• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 118
  • 21
  • Tagged with
  • 326
  • 187
  • 73
  • 58
  • 57
  • 47
  • 46
  • 45
  • 45
  • 44
  • 39
  • 39
  • 35
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Plasticité du programme spatio-temporel de réplication au cours du développement et de la différenciation cellulaire / Plasticity of human replication program during differentiation in relation with change in gene expression and chromatin reorganization

Julienne, Hanna 11 December 2013 (has links)
Le séquençage du génome humain, il y a maintenant 12 ans, a mis en lumière la complexité des mécanismes des processus nucléaires tels que la transcription, la réplication ou l'organisation de la chromatine. Depuis, afin de mieux comprendre ces processus, un ensemble sans cesse croissant de données sur le noyau cellulaire a été produit et mis en ligne par un nombre important de laboratoires de par le monde. Ces données sont à la fois d'une richesse extraordinaire et d'une complexité embarrassante. Dans cette thèse, nous mettons à profit l'ensemble de ces données afin de mieux comprendre les déterminants nucléaires du programme spatio-temporel de réplication. Pour cela nous utilisons pas moins d'une centaine de profils épigénétiques ChiP-seq le long des chromosomes humains et dans diverses lignées cellulaires pour caractériser la structure primaire de la chromatine. Nous démontrons, à l'aide d'outils issus des statistiques multivariées, que l'immense complexité potentielle de ces jeux de données peut être réduite à quatre états chromatiniens principaux et ce dans toutes les lignées cellulaires somatiques étudiées. Cette classification simple, robuste et néanmoins complète est un excellent point d'appui pour l'étude de la réplication. Les quatre états principaux de chromatine sont répliqués à des moments distinct de la phase S (leur « timing » de réplication est différent) et ont un contenu en gènes drastiquement différents. Leur répartition spatiale le long du génome est structurée et est particulièrement visible dans les domaines où le « timing » de réplication dessine un U comme signature de l'existence d'un gradient de polarité des fourches de réplication. Ces U-domaines de la taille du Mpb recouvrent 50% du génome humain et les quatre états chromatiniens principaux se succèdent du bord au centre de ces U-domaines. Les mêmes techniques statistiques appliquées au cas d'une lignée embryonnaire révèlent aussi l'existence de quatre états principaux de chromatine mais de nature différente. La classification en quatre états s'avèrent alors très utile pour comparer l'épigénétique d'une lignée somatique à celle d'une lignée embryonnaire. Aussi, les spécificités du programme de réplication embryonnaire sont mises en rapport avec les spécificités de l'organisation de la chromatine dans cette lignée cellulaire. En particulier, notre étude révèle le rôle majeur de l'histone variant H2AZ dans la pluripotence. / The sequencing of the human genome, twelve years ago, revealed the complexity of the mechanisms underlying nuclear process such as transcription, replication and chromatin organization. In the past few years, to delineate better these processes, datasets on the cell nucleus were gathered and made available online by numerous laboratories around the world. These datasets are, at once, extraordinarily rich and daunting to handle. In this thesis, we take advantage of these datasets to understand better the nuclear determinants of the replication program. We analyze not less than a hundred ChiP-seq profiles along human chromosomes in several cell lines to characterize the primary structure of chromatin. We demonstrate, when using tools from multivariate statistics, that the immense potential complexity of these datasets can be reduced to four prevalent chromatin states in all studied somatic cell lines. This simple and comprehensive classification is an excellent starting point for the study of replication. The four prevalent chromatin states are replicated at different moments of the S-phase (they have a different replication “timing”) and have drasticaly different gene contents. Their spatial repartition along the genome is structured, especially in domains where the timing replication is U-shaped. These megabase sized U-domains cover 50% of the human genome and the four prevalent chromatin states succeed each other from their borders to their center. The same statistical techniques applied on an embryonic stem cell (ESC) also reduced the epigenetic complexity to four prevalent chromatin states which are qualitatively different from the ones in somatic cells. We further show that the specificities of embryonic replication program are link to the specificities of embryonic chromatin. Importantly, our study reveals that the histone variant H2AZ plays a major role in pluripotency.
272

An RNAi screen to identify factors that control the binding of polycomb group proteins to the chromatin across the cell cycle

Huang Sung, Aurélie 03 1900 (has links)
L’établissement et le maintien du patron d’expression génique sont d’une importance critique pour l’identité cellulaire. Les protéines du groupe Polycomb (PcG) agissent sur la chromatine afin de maintenir la répression génique de ses gènes cibles à travers les cycles cellulaires de façon épigénétique. Toutefois, durant la mitose, la structure de la chromatine est grandement altérée par la répression de la transcription, la condensation de la chromatine et le relâchement de nombreux facteurs de transcription. Une question se pose alors : comment les protéines PcG peuvent-elles maintenir leur fonction à travers la mitose ? En interphase, les protéines PcG sont liées à leurs cibles sur la chromatine. Durant la mitose, la majorité des protéines PcG se libèrent de la chromatine mais une petite fraction persiste. Selon l’hypothèse du mitotic bookmarking, cette fraction agirait comme un ensemble de marqueurs guidant le recrutement des protéines PcG en fin de mitose pour maintenir le profil d’expression génique de la cellule. Cependant, nous ne savons pas comment ce recrutement à lieu, ni comment une fraction de protéines PcG est retenue à la chromatine. Afin de répondre à ces questions, un crible à ARN interférent a été établi pour identifier des facteurs contrôlant la liaison des protéines PcG à la chromatine à travers le cycle cellulaire. Quoiqu’une confirmation soit nécessaire, les facteurs spécifiques à l’interphase sont enrichis en protéines co-purifiant avec la protéine PcG testée et en hélicases alors que ceux spécifiques à la mitose sont enrichis en candidats liés aux protéines du groupe Trithorax (TrxG). / A critical part of cell identity is the establishment and maintenance of gene expression patterns. Polycomb group proteins (PcG) act on chromatin to maintain gene repression through cell cycles (epigenetically). However, during mitosis, chromatin structure is greatly altered by transcription repression, chromatin condensation, and the release of many transcription factors. A question then arises: how can PcG proteins maintain their function through mitosis? During interphase, PcG proteins are bound to their chromatin targets. During mitosis, most PcG proteins are released from chromatin, but a small fraction remains bound to chromatin. According to the mitotic bookmarking hypothesis, this fraction acts as a set of markers to guide the recruitment of PcG proteins at the end of mitosis to maintain the gene expression profile. However, we do not know how this recruitment takes place, nor do we know how a fraction of PcG proteins is retained on chromatin. To address these questions, an RNAi screen was established to identify factors that control the binding of PcG proteins to chromatin across the cell cycle. Although a confirmation is necessary, factors identified from interphase cells were enriched in proteins co-purifying with the tested PcG protein and in helicases while mitosis specific factors were enriched in Trithorax group (TrxG) protein related candidates.
273

Etude de la méthylation de l'ADN, du remodelage de la chromatine au cancer, une approche mécanistique de l'épigénétique

Viré, Emmanuelle 19 May 2008 (has links)
La régulation transcriptionnelle des gènes constitue une étape clef de la biologie cellulaire. Parmi les mécanismes impliqués dans la répression génique, les modifications épigénétiques jouent un rôle fondamental. Deux machineries épigénétiques, la méthylation de l’ADN et les protéines du groupe Polycomb, établissent des profils moléculaires qui permettent de distinguer les formes active et inactive de la chromatine. L’établissement et la maintenance de la répression épigénétique des gènes interviennent dans de nombreux processus liés au développement tant biologiques (inactivation du chromosome X chez les mammifères femelles, empreinte génomique ou encore l’expression de gènes tissus-spécifiques) que pathologiques (cancers). <p><p>Au cours de notre thèse de doctorat, nous nous sommes attachés à l’étude des mécanismes par lesquels la méthylation de l’ADN est ciblée en des régions génomiques précises et participe à la répression de l’expression des gènes. La méthylation de l’ADN est catalysée par des enzymes, appelées méthyltransférases de l’ADN (DNMTs), qui transfèrent des résidus méthyls sur les cytosines. Cette modification chimique covalente constitue un niveau de contrôle transcriptionnel important :il existe une corrélation entre méthylation de l’ADN et répression de l’expression génique au niveau de sites génomiques spécifiques. En outre, il semble de plus en plus clair qu’une méthylation aberrante de l’ADN participe au processus de cancérogenèse. A l’heure actuelle, les mécanismes moléculaires par lesquels la méthylation contribue au développement, à la différenciation et à la répression génique restent peu connus. Les données de la littérature suggèrent l’existence d’un lien étroit entre la méthylation de l’ADN et la structure de la chromatine. Celle-ci est notamment régulée par des modifications post-traductionnelles des histones. Il apparaît de plus en plus évident que la méthylation de l’ADN et les modifications des histones prennent part à une «boucle de répression» assurant le maintien et la propagation d’états épigénétiques répressifs. L’étude des mécanismes de la répression médiée par les DNMTs s’avère donc étroitement liée à celle de la structure de la chromatine.<p><p>Dans ce contexte, notre travail de thèse est basé sur l’hypothèse selon laquelle les deux principaux systèmes épigénétiques, la méthylation de l’ADN et les protéines Polycomb, agiraient de concert. Les protéines Polycomb participent au système de mémoire cellulaire, régulent l’expression et la différenciation, agissent sous forme de complexes multimériques associés à la chromatine et interviennent dans le contrôle de la prolifération cellulaire. Au cours de notre travail, nous nous sommes particulièrement intéressé à la protéine Polycomb EZH2 (Enhancer of Zeste) parce qu’elle possède une activité méthyltransférase d’histone sur les 27 de l’histone H3, impliquée dans la répression transcriptionnelle. <p><p>Dans un premier temps, nous avons mis en évidence un lien mécanistique entre les deux machineries épigénétiques principales, méthylation de l’ADN et protéines du groupe Polycomb. Nous avons montré qu’EZH2 interagit in vivo avec les DNMTs et purifie une activité méthyltransférase de l’ADN in vitro. Des expériences d’immunoprécipitation de la chromatine indiquent que les DNMTs fixent les régions promotrices de gènes cibles de EZH2 et que cette liaison est dépendante de la présence d’EZH2. Par ailleurs, l’analyse des promoteurs cibles d’EZH2 par séquençage au bisulfite suggère qu’EZH2 semble également requise pour la méthylation de l’ADN de ces séquences. Nos résultats permettent l’ébauche d’un modèle où EZH2 agit comme une plateforme de recrutement pour les DNMTs (Viré et al. Nature 2006).<p><p>Dans la deuxième partie de notre travail, nous avons investigué le rôle de MeCP2 dans ce modèle. MeCP2 est une protéine à domaine MBD (methyl-binding domain) qui se fixe sélectivement aux cytosines méthylées. Le recrutement de MeCP2 représente un mécanisme majeur par lequel la méthylation de l’ADN réprime la transcription. Nos données montrent que MeCP2 interagit avec EZH2 in vitro et in vivo et que ces protéines fixent des régions promotrices communes. De plus, le niveau de méthylation des cytosines semble prérequis à la présence d’EZH2. Ce travail suggère que MeCP2 puisse recruter EZH2 à la chromatine et renforcer un état réprimé de la chromatine en agissant comme un pont entre deux modifications épigénétiques essentielles, la méthylation de l’ADN et les proteins Polycomb (Viré et al. soumis). <p>En conclusion, notre travail de doctorat devrait permettre un meilleure compréhension des mécanismes moléculaires de l’épigénétique et plus particulièrement de cerner comment la méthylation de l’ADN est intimement connectée au remodelage de la chromatine, participe à la répression transcriptionnelle, est spécifiquement ciblée au sein du génome et contribue au développement et à la cancérogenèse.<p><p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
274

Effets pléiotropes de la lamine A mutée en un site responsable de dystrophie musculaire congénitale : recherche translationnelle, de la clinique aux modèles cellulaires et animaux / Pleiotropic effects of a mutant lamin A responsible for congenital muscular dystorphy : a translational study, from the clinical case to cellular and animal models

Barateau, Alice 26 October 2016 (has links)
Des centaines de mutations du gène LMNA codant les lamines A/C, protéines nucléaires de la famille des filaments intermédiaires, causent des pathologies. Pour ma thèse, j’ai étudié la mutation LMNA p.R388P, nouvellement identifiée comme responsable de dystrophie musculaire congénitale (L-CMD) associée à une lipodystrophie. Mes objectifs étaient de caractériser les propriétés des lamines mutées et leur impact dans des cellules et dans un muscle squelettique.Résultats : 1) La culture ex vivo de fibroblastes de peau de la patiente a révélé leur entrée prématurée en sénescence. 2) Dans des modèles de cellules immortalisées, la lamine A mutante surexprimée, qui s’accumule exclusivement dans le nucléoplasme et est anormalement soluble a modifié les propriétés de ses partenaires LAP2α et émerine, augmenté le nombre de gènes liés par les lamines A, diminué la compaction de la chromatine et induit des dysmorphies nucléaires. Le traitement des cellules avec des inhibiteurs d’histones acétyltransférases ou désacétylases n’a pas restauré la forme des noyaux. 3) Dans le muscle tibial antérieur de souris injecté avec des virus adéno-associés codant les lamines A mutantes, le nombre de fibres oxydatives de type IIA est diminué et l’expression de quelques gènes est modifiée.Conclusion : Nous avons montré que les lamines A R388P altèrent la structure du noyau, l’intégrité de l’enveloppe nucléaire et l’organisation/expression du génome, avec des conséquences sur le typage des fibres de muscle squelettique. De par ses effets pléiotropes, la lamine A mutante apparaît particulièrement toxique, en accord avec la sévérité de la pathologie observée chez la patiente. / Hundreds of mutations in the LMNA gene coding lamins A/C, nuclear intermediate filament proteins, cause several diseases. For my thesis, I studied the p.R388P LMNA mutation, newly identified as responsible for congenital muscular dystrophy (L-CMD) associated with lipodystrophy. My goals were to determine the properties of the mutant lamin A and its impact in cells and a skeletal muscle.Results: 1) Ex vivo culture of patient skin fibroblasts revealed their premature entry into senescence. 2) In immortalised cell lines, the overexpression of the mutant lamin A, which accumulates exclusively in the nucleoplasm and is abnormally soluble, modified the properties of two partners, LAP2α and emerin, increased the amount of genes bound by lamin A, decreased the compaction of chromatin and induced nuclear dysmorphies. Treatment of cells with histone acetyltransferase or deacetylase inhibitors did not rescue nuclear shape. 3) In mouse tibialis anterior muscle injected with adeno-associated virus coding for mutant lamin A, the number of oxidative type IIA myofibres was decreased and expression of few genes modified. Conclusion: We showed that R388P lamins A alter the structure of nuclei, nuclear envelope integrity and the organisation/expression of the genome, with consequences on skeletal muscle fibre typing. Because of its pleiotropic effects, the mutant lamin A appears particularly toxic, in agreement with the severity of the patient’s disease.
275

Rôle de la déubiquitinase BAP1 dans la réponse et la différenciation des lymphocytes T CD8+

Mezrag, Sarah 04 1900 (has links)
L’activation des lymphocytes T (LT) CD8 naïfs mène à leur différenciation en deux sous-populations d'effecteurs, les SLEC (short-lived effector cells) et MPEC (memory precursor effector cells). Après contrôle de l’infection, les SLEC meurent par apoptose tandis que les MPEC deviennent des cellules mémoires qui protègent contre la réinfection. Peu de choses sont connues sur le rôle des mécanismes post-traductionnels, tel que la déubiquitination lors de la différenciation des LT CD8+. La déubiquitinase (DUB) BAP1 joue un rôle clé dans la différenciation thymique et dans le maintien des populations de LT matures. Elle interagit avec plusieurs partenaires comme YY1 et EZH2 dans des cellules autres que les LT. Certains de ces partenaires ont des rôles importants dans la biologie des LT CD8 notamment en contexte infectieux suggérant que BAP1 régule la réponse des LT CD8+ lors d’une infection. Afin de tester cela, des LT CD8 OT-I spécifiques pour le peptide ovalbumine dans lesquelles BAP1 a été surexprimé ont été transférés dans des souris infectées avec la bactérie Listeria monocytogenes codant pour l’ovalbumine (LM-OVA). Nos résultats au pic de la réponse démontrent un défaut de l’expansion clonale des LT CD8+, de la différenciation en SLEC et une augmentation de la différenciation en MPEC. Nous observons aussi une augmentation de la différenciation en LT centrale mémoire (TCM) au stade mémoire. Finalement, nous évaluerons aussi l’impact de la délétion de Bap1 dans la réponse des LT CD8+. Cela contribuera à une meilleure compréhension du rôle de l’ubiquitination dans la biologie des LT CD8+ dont l’importance est centrale dans la réponse face aux infections et au cancer. / Following antigen recognition, naive CD8+ T cells expand massively and differentiate into effector cells. After pathogen clearance, the short-lived effector cells (SLECs) die while memory precursor effector cells (MPECS) persist and differentiate into memory T cells to confer long-term protection against reinfection. The transcriptional network controlling the SLEC/MPEC differentiation is well characterized but little is known about the role of posttranslational modifications, such as deubiquitination, in this process. The deubiquitinase BAP1 interacts with multiple partners including YY1 and EZH2 that are important for CD8+ T cell response. BAP1 has been shown to participate in thymic differentiation and in the maintenance of mature peripheral T cells. However, the function of BAP1 during CD8+ T cell response to infection is unknow. To address this, we overexpressed BAP1 wild type (WT) in ovalbumin-specific (OT-I) CD8+ T cells by retroviral transduction and analysed their response after adoptive transfer into mice infected with Listeria monocytogenes encoding ovalbumin. The overexpression of BAP1 WT severely reduced CD8+ T cell expansion, SLEC differentiation and functionality. It also induces enhanced MPEC differentiation. In fact, we observed an increase in central memory CD8 T cell (TCM) differentiation 30 days following infection. Finally, we confirmed the presence of key partners of BAP1 complex in activated and naïve CD8+ T cells. As next steps, we will analyse the impact of BAP1-deficiency in CD8+ T cell response to infection. This will contribute to a better understanding of the role of deubiquitination in CD8+ T cell response
276

Intégration de signaux au niveau de la chromatine et perturbations de la ribogénèse pour une suppression tumorale efficace

Lopes-Paciencia, Stéphane 02 1900 (has links)
Environ 30% des cancers humains ont une mutation gain de fonction dans l’oncogène RAS, menant à une prolifération cellulaire accrue et une expansion clonale. Cependant, il est bien établi qu’une hyperactivation soutenue de cette voie mène au phénotype inverse, soit la sénescence cellulaire, définie par un arrêt stable de la prolifération. Ce destin cellulaire caractérise les lésions bénignes et la progression vers une tumeur maligne est associée à son contournement. Toutefois, les mécanismes moléculaires permettant aux cellules de distinguer entre une signalisation normale et oncogénique par RAS afin de les engager vers la sénescence plutôt que la prolifération demeurent inconnus. Ainsi, l’hypothèse à la base de ces travaux est que la décision d’engagement vers la sénescence implique une reprogrammation transcriptionnelle qui précède l’établissement des phénotypes caractéristiques de la sénescence, tel le phénotype sécrétoire (SASP) (Article 1). Nous avons ainsi identifié un point de restriction (SeRP) critique pour l’engagement des cellules vers la sénescence en réponse à l’oncogène HRASG12V. Ce SeRP intègre l'intensité et la durée du stress oncogénique, tout en gardant une mémoire des stress antérieurs, en modulant l’accessibilité à la chromatine via l’induction d’un réseau auto-régulé de facteurs de transcription comprenant notamment ETV4 et RUNX1 (Article 2). Notre modèle actuel nous porte à croire que cette augmentation d’accessibilité à la chromatine impliquerait principalement une décondensation de l’hétérochromatine périnucléolaire. Ceci mènerait à l’induction du SASP et aux défauts de ribogénèse observés dans la sénescence. Nous montrons d’ailleurs via la génération d’un modèle murin transgénique que l’induction de tels défauts de ribogénèse à l’échelle systémique mène à un phénotype de vieillissement prématuré suggérant une sénescence des cellules souches (Article 3). Les cellules souches ayant des niveaux particulièrement élevés de ribogénèse et étant très sensibles à des altérations de leur niche tels que l’inflammation chronique, nous pensons que, de manière fortuite, ce modèle reproduit en quelque sorte les conséquences du SeRP. En somme, l’ensemble des travaux présentés dans cette thèse permettent une meilleure compréhension des mécanismes moléculaires régulant l’engagement vers la sénescence. À termes, ces nouvelles notions permettraient de concevoir des stratégies thérapeutiques permettant de faire pencher la balance vers la sénescence dans un contexte de cancers mutés en RAS. / Around 30% of human cancers have a gain-of-function mutation in the RAS oncogene, resulting in increased cell proliferation and clonal expansion. However, it is well established that a sustained hyperactivation of this same pathway leads instead to the opposite phenotype, namely cellular senescence, which is defined by a stable proliferation arrest. This cell fate characterizes benign lesions and progression to malignancy is associated with its bypass. However, the molecular mechanisms allowing cells to distinguish between normal and oncogenic RAS signaling in order to commit them to senescence rather than proliferation remain unknown. Thus, the hypothesis underlying the present work is that this decision to commit to senescence involves a transcriptional reprogramming that precedes the establishment of the senescence-characteristic phenotypes such as the secretory phenotype (Article 1). We have thus identified a restriction point (SeRP) critical for the commitment of cells towards senescence in response to HRASG12V oncogene. This SeRP integrates both the intensity and duration of oncogenic stress while keeping a memory of previous stresses. This integration is achieved by modulating chromatin accessibility via the induction of a self-regulated network of transcription factors including among others ETV4 and RUNX1 (Article 2). Our current model leads us to believe that this increase in chromatin accessibility during the SeRP would mainly involve decondensation of perinucleolar heterochromatin. This would lead to the induction of the pro-inflammatory secretome of senescent cells (SASP) and the ribogenesis defects observed in senescence. Besides, we show via the generation of a transgenic mouse model that the induction of such ribogenesis defects at the systemic scale leads to a premature aging phenotype suggesting stem cells senescence (Article 3). Stem cells having particularly high levels of ribogenesis and being very sensitive to alterations of their niche such as chronic inflammation, we believe that serendipitously, this model somehow reproduces the consequences of the SeRP. In short, all the work presented in this thesis allows for a better understanding of the molecular mechanisms regulating the commitment to senescence. Ultimately, these new notions would allow to design therapeutic strategies to tip the balance towards senescence in the context of RAS-mutated cancers.
277

Étude fonctionnelle de la O-GlcNAcylation de FOXK1 et son rôle dans la transformation oncogénique

Masclef, Louis 02 1900 (has links)
La déubiquitinase BRCA-associated protein 1 (BAP1) est un suppresseur de tumeurs chez l’homme, dont l’activité enzymatique est inactivée dans une variété de cancers. Les modèles actuels proposent que BAP1 forme un complexe de plusieurs méga daltons avec des protéines associées à la chromatine, et que ces protéines et les modifications post-traductionnelles (PTM) facilitent sa fonction de suppresseur de tumeurs en agissant sur la chromatine. Il a été démon-tré que les facteurs de transcription FOXK1 et FOXK2 recrutent BAP1 pour cibler des gènes et réguler la transcription. Cependant, comment FOXK1/2 sont régulés dans le complexe BAP1 reste inconnu. FOXK1/2 sont récemment apparus comme des régulateurs clés du métabolisme et de la prolifération cellulaire dans des conditions normales et de stress. Les observations dans les can-cers humains suggèrent que FOXK1, et non FOXK2, possède des propriétés oncogéniques. En effet, une expression élevée de FOXK1 est associée à une prolifération accrue, ainsi qu’à une invasion et des métastases plus importantes. Cependant, les mécanismes moléculaires exacts de la dérégulation de FOXK1 restent méconnus. Nos analyses sur la survie des patients montrent qu’une forte expression du transcrit de FOXK1 diminue significativement la survie par rapport aux patients présentant de faibles taux du transcrit de FOXK1, ce qui n’est pas observé avec FOXK2. Pour mieux comprendre les fonctions de FOXK1 et FOXK2, nous avons surexprimé ses protéines dans des fibroblastes humains normaux. Cela nous a conduits à découvrir que les pro-priétés oncogéniques de FOXK1 agissent en partie par l’induction de la voie des E2Fs. Contrai-rement à FOXK2, la surexpression de FOXK1 dans les fibroblastes humains normaux favorise la prolifération cellulaire et retarde l’induction de la sénescence. Nous avons également constaté que lorsque la surexpression de FOXK1 était combinée à d’autres oncogènes, sa capacité à transformer les fibroblastes était significativement augmentée. Ces résultats suggèrent que FOXK1 et FOXK2 jouent différents rôles dans les cellules et qu’un mécanisme peut réguler leur activité différemment. De manière intéressante, nous avons découvert que FOXK1, et non FOXK2, est modifié par O-GlcNAcylation, une modification post-traductionnelle unique connue pour être étroite-ment régulée par les fluctuations du métabolisme cellulaire. Par conséquent, nous avons émis l’hypothèse que la O-GlcNAcylation est un mécanisme important de régulation de l’activité transcriptionnelle de FOXK1. L’identification des sites modifiés sur FOXK1 nous a permis de créer des mutants déficients en O-GlcNAcylation de ce facteur. Alors que la perte de la O-GlcNAcylation n’impacte pas sur le recrutement de FOXK1 à la chromatine, nous avons décou-vert que la O-GlcNAcylation régule les propriétés oncogéniques de FOXK1. En effet, l’absence de la O-GlcNAcylation de FOXK1 diminue la capacité proliférative des cellules ainsi que la crois-sance tumorale. De plus, nos analyses de génomiques nous ont permis de mettre en évidence que la O-GlcNAcylation régule le recrutement de BAP1 sur la chromatine. La diminution de la O-GlcNAcylation sur FOXK1 entraîne une réduction du recrutement de BAP1, ce qui est associé à une augmentation des niveaux de H2AK119Ub, une marque de répression génique ciblée par la déubiquitinase BAP1, ainsi qu’à une diminution de la marque d’activation H3K4me1. Nous proposons un modèle dans lequel la O-GlcNAcylation régule les fonctions biolo-giques de FOXK1 et promeut la croissance tumorale en pilotant les propriétés oncogéniques de ce facteur. Nos analyses suggèrent que la O-GlcNAcylation de FOXK1 est importante pour le bon fonctionnement des complexes sur la chromatine. Comprendre comment FOXK1 et FOXK2 régu-lent BAP1 pourrait nous aider à mieux définir les fonctions de suppression tumorale de BAP1 et comment la dérégulation des facteurs de transcription contribue au développement du cancer. / The deubiquitinase BAP1 (BRCA-associated protein 1) is a tumor suppressor in humans, whose enzymatic activity is inactivated in a variety of cancers. Current models suggest that BAP1 forms mega dalton complex with chromatin-associated proteins, and that these proteins and post-translational modifications (PTMs) facilitate its tumor suppressor function by acting on chromatin. It has been shown that the transcription factors FOXK1 and FOXK2 recruit BAP1 to target genes and regulate transcription. However, how FOXK1/2 are regulated within the BAP1 complex remains unknown. FOXK1/2 have recently emerged as key regulators of metabolism and cell proliferation under normal and stress conditions. Observations in human cancers suggest that FOXK1, and not FOXK2, has oncogenic properties. Indeed, high expression of FOXK1 is associated with increased proliferation, as well as greater invasion and metastasis. However, the exact molecular mechanisms of FOXK1 deregulation remain unknown. Our analyses of patient survival show that high expression of FOXK1 transcript significantly reduces survival compared to patients with low levels of FOXK1 transcript, which is not observed with FOXK2. To better understand the functions of FOXK1 and FOXK2, we overexpressed their proteins in normal human fibroblasts. This led us to discover that the oncogenic properties of FOXK1 act in part by inducing the E2F pathway. Unlike FOXK2, overexpression of FOXK1 in normal human fibroblasts promotes cell proliferation and delays the induction of senescence. We also found that when overexpression of FOXK1 was combined with other oncogenes, its ability to transform fibroblasts was significantly increased. These results suggest that FOXK1 and FOXK2 play different roles in cells and that a mechanism may regulate their activity differently. Interestingly, we discovered that FOXK1, and not FOXK2, is modified by O-GlcNAcylation, a unique post-translational modification known to be tightly regulated by fluctuations in cellular metabolism. Consequently, we hypothesized that O-GlcNAcylation is an important mechanism for regulating the transcriptional activity of FOXK1. Identifying the modified sites on FOXK1 allowed us to create mutants deficient in O-GlcNAcylation of this factor. While the loss of O-GlcNAcylation does not affect the recruitment of FOXK1 to chromatin, we discovered that O-GlcNAcylation regulates the oncogenic properties of FOXK1. Indeed, the absence of O-GlcNAcylation of FOXK1 reduces the proliferative capacity of cells as well as tumor growth. Moreover, our genomic analyses have allowed us to highlight that O-GlcNAcylation regulates the recruitment of BAP1 to chromatin. Loss of FOXK1 O-GlcNAcylation leads to a reduction of BAP1 recruitment to chromatin, which is associated with an increase in the levels of H2AK119Ub, a gene repression mark targeted by the deubiquitinase BAP1, as well as a decrease in the activation mark H3K4me1. We propose a model in which O-GlcNAcylation regulates the biological functions of FOXK1 and promotes tumor growth by driving the oncogenic properties of this factor. Our analyses suggest that O-GlcNAcylation of FOXK1 is important for the proper functioning of complexes on chromatin. Understanding how FOXK1 and FOXK2 regulate BAP1 could help us better define the tumor-suppressing functions of BAP1 and how the deregulation of transcription factors contributes to cancer development.
278

Role of Histone H3 Lysine 56 Acetylation in the Response to Replicative stress

Nersesian, Jeanet 01 1900 (has links)
Chez la levure Saccharomyces cerevisiae, l’acétylation de l’histone H3 sur la Lysine 56 (H3K56ac) a lieu sur toutes les histones H3 nouvellement synthétisées qui sont déposées derrière les fourches de réplication. L’acétylation de H3K56 joue un rôle primordial dans l’assemblage de l’ADN lors la réplication et la réparation. L’acétylation de H3K56 joue également un rôle important dans la stabilité génomique et la stabilisation des fourches de réplication bloquée. En effet, les cellules dépourvues de H3K56ac sont sensibles au méthane sulfonate de méthyle (MMS) et à d’autres agents génotoxiques qui causent du stress réplicatif. Notre projet visait à investiguer les liens entre la protéine du réplisome Ctf4 et l’acétyltransférase d’histone Rtt109. Dans un premier lieu, la délétion de CTF4 a partiellement contré la sensibilité des cellules rtt109Δ au MMS. Notre analyse génétique a aussi montré que Ctf4, Rtt109, et le complexe Rtt101-Mms1-Mms22 agissent dans la même voie de réponse face à un stress réplicative. Nos résultats montrent que les cellules ctf4Δ et rtt109Δ présentent des foyers intenses du complexe de liaison à l'ADN simple-brin RPA en réponse au stress réplicatif, suggérant la formation excessive de régions d'ADN simple-brin aux fourches de réplication bloquées, ce qui conduit à une hyper activation des points de contrôle des dommages à l'ADN. Ces mutants présentent des ponts anaphase et des foyers persistants des protéines de recombinaison homologues Rad51 et Rad52 en réponse aux génotoxines, suggérant ainsi que la structure anormale des réplisomes bloqués peut compromettre leur récupération. Nos résultats indiquent également que la délétion des gènes de la RH (RAD51, RAD52, RAD54, RAD55 et MUS81) avec ctf4Δ et rtt109Δ respectivement, engendre une sensibilité synergique au MMS, suggérant que les cellules qui sont déficientes en H3K56 acétylation utilisent la RH pour réparer les dommages causés suite à un stress réplicatif. En conclusion, nos résultats suggèrent que les cellules déficientes en H3K56ac présentent des défauts de RH en réponse aux dommages à l’ADN induits par le MMS durant la phase S. / In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs on all newly synthesized histones H3 that are deposited behind DNA replication forks. H3K56ac plays critical role in chromatin assembly during DNA replication and repair. H3K56ac is also required for genome stability and stabilization of stalled replication fork. Cells lacking H3K56ac are sensitive to methyl methane sulfonate and other drugs that cause replicative stress. In this thesis, we investigated the links between the replisome protein Ctf4 and the H3K56 acetyltransferase Rtt109. Deletion of CTF4 partially rescued the sensitivity of rtt109Δ cells to methyl methane sulfonate. Genetic analyses also showed that Ctf4, Rtt109, and the Rtt101-Mms1-Mms22 complex act in the same pathway to response to replicative stress. ctf4Δ and rtt109Δ cells displayed intense foci of the single-stranded DNA binding complex RPA during replicative stress, suggesting formation of excess single-stranded DNA regions at stalled replication forks, leading to hyper activation of DNA damage checkpoints. These mutants accumulated anaphase bridges and persistent foci of the homologous recombination proteins Rad51 and Rad52 in response to genotoxins, suggesting that abnormal DNA structure formed at stalled replisome may compromise their recovery. Deletion of HR genes (RAD51, RAD52, RAD54, RAD55 and MUS81) together with ctf4Δ and rtt109Δ presents synergistic sensitivity to MMS, suggesting that H3K56ac deficient cells use HR to repair the damages caused by replicative stress. Overall our results demonstrate that H3K56ac deficient cells cannot recover MMS- induced damages because HR is compromised in these mutants.
279

Regulation of replication dependent nucleosome assembly

Gopinathan Nair, Amogh 04 1900 (has links)
Chez les cellules humaines, environ 2 mètres d'ADN est compacté dans le noyau cellulaire par la formation d'une structure nucléoprotéique appelée chromatine. La chromatine est composée d'ADN enroulé à la surface d'un octamère de core histones pour former une structure appelée nucléosome. La structure de la chromatine doit être altérée afin d'accéder à l'information génétique pour sa réplication, sa réparation et sa transcription. La duplication de la chromatine lors de la phase S est cruciale pour la prolifération et la survie des cellules. Cette duplication de la chromatine requière une ségrégation des histones parentales, mais aussi une déposition d'histones néo-synthétisées sur l'ADN. Ces deux réactions résultent en formation de chromatine dès qu'une quantité suffisante d'ADNest générée par la machinerie de réplication. De plus, en raison de conditions intrinsèques et extrinsèques, la machinerie de réplication est souvent confrontée à de nombreux obstacles, sous la forme de lésions à l'ADN qui interfèrent avec la réplication de l'ADN. Sous ces conditions, l'assemblage de nucléosomes et la synthèse d'histones sont étroitement régulées afin d'éviter la production d'un excès d'histones et leurs nombreuses conséquences nuisibles à la cellule. "Chromatin Assembly Factor 1" (CAF-1) est responsable de la déposition initiale des molécules d'H3 et H4 derrière les fourches de réplication. Pour permettre sa fonction d'assemblage de chromatine, CAF-1 est localisée aux fourches de réplication en vertue de sa liaison à une protéine appelée Proliferating Cell Nuclear Antigen (PCNA). Cependant, le mécanisme moléculaire par lequel CAF-1 exerce sa function demeure mal compris. Dans le deuxième chapitre de ma thèse, j'ai exploré comment CAF-1 se lie à PCNA d'une manière distincte des nombreux autres partenaires de PCNA. Grâce à nos collaborateurs, des études de crystallographie ont démontré que CAF-1 se lie à PCNA grâce à une interaction non-canonique entre le "PCNA Interaction Peptide" (PIP) de CAF-1 et une interaction de type cation-pi (π). Nous avons aussi montré qu'une substitution d'un seul acide aminé, unique au PIP de CAF-1, abolit son interaction avec PCNA et sa capacité d'assemblage de nuclésomes. Nous avons aussi montré que le PIP de CAF-1 est situé à l'extrémité C-terminale d'une très longue hélice alpha qui est conservée à travers l'évolution parmi de nombreux homologues de CAF-1. Nos études biophysiques ontmontré que cette longue hélice alpha forme des structures oligomériques de type "coiled-coil", ce qui suggère certains mécanismes pour dédier un anneau de PCNA à l'assemblage de chromatine et ce, en dépit des nombreux intéracteurs de PCNA présents aux fourches de réplication. Dans le troisième chapitre de ma thèse, nos collaborateurs et moi-même avons étudié les mécanismes moléculaires par lesquels les cellules parviennent à maintenir un équilibre délicat entre la synthèse d'ADN et la synthèse d'histones et ce, même en présence de lésions à l'ADN qui interfèrent avec la réplication. Chez Saccharomyces cerevisiae, nous avons montré que les kinases de réponse au dommage à l'ADN, Mec1/Tel1 et Rad53, inhibent la transcription des gènes d'histones en réponse aux liaisons à l'ADN qui interfèrent avec la réplication. Nous avons montré que la répression des gènes d'histones induite par le dommage à l'ADN est médiée par une phosphorylation extensive de Hpc2, l'une des sous-unités du complexe "Histone Gene Repressor" (HIR). Hpc2 contient un domaine qui se lie à l'histone H3. À partir de la structure d'Hpc2, nous avons généré des mutants qui, d'après la structure, sont incapables de se lier à l'histone H3. Nos résultats montrent que l'accumulation d'histones en excès provoquée par le dommage à l'ADN entraîne la phosphorylation d'Hpc2 and la liaison de l'excès d'histone H3 à Hpc2. Ces résultats suggèrent que la répression transcriptionnelle des gènes d'histones induite par le dommage à l'ADN est médiée, du moins en partie, par une simple rétroaction négative impliquant la liaison des histones en excès à la sous-unité Hpc2 du complexe HIR. / In human cells, roughly 2 meters of DNA is compacted into the cell nucleus by the formation of a nucleoprotein complex called chromatin. Chromatin is composed of DNA wrapped around an octamer of core histones to form so-called nucleosomes. Chromatin structure needs to be altered to access genetic information for processes like replication, repair and transcription. Duplication of chromatin during S phase is vital for cell proliferation and viability. Chromatin duplication requires segregation of parental histones, but also deposition of newly synthesized histones onto DNA. This process results in packaging all of the synthesized DNA with histones to form nucleosomes as soon as enough nascent DNA has emerged from the replication machinery. Moreover, as a result of intrinsic and extrinsic conditions, the replication machinery often encounters DNA lesions that impede the continuous synthesis of DNA. Under these conditions, nucleosome assembly and histone synthesis are tightly regulated to prevent the production of an excess of histone proteins and their deleterious consequences. Chromatin Assembly Factor-1 (CAF-1) performs the initial step in chromatin assembly by depositing newly synthesized histone H3-H4 molecules behind replication forks. In order to perform its chromatin assembly function, CAF-1 localizes to DNA replication forks by binding directly to a protein known as the Proliferating Cell Nuclear Antigen (PCNA). However, the exact molecular mechanism by which this is achieved remains poorly understood. Through the second chapter of my thesis, I have explored how CAF-1 binds PCNA in a manner that is distinct from the numerous other binding partners of PCNA. With the help of our collaborators, crystallographic studies demonstrated that CAF-1 binds to PCNA by virtue of a non-canonical PCNA interaction peptide (PIP) and a cation-pi (π) interaction. We have also shown that a single amino acid substitution, unique to the PIP of CAF-1, disrupts its binding to PCNA and chromatin assembly activity. We found that the CAF-1 p150 PIP resides at the extreme C-terminus of a long alpha helix that is evolutionarily conserved among numerous homologues of CAF-1. Our biophysical studies showed that this long alpha-helix is capable of forming higher-order coiled coils, which suggests mechanisms to dedicate one PCNA ring for chromatin assembly despite the presence of multiple PCNA interactors at replication forks. In the third chapter of this thesis, our collaborators and I have addressed the crucial molecular mechanisms by which cells maintain a delicate balance between DNA and histone synthesis despite the presence of DNA lesions that interfere with replication. In Saccharomyces cerevisiae, we showed that the DNA damage response kinases Mec1/Tel1 and Rad53 inhibit histone gene transcription when DNA lesions block DNA replication. We also showed that this repression is mediated by phosphorylation of the Hpc2 subunit of the Histone Gene Repressor complex (HIR). Hpc2 contains a domain that directly binds to histone H3. Interestingly, structure-based mutants of Hpc2 predicted to be incapable of binding H3 are defective in DNA damage-induced transcriptional repression of histone genes in response to DNA damage during replication. Our results indicate that the accumulation of excess histones caused by DNA damage during S phase triggers extensive phosphorylation of Hpc2 and binding of excess H3 to Hpc2. This suggests that DNA damage-induced repression of histone genes is mediated, at least in part, by a simple negative feedback triggered by binding of excess histones to the Hpc2 subunit of the HIR complex.
280

Dynamic epigenetic changes in immune responses to infection in human dendritic cells

Pacis, Alain 05 1900 (has links)
La méthylation de l'ADN est une marque épigénétique importante chez les mammifères. Malgré le fait que la méthylation de la cytosine en 5' (5mC) soit reconnue comme une modification épigénétique stable, il devient de plus en plus reconnu qu'elle soit un processus plus dynamique impliquant des voies de méthylation et de déméthylation actives. La dynamique de la méthylation de l'ADN est désormais bien caractérisée dans le développement et dans le fonctionnement cellulaire des mammifères. Très peu est cependant connu concernant les implications régulatrices dans les réponses immunitaires. Pour se faire, nous avons effectué des analyses du niveau de transcription des gènes ainsi que du profilage épigénétique de cellules dendritiques (DCs) humaines. Ceux-ci ont été faits avant et après infection par le pathogène Mycobacterium tuberculosis (MTB). Nos résultats fournissent le premier portrait génomique du remodelage épigénétique survenant dans les DCs en réponse à une infection bactérienne. Nous avons constaté que les changements dans la méthylation de l'ADN sont omniprésents, identifiant 3,926 régions différentiellement méthylées lors des infections par MTB (MTB-RDMs). Les MTB-RDMs montrent un chevauchement frappant avec les régions génomiques marquées par les histones associées avec des régions amplificatrices. De plus, nos analyses ont révélées que les MTB-RDMs sont activement liées par des facteurs de transcription associés à l'immunité avant même d'être infecté par MTB, suggérant ces domaines comme étant des éléments d'activation dans un état de dormance. Nos données suggèrent que les changements actifs dans la méthylation jouent un rôle essentiel pour contrôler la réponse cellulaire des DCs à l'infection bactérienne. / DNA methylation is an important epigenetic mark in mammals. Although methylation at the 5’ position of cytosine (5mC) is recognized as a stable epigenetic modification, it is becoming increasingly viewed as a more dynamic process that involves both active methylation and demethylation pathways. While the dynamics of DNA methylation has been well characterized in mammalian development and normal cellular function, little is known about its regulatory implications in immune responses. To that end, we performed comprehensive transcriptional and epigenetic profiling of primary dendritic cell (DC) samples from humans, before and after infection with Mycobacterium tuberculosis (MTB). Our results provide the first complete genomic portrait of the extensive epigenetic remodeling occurring in primary DCs in response to a bacterial infection. We found that active changes in DNA methylation are pervasive, identifying 3,926 MTB-induced differentially methylated regions (MTB-DMRs). MTB-DMRs show a striking overlap with genomic regions marked by histones associated with enhancer activity. ATAC-seq footprinting analysis revealed that regions that change methylation were actively bound by immune-related TFs prior to MTB-infection suggesting that these domains are likely to represent enhancer elements in a poised state. Our data suggests that active changes in DNA methylation play an essential and previously unappreciated role at controlling of the regulatory programs engaged by DCs in response to a bacterial infection.

Page generated in 0.1201 seconds