome stability. Methylation of lysine 4 of histone H3 (H3K4me), a mark associated with actively transcribed genes, is deposited by the highly conserved SET1 family methyltransferases acting in COMPASS related complexes. SET-2, the SET1 homologue in Caenorhabditis elegans, is responsible for the deposition of H3K4me in the germ line, and its inactivation causes progressive loss of fertility. The purpose of my PhD work was to study how SET-2 and the methylation of H3K4 contribute to the maintenance of the germ line. I have shown that the absence of SET-2 causes increased sensitivity to DNA damage. However, the DNA damage-induced signaling and repair pathways are functional in the set-2 mutant. By DNA sequencing, I have also shown that the progressive sterility observed in the absence of set-2 is not due to a reduced repair capacity. Together, my results suggest that H3K4 methylation may act downstream of DNA damage signaling, potentially by influencing the organization of chromatin at the sites of double-strand breaks. I have also described a new function for H3K4 methylation in the organization of chromatin by showing that set-2 genetically interacts with the Condensitin II complex and Topoisomerase II, key factors in mitotic chromosome organization. Moreover, FLIM-FRET microscopy experiments have validated a role for H3K4 methylation in germline chromatin organization. Finally, using transcriptomic analyses, I have described a function for CFP-1, a component of the COMPASS complex, in the regulation of the germline transcriptional program independent of SET-2. Altogether, my results show how chromatin regulation affects the maintenance of a functional germline through multiple mechanisms.
294

The role of the peptidyl prolyl isomerase Rrd1 in the transcriptional stress response

Poschmann, Jeremie 08 1900 (has links)
La régulation de la transcription est un processus complexe qui a évolué pendant des millions d’années permettant ainsi aux cellules de s’adapter aux changements environnementaux. Notre laboratoire étudie le rôle de la rapamycine, un agent immunosuppresseur et anticancéreux, qui mime la carence nutritionelle. Afin de comprendre les mécanismes impliqués dans la réponse a la rapamycine, nous recherchons des mutants de la levure Saccaromyces cerevisiae qui ont un phenotype altérée envers cette drogue. Nous avons identifié le gène RRD1, qui encode une peptidyl prolyl isomérase et dont la mutation rend les levures très résistantes à la rapamycine et il semble que se soit associé à une réponse transcriptionelle alterée. Mon projet de recherche de doctorat est d’identifier le rôle de Rrd1 dans la réponse à la rapamycine. Tout d’abord nous avons trouvé que Rrd1 interagit avec l’ARN polymérase II (RNAPII), plus spécifiquement avec son domaine C-terminal. En réponse à la rapamycine, Rrd1 induit un changement dans la conformation du domaine C-terminal in vivo permettant la régulation de l’association de RNAPII avec certains gènes. Des analyses in vitro ont également montré que cette action est directe et probablement liée à l’activité isomérase de Rrd1 suggérant un rôle pour Rrd1 dans la régulation de la transcription. Nous avons utilisé la technologie de ChIP sur micropuce pour localiser Rrd1 sur la majorité des gènes transcrits par RNAPII et montre que Rrd1 agit en tant que facteur d’élongation de RNAPII. Pour finir, des résultats suggèrent que Rrd1 n’est pas seulement impliqué dans la réponse à la rapamycine mais aussi à differents stress environnementaux, nous permettant ainsi d’établir que Rrd1 est un facteur d’élongation de la transcription requis pour la régulation de la transcription via RNAPII en réponse au stress. / Transcriptional regulation is a complex process that has evolved over millions of years of evolution. Cells have to sense environmental conditions and adapt to them by altering their transcription. Herein, we study the role of rapamycin, an immunosuppressant and anticancer molecule that mimics cellular starvation. To understand how the action of rapamycin is mediated, we analyzed gene deletion mutants in the yeast Saccharomyces cerevisiae that have an altered response to this drug. Deletion of RRD1, a gene encoding a peptidyl prolyl isomerase, causes strong resistance to rapamycin and this was associated with a role of Rrd1 in the transcriptional response towards rapamycin. The main focus of my PhD was therefore to unravel the role of Rrd1 in response to rapamycin. First, we discovered that Rrd1 interacts with RNA polymerase II (RNAPII), more specifically with its C-terminal domain and we showed that in response to rapamycin, Rrd1 alters the structure of this C-terminal domain. This phenomenon was confirmed to be directly mediated by Rrd1 in vitro, presumably through its peptidyl prolyl isomerase activity. Further, we demonstrated that Rrd1 is capable of altering the occupancy of RNAPII on genes in vivo and in vitro. With the use of ChIP on chip technology, we show that Rrd1 is actually a transcription elongation factor that is associated with RNAPII on actively transcribed genes. In addition, we demonstrate that Rrd1 is indeed required to regulate the expression of a large subset of genes in response to rapamycin. This data let us propose a novel mechanism by which Rrd1 regulates RNAPII during transcription elongation. Finally, we provide evidence that Rrd1 is not only required for an efficient response towards rapamycin but to a larger variety of environmental stress conditions, thus establishing Rrd1 as a transcriptional elongation factor required to fine tune the transcriptional stress response of RNAPII.
295

Mécanismes d'action des anti-oestrogènes totaux

Hilmi, Khalid January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
296

Importance des facteurs cellulaires LSD1 et HIC1 dans la restriction de l'expression du VIH-1 dans les cellules microgliales

Le Douce, Valentin 24 September 2012 (has links) (PDF)
Les multi-thérapies actuelles permettent de maintenir l'infection au VIH-1 sous contrôle, mais malheureusement n'entraînent pas l'éradication du virus du fait de l'existence de réservoirs cellulaires, où le virus est intégré de façon latente. Les cellules microgliales, cibles privilégiées du VIH-1 dans le cerveau, sont les macrophages résidents du système nerveux central et ont été décrites comme un réservoir cellulaire avec une longue durée de vie. Ce genre de cellule, infectée de façon latente, apparaît comme un des principaux obstacles à l'éradication. Ainsi, la compréhension des mécanismes sous-jacents impliqués dans l'extinction de la transcription virale, semble une étape cruciale afin de parvenir à purger ces réservoirs. Notre laboratoire à déjà montré l'importance du répresseur transcriptionnel CTIP2 dans l'établissement et le maintien de la latence dans ces cellules. Dans le cadre de ma thèse je me suis intéressé à deux autres facteurs cellulaires, LSD1 et HIC1. Au cours de mes travaux, j'ai mis en évidence le rôle répresseur de ces protéines sur la transcription virale dans les microglies. LSD1 coopère avec CTIP2 pour promouvoir l'établissement de marques épigénétiques au niveau du promoteur viral pour induire la mise en place d'hétérochromatine. LSD1 est à l'origine du recrutement de CTIP2, mais aussi d'un autre complexe multiprotéique, COMPASS. A la différence de CTIP2 et LSD1, le suppresseur de tumeur HIC1 est un perturbateur du transactivateur viral TAT. HIC1 est préalablement modifié post-traductionnellement par la déacétylase SIRT1 et va ensuite contrecarrer l'activité de TAT afin d'empêcher la réactivation de la transcription du virus. Ainsi, tandis que LSD1 et CTIP2 favorise l'établissement de la latence, HIC1 permet quant à lui d'entretenir cet état du provirus dans les cellules microgliales. Les travaux présentés ici mettent en évidence deux nouveaux facteurs de la restriction de l'expression virale et permettent de définir de nouvelles cibles thérapeutiques potentielles pour les stratégies de purge des réservoirs.
297

Development of advanced methods for super-resolution microscopy data analysis and segmentation / Développement de méthodes avancées pour l'analyse et la segmentation de données de microscopie à super-résolution

Andronov, Leonid 09 January 2018 (has links)
Parmi les méthodes de super-résolution, la microscopie par localisation de molécules uniques se distingue principalement par sa meilleure résolution réalisable en pratique mais aussi pour l’accès direct aux propriétés des molécules individuelles. Les données principales de la microscopie par localisation sont les coordonnées des fluorochromes, un type de données peu répandu en microscopie conventionnelle. Le développement de méthodes spéciales pour le traitement de ces données est donc nécessaire. J’ai développé les logiciels SharpViSu et ClusterViSu qui permettent d’effectuer les étapes de traitements les plus importantes, notamment une correction des dérives et des aberrations chromatiques, une sélection des événements de localisations, une reconstruction des données dans des images 2D ou dans des volumes 3D par le moyen de différentes techniques de visualisation, une estimation de la résolution à l’aide de la corrélation des anneaux de Fourier, et une segmentation à l’aide de fonctions K et L de Ripley. En plus, j’ai développé une méthode de segmentation de données de localisation en 2D et en 3D basée sur les diagrammes de Voronoï qui permet un clustering de manière automatique grâce à modélisation de bruit par les simulations Monte-Carlo. En utilisant les méthodes avancées de traitement de données, j’ai mis en évidence un clustering de la protéine CENP-A dans les régions centromériques des noyaux cellulaires et des transitions structurales de ces clusters au moment de la déposition de la CENP-A au début de la phase G1 du cycle cellulaire. / Among the super-resolution methods single-molecule localization microscopy (SMLM) is remarkable not only for best practically achievable resolution but also for the direct access to properties of individual molecules. The primary data of SMLM are the coordinates of individual fluorophores, which is a relatively rare data type in fluorescence microscopy. Therefore, specially adapted methods for processing of these data have to be developed. I developed the software SharpViSu and ClusterViSu that allow for most important data processing steps, namely for correction of drift and chromatic aberrations, selection of localization events, reconstruction of data in 2D images or 3D volumes using different visualization techniques, estimation of resolution with Fourier ring correlation, and segmentation using K- and L-Ripley functions. Additionally, I developed a method for segmentation of 2D and 3D localization data based on Voronoi diagrams, which allows for automatic and unambiguous cluster analysis thanks to noise modeling with Monte-Carlo simulations. Using advanced data processing methods, I demonstrated clustering of CENP-A in the centromeric regions of the cell nucleus and structural transitions of these clusters upon the CENP-A deposition in early G1 phase of the cell cycle.
298

3-D Genome organization of DNA damage repair / Rôle de l’organisation 3D du génome dans la réparation des dommages à l'ADN

Banerjee, Ujjwal Kumar 18 December 2017 (has links)
Notre génome est constamment attaqué par des facteurs endogènes et exogènes qui menacent son intégrité et conduisent à différents types de dommages. Les cassures double brins (CDBs) font partie des dommages les plus nuisibles car elles peuvent entraîner la perte d'information génétique, des translocations chromosomiques et la mort cellulaire. Tous les processus de réparation se déroulent dans le cadre d'une chromatine hautement organisée et compartimentée. Cette chromatine peut être divisée en un compartiment ouvert transcriptionnellement actif (euchromatine) et un compartiment compacté transcriptionnellement inactif (hétérochromatine). Ces différents degrés de compaction jouent un rôle dans la régulation de la réponse aux dommages à l’ADN. L'objectif de mon premier projet était de comprendre l'influence de l'organisation 3D du génome sur la réparation de l'ADN. Pour cela, j’ai utilisé deux approches complémentaires dans le but d’induire et de cartographier les CDBs dans le génome de souris. Mes résultats ont mis en évidence un enrichissement de γH2AX, facteur de réparation des dommages à l’ADN, sur différentes régions du génome de cellules souches embryonnaires de souris, et ont également montré que les dommages persistent dans l’hétérochromatine, contrairement à l’euchromatine qui est protégée des dommages. Pour mon deuxième projet, j'ai cartographié l'empreinte génomique de 53BP1, facteur impliqué dans la réparation des CDBs, dans des cellules U2OS asynchrones et des cellules bloquées en G1 afin d’identifier de nouveaux sites de liaison de 53BP1. Mes résultats ont permis d’identifier de nouveaux domaines de liaison de 53BP1 couvrant de larges régions du génome, et ont montré que ces domaines de liaison apparaissent dans des régions de réplication moyenne et tardive. / Our genome is constantly under attack by endogenous and exogenous factors which challenge its integrity and lead to different types of damages. Double strand breaks (DSBs) constitute the most deleterious type of damage since they maylead to loss of genetic information, translocations and cell death. All the repair processes happen in the context of a highly organized and compartmentalized chromatin. Chromatin can be divided into an open transcriptionally active compartment (euchromatin) and a compacted transcriptionally inactive compartment (heterochromatin). These different degrees of compaction play important roles in regulating the DNA damage response. The goal of my first project was to understand the influence of 3D genome organization on DNA repair. I used two complementary approaches to induce and map DSBs in the mouse genome. My results have shown that enrichment of the DNA damage repair factor γH2AX occurs at distinct loci in the mouse embryonic stem cell genome and that the damage persists in the heterochromatin compartment while the euchromatin compartment is protected from DNA damage. For my second project, I mapped the genomic footprint of 53BP1, a factor involved in DSBs repair, in asynchronous and G1 arrested U2OS cells to identify novel 53BP1 binding sites. My results have identified novel 53BP1 binding domains which cover broad regions of the genome and occur in mid to late replicating regions of the genome.
299

Contrôle du développement floral chez Arabidopsis thaliana : Identification de nouveaux interacteurs de l'activateur chromatinien ULTRAPETALA 1 et caractérisation fonctionnelle du facteur de transcription ULT1 INTERACTING FACTOR 1 / Identification of chromatin activating complexes that initiate morphogenetic programs in plants

Moreau, Fanny 30 October 2014 (has links)
Le facteur ULTRAPETALA1 (ULT1) est impliqué dans plusieurs processus développementaux chez Arabidopsis thaliana, dont le maintien de l'homéostasie des méristèmes aériens et la morphogénèse florale. ULT1 est en particulier essentiel à la restriction du territoire d'expression de WUSCHEL (WUS), acteur central du maintien de l'identité des cellules souches. ULT1 est également déterminant dans l'activation spatio-temporelle d'AGAMOUS (AG), gène clé du développement floral, nécessaire à la croissance déterminée de la fleur. Néanmoins les mécanismes moléculaires impliqués dans le fonctionnement d'ULT1 n'ont pas tous été élucidés, notamment la nature de ses partenaires protéiques lui assurant sa spécificité de liaison à l'ADN. Les objectifs du travail de thèse ont été (i) d'identifier de nouveaux interacteurs d'ULT1 et (ii) de caractériser la fonction moléculaire et développementale de l'un d'entre-eux. Par des approches génétique, moléculaire et biochimique, nous avons identifié le répresseur transcriptionnel ULT1 INTERACTING FACTOR 1 (UIF1) et caractérisé sa fonction dans le contrôle de l'activité du méristème floral chez Arabidopsis thaliana. UIF1 est en particulier capable de lier spécifiquement une séquence promotrice du gène WUS. Par cette étude nous apportons un mécanisme pour la reconnaissance spécifique de ses cibles par ULT1. Par une approche gènes candidats, nous avons identifié de nouveaux interacteurs d'ULT1, pouvant expliquer (i) son effet sur le retrait de marques chromatiniennes maintenant un locus inactif (interaction avec la déméthylase RELATIVE OF EARLY FLOWERING 6); (ii) sa fonction trithorax activatrice (interaction avec ARABIDOPSIS TRITHORAX LIKE I); et enfin (III) son rôle dans l'initiation de la transcription de gènes cibles (interaction avec le domaine C-terminal de l'ARN Polymérase II). Ces données positionnent ULT1 à l'interface entre dé-répression chromatinienne et initiation transcriptionnelle. / The ULTRAPETALA1 (ULT1) factor is involved in several developmental processes during Arabidopsis thaliana life cycle such as the homeostasis maintenance at aerial meristems and floral morphogenesis. In particular, ULT1 is critical to the restriction of the expression territory of WUSCHEL (WUS), a central player in stem cell maintenance. ULT1 is also essential for the spatio-temporal activation of AGAMOUS (AG), a key floral developmental gene necessary to flower determinate growth. Nevertheless, the molecular mechanisms through which ULT1 functions haven't all been solved yet, including the nature of its protein partners assuring its binding specificity to DNA targets. The objectives of this thesis were (i) to identify new ULT1 interactors and (ii) to characterize the molecular and developmental function of one of them. By genetic, molecular and biochemical approaches, we identified the ULT1 INTERACTING FACTOR 1 (UIF1) transcriptional repressor and characterized its function in the control of floral meristem activity in Arabidopsis thaliana. In particular, UIF1 is able to specifically bind a promoter sequence in the WUS gene. With this study we provide a mechanism for specific recognition of target genes by ULT1. By a candidate gene approach, we identified novel ULT1 partners, which may explain (i) ULT1 effect on removal of chromatin repressive marks that maintain a locus in an inactive state (interaction with the demethylase RELATIVE OF EARLY FLOWERING 6); (ii) the ULT1 activating trithorax function (interaction with ARABIDOPSIS TRITHORAX LIKE I); and finally (iii) ULT1 role in the transcriptional initiation of target genes (interaction with the C-terminal domain of RNA Polymerase II). This dataset reveals a function for ULT1 at the interplay between chromatin de-repression and transcriptional initiation.
300

Dissection des fonctions mitotiques de la kinase Aurora B par CALI (Chromophore-Assisted Light Inactivation) / New insights in Aurora B's mitotic functions using chromophore assisted light inactivation.

Davidas, Axelle 12 November 2012 (has links)
La kinase Aurora B appartient au complexe des protéines passagères. Ce complexe est impliqué dans la régulation de la condensation, constriction et ségrégation des chromosomes, ainsi que dans la cytokinèse. Son rôle est donc crucial pour prévenir la formation de cellules cancéreuses. Cependant, l'étude de la fonction précise d'Aurora B dans chacune des phases de la mitose est limitée par la durée de celle-ci, et par le manque de spécificité des inhibiteurs existants. Nous avons donc développé une stratégie basée sur la photo-inactivation de la kinase par le chromophore Killer-Red, fusionné à la protéine. L'émission locale de ROS après irradiation, permet alors la photo-inactivation spécifique et temporelle d'Aurora B. La photo-inactivation d'Aurora B avant anaphase aboutie soit à un arrêt de la mitose, soit à la régression du sillon de division, provoquée par l'entrée en anaphase en présence de chromosomes retardés. La photo-inactivation d'Aurora B en début d'anaphase a pour conséquence la régression du sillon de division en cytokinèse ; apportant la première indication directe de l'implication d'Aurora B dans le fuseau mitotique en cytodiérèse. De façon surprenante, la photo-inactivation de la kinase au niveau du corps résiduel, après constriction du sillon de division, n'affecte pas l'abscission. La photo-inactivation d'Aurora B n'affecte pas la localisation des autres membres du complexe des protéines passagères, indiquant que la kinase n'est pas impliquée dans la dynamique du complexe. Les résultats obtenus montrent sans aucun doute l'implication d'Aurora B dans chacune des phases de la mitose, suggérant que la phosphorylation par Aurora B de ses substrats permet le controle de la division cellulaire. / Aurora B is a mitotic kinase involved in chromosome condensation and segregation as well as cytokinesis. Aurora B together with INCENP, Survivin, TD60 and Borealin constitute the chromosome passenger protein complex (CPC), which localizes to the inner centromeres all through metaphase, transfers to the spindle midzone in anaphase and to the midbody in cytokinesis. In order to dissect the mitotic kinase functions of Aurora B as well as its role as an integral part of the CPC in a temporal manner, we have used chromophore assisted light inactivation (CALI) approach. We have combined miRNA ablation of endogenous Aurora B with ectopic expression of miRNA resistant Aurora B fused to the photosensitizer Killer Red (AurB-KR) in HeLa cells. Irradiation at distinct phases of mitosis led to photobleaching of the Killer Red protein, accompanied by emission of reactive oxygen species (ROS) resulting in the photoinactivation of the fused Aurora B. Photoinactivation before anaphase led to either mitotic arrest or cleavage furrow regression due to entry into anaphase with chromosome bridges. CALI at early anaphase also led to cytokinesis failure underlying the role of Aurora B in central spindle function. Consistent with the effects of dominant negative dead-kinase Aurora B, upon CALI the localisation of Incenp, Survivin and Borealin was not affected. Importantly, photoinactivation of Aurora B-KR following cleavage furrow constriction at the midbody had no effect on the completion of abscission. These data, demonstrate unequivocally the distinct roles Aurora B exerts at each phase of mitosis and in particular suggest that Aurora B substrate phosphorylation from metaphase to anaphase is implicated in the spatio-temporal control of cell division and cytokinesis.

Page generated in 0.0997 seconds