• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 15
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 36
  • 15
  • 15
  • 12
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cell autonomous and cell non-autonomous effects of mosaic Mecp2 expression on layer V pyramidal cell morphology in a mouse model of Rett Syndrome

Rietveld, Leslie A. 19 December 2012 (has links)
Rett Syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). The mosaic brain environment in heterozygous (MECP2+/-) females consists of both MeCP2-wildtype (MeCP2+) and Mecp2-mutant (MeCP2-) neurons. To separate possible cell autonomous and cell non-autonomous effects three-dimensional morphological analysis was performed on individually genotyped layer V pyramidal neurons in the primary motor cortex of heterozygous (Mecp2+/-) and wild-type (Mecp2+/+) mature female mice (>8 months old) from the Mecp2tm1.1Jae line. Mecp2+/+ neurons and Mecp2+ were found to be indistinguishable while Mecp2- neurons have significantly reduced basal dendritic length (p<0.05), predominantly in the region 70-130 μm from the cell body, culminating in a total reduction of 15%. Mecp2- neurons have three (17%) fewer total branch points, lost specifically at the second and third branch orders. Thus the reduced total dendritic length in Mecp2- neurons is a result of fewer higher-order branches. Soma and nuclear areas of 30 Mecp2+/- female mice (5-21 months) with X chromosome inactivation (XCI) ratios ranging from 12% to 56% were analyzed. On average Mecp2- somata and nuclei were 15% and 13% smaller than Mecp2+ neurons respectively. The variation observed in the soma and nuclear sizes of Mecp2- neurons was not due to age, but was found to be correlated with the XCI ratio. Animals with a balanced XCI ratio (approximately 50% Mecp2-) were found to have Mecp2- neurons with a less severe cellular phenotype (11-17% smaller than Mecp2+). Animals with a highly skewed XCI ratio favouring expression of the wild-type allele (less than 30% Mecp2-) were found to have a more severe Mecp2- cellular phenotype (17-22% smaller than Mecp2+). These data support indicate that mutations in Mecp2 exert both cell autonomous and cell non- autonomous effects on neuronal morphology. / Graduate
22

Genomics and Transcriptomics of Hybrid Male Sterility Assessed in Multiple Interspecies Feline Breeds

Davis, Brian W 03 October 2013 (has links)
Hybrid male sterility (HMS) is typically the first mechanism fortifying reproductive isolation resulting from genomic incompatibilities. Three interspecies feline breeds derived from domestic cat crosses to wild cat species (Asian leopard cat and African serval) manifest HMS through several generations of backcrossing before eventually regaining fertility. This work utilized 199 hybrid individuals with varying fertilities in a genome wide association study (GWAS) comprising 63,000 genome wide SNPs. Leveraging these results with whole-testis transcriptome sequencing and quantitative real-time PCR data facilitated the comparison of transcripts in sterile and fertile hybrids. This dissertation describes four loci with highly significant and fifty with moderately significant association to sterility within each individual hybrid domestic breed and combinations of breeds. These associations help identify epistatic targets for hybrid incompatibility contributing to sterility. Comparative QTL mapping between pairs of species provides a framework to describe the accumulation of clade-specific reproductive isolating loci. Detailed exploration of gene misregulation between domestic and hybrid individuals, as well as between littermate hybrids of varying fertilities outlines a pattern of expression consistent with a meiotic sex-chromosome inactivation failure in early generations and apoptotic failure in later hybrid generations. Combining comparative genomic association and transcriptomic characterization among hybrid felids of varying divergence, new insight is gained into the mechanisms of mammalian reproductive isolation.
23

Mosaicismo e evolução do perfil epigenético durante a gravidez / Mosaicism and evolution of epigenetic profile during pregnancy

Karina Bezerra Salomão 06 March 2013 (has links)
O imprinting genômico, processo regulado epigeneticamente segundo o qual os genes se expressam de acordo com sua origem parental (paterna ou materna), está envolvido no desenvolvimento placentário. Na região cromossômica 11p15.5 encontram-se vários genes importantes para o desenvolvimento fetal e da placenta, os quais são regulados por duas principais regiões controladoras de imprinting (ICR1 e 2) onde se encontram as regiões diferencialmente metiladas H19DMR e KvDMR1, respectivamente. O imprinting genômico e a inativação aleatória do cromossomo X são processos epigenéticos presentes em mamíferos placentários. O presente trabalho teve como objetivo principal verificar a presença de mosaicismo do perfil epigenético entre tecidos extraembrionários de estágios precoces da gravidez (primeiro trimestre), e em vilosidade coriônica de placentas a termo (terceiro trimestre). Foram coletadas amostras de 10 gestações de primeiro trimestre (vilosidade coriônica, âmion, membrana de cordão umbilical e tecido embrionário) e 14 de terceiro trimestre (vilosidade coriônica), das quais 10 foram consideradas como controles e quatro utilizadas para estudo de mosaicismo restrito à vilosidade coriônica (coleta de amostras de todos os cotilédones). Após extração do DNA, foi utilizado o Método de Digestão Enzimática Sensível à Metilação Associada à PCR em Tempo Real para o estudo do padrão de metilação da KvDMR1 e da H19DMR em diferentes tecidos do primeiro trimestre gestacional e em tecido placentário do terceiro trimestre. O padrão de inativação do cromossomo X foi avaliado em todos os cotilédones de duas placentas a termo, de fetos do sexo feminino, por meio do ensaio do receptor de andrógeno humano (HUMARA assay), utilizando eletroforese capilar, e com acréscimo de um novo marcador de inativação do cromossomo X (ICX1). Na análise estatística foram utilizados o teste t não pareado, teste de Turkey e teste t pareado. A média de metilação da KvDMR1 das amostras de vilosidade coriônica do primeiro trimestre gestacional foi estatisticamente diferente da média de metilação do terceiro trimestre. Enquanto que a metilação da H19DMR não apresentou diferença estatística entre amostras de vilosidade coriônica do primeiro e do terceiro trimestre gestacionais. Com relação ao mosaicismo, a KvDMR1 não apresentou variação com relação ao tamanho ou a posição dos cotilédones, enquanto que a H19DMR apresentou diferença estatisticamente significativa na média de metilação com relação ao tamanho dos cotilédones e ao posicionamento nos quadrantes; em consequência da hipometilação em cotilédones pertencentes a uma das placentas estudadas. Não foram observadas diferenças estatisticamente significativas na média de metilação da KvDMR1 e da H19DMR entre diferentes tecidos das amostras do primeiro trimestre gestacional. No entanto, a comparação entre tecidos pareados de um mesmo indivíduo mostrou que a metilação não é correspondente entre os tecidos. Os dados obtidos mostram que o imprinting genômico provavelmente é um processo dinâmico, que evolui ao longo da gestação, estando relacionado a formação e ao amadurecimento da placenta. No presente estudo foi possível verificar que cotilédones de uma mesma placenta apresentam diferentes padrões de inativação do cromossomo X. Diferenças que podem ser explicadas pela expansão clonal das células trofoblásticas progenitoras com o cromossomo X paterno ou o cromossomo X materno inativo. Devido à variabilidade epigenética, exames em tecidos placentários devem considerar as diferenças intra-placentárias e as diferenças entre tecidos embrionários e extraembrionários. / Genomic imprinting, a mechanism of allele-specific expression depending on parental origin, is an epigenetic process that regulates the expression of many genes involved in placental development. Several important genes for fetal and placental growth are located on the human chromosome region 11p15.5, which are regulated by two imprinting control regions (ICR1 e 2), which have the differentially methylated regions H19DMR and KvDMR1, respectively. Genomic imprinting and random inactivation of X chromosome are two epigenetic processes present in placental mammals. The present study aimed to verify the presence of epigenetic mosaicism between extra-embryonic and embryonic tissues from early stages of pregnancy (first trimester), and in chorionic villi of term placentas (third trimester). Samples were collected from 10 pregnancies in the first trimester (chorionic villous, amnion, umbilical cord membrane, and embryonic tissue) and 14 from third trimester (chorionic villus sampling), of which 10 were considered as controls and four used to study mosaicism restricted to chorionic villi (sampling of all cotyledons). After DNA extraction, we used real time PCR associated to enzymatic restriction with a methylation sensitive enzyme to study the methylation pattern of KvDMR1 and H19DMR in different tissues from first trimester and placental third trimester tissue. The pattern of X chromosome inactivation was evaluated in all cotyledons from two term placentas of female fetuses, using the human androgen receptor (HUMARA) assay, capillary electrophoresis, and adding a new X chromosome inactivation (ICX1) marker. Unpaired and paired t and Turkey tests were used in statistical analysis. The average methylation of KvDMR1 of chorionic villi samples in first trimester was statistically different from average methylation of the third trimester. While the methylation of H19DMR showed no statistically significant difference between chorionic villi samples in the first and third trimester of pregnancy. In relation to the mosaicism, the KvDMR1 methylation did not vary in respect to the size or position of the cotyledons, while H19DMR showed statistically significant difference in average methylation relative to the size of the cotyledons, to the position in quadrants, due to the hypomethylation in cotyledons from one studied placenta. There were no statistically significant differences in the mean methylation KvDMR1 and H19DMR among different tissues from the first trimester of pregnancy, however, the comparison between paired tissues from the same individual showed that the methylation is different between tissues. The data from this study showed that genomic imprinting is probably a dynamic process and evolved across human pregnancy. This process is probable connected to placenta formation and maturation. We observed different patterns of X chromosome inactivation in cotyledons from the same placenta. This difference could be explained by clonal expansion of a limited number of trophoblastic progenitor cells with either an inactive maternal or paternal X chromosome. Due to the epigenetic variability, placental tissue examinations must consider the differences intra-placental and differences between embryonic and extra-embryonic tissues.
24

Étude de la reprogrammation du chromosome X dans les cellules souches embryonnaires et extra-embryonnaires au cours du développement préimplantatoire murin / Study of X chromosome reprogrammation in embryonic and extra-embryonic stem cells during mouse preimplantation development

Prudhomme, Julie 26 September 2014 (has links)
Chez les Mammifères femelles, l’extinction transcriptionnelle d’un des deux chromosomes X pendant l’embryogénèse précoce compense le déséquilibre de dose des gènes liés à l’X entre les sexes. L’inactivation aléatoire du chromosome X est mise en place dans la masse cellulaire interne du blastocyste et maintenue jusqu’à l’âge adulte dans le soma. Chez certains Euthériens incluant la souris, les tissus extra-embryonnaires (trophectoderme et endoderme primitif) montrent une inactivation soumise à empreinte du X paternel. Le statut inactif du Xp peut être étudié ex vivo dans les cellules souches trophoblastiques (TS) dérivées du trophectoderme. Nous avons pu sélectionner des cellules TS montrant une réactivation partielle du Xp ou bien une inversion complète du profil d’inactivation. Ceci révèle une plasticité épigénétique accrue de l’inactivation dans le trophectoderme par au soma.L’inactivation aléatoire du chromosome X est récapitulée pendant la différenciation des cellules souches embryonnaires (ES), qui servent de modèle cellulaire. Ce processus est déclenché par l’accumulation en cis du long ARN non codant Xist qui crée un domaine nucléaire répresseur autour du futur chromosome X inactif. Avant la différenciation, l’accumulation de Xist est réprimée par un autre long ARN non codant, Tsix, qui est transcrit en antisens de Xist. Afin d’adresser la dynamique fonctionnelle des ARN Xist et Tsix, nous avons inséré différents motifs d’étiquetage au locus Xist/Tsix endogène. Incorporés dans l’ARN sens ou antisens, ces étiquettes sont reconnues spécifiquement par des molécules fluorescentes, permettant ainsi la visualisation de ces transcrits dans les cellules vivantes. / In female Mammals, the transcriptional silencing of one of the two X chromosomes during early embryogenesis compensates the dosage disequilibrium of X-linked genes between sexes. Random X chromosome inactivation occurs in the inner cell mass of the blastocyst and is maintained through adult life in the soma. In some Eutherian species including mice, extraembryonic tissues (trophectoderm and primitive endoderm) exhibit imprinted inactivation of the paternal X. The inactive state of the Xp can be extensively studied ex vivo in Trophoblast Stem (TS) cells derived from the trophectoderm. We were able to select from the general cell population, TS cells exhibiting partial reactivation of the Xp or showing a complete switch of imprinted X-inactivation pattern. This reveals an accrued epigenetic plasticity of imprinted X-inactivation in the trophectoderm as compared to random X-inactivation in the soma.Random X-chromosome inactivation is recapitulated during the differentiation of female Embryonic Stem (ES) cells – which serves as cellular model. This process is triggered by the cis-accumulation of Xist long non coding RNA molecules which create a nuclear repressive domain around the future inactive X chromosome. Before differentiation, the accumulation of Xist is repressed by another lncRNA, Tsix, that is transcribed antisense to Xist. In order to address the functional dynamics of Xist and Tsix RNAs, we inserted different types of tag sequences in the endogenous Xist/Tsix locus. Incorporated in the sense or antisense RNA, these tags are specifically recognized by fluorescent molecules, thereby allowing live cell imaging of these transcripts.
25

Estudo do padrão de inativação do cromossomo X em tecido extra-embrionário humano / X-chromosome inactivation pattern in human extra-embryonic tissue

Joana Carvalho Moreira de Mello 08 April 2010 (has links)
Em mamíferos a inativação do cromossomo X (ICX) consiste no silenciamento gênico de um dos dois X presentes nas células somáticas normais das fêmeas, garantindo a compensação de dose transcricional em relação aos machos. Existem duas formas de ICX: aleatória, na qual a escolha do cromossomo X inativado se dá ao acaso (X paterno ou materno); e de maneira completamente desviada, na qual a atividade do cromossomo X dependerá de sua origem parental. Nas fêmeas marsupiais a inativação ocorre de forma completamente desviada, sendo o X paterno preferencialmente inativado em todas as células, já nas células embrionárias de eutérios, o que se observa é a ICX aleatória. Entretanto, naquelas células que darão origem aos tecidos extra-embrionários, de camundongos e bovinos, a ICX se dá de forma equivalente à dos marsupiais, ou seja, o X paterno é preferencialmente inativado. Há mais de 30 anos o padrão de ICX em tecidos extra-embrionários humanos tem sido alvo de intenso debate. A crítica que se faz aqui é que tais estudos foram realizados com base na expressão de apenas um ou dois genes ligados ao X com amostras de tecidos extra-embrionários em diferentes idades gestacionais e, por vezes, em poucas amostras, o que deve ter levado às contradições entre as conclusões. O diferencial deste trabalho foi a utilização de técnicas de genotipagem de SNPs presentes em regiões codificadoras, para analisar o padrão de atividade alelo-específica de um grande número de genes presentes ao longo de todo o cromossomo X, gerando um panorama mais representativo da ICX em placenta humana. Neste estudo é comprovado o padrão aleatório de ICX em placenta humana a termo e demonstrado que este órgão se apresenta como um 65 mosaico em relação à escolha do X inativo. A análise global da atividade gênica no cromossomo X indicou ainda que a manutenção do estado epigenético do X inativo parece ser heterogêneo. Em conjunto, os dados gerados são capazes de explicar as incongruências entre as conclusões previamente publicadas. Este trabalho também ilustra as diferenças nos mecanismos de ICX entre humanos e camundongos e reforça a importância de se avaliar esse tema em outras espécies de mamíferos eutérios na tentativa de se elucidar os processos evolutivos envolvidos na compensação de dose em mamíferos / Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 23 X-linked genes, including XIST, using 28 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this chromosome-wide analysis indicated heterogeneous maintenance of the epigenetic state along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals
26

Ki-67 Regulates Cell Cycle Progression and Heterochromatin Organization

Sun, Xiaoming 15 September 2017 (has links)
A subset of eukaryotic heterochromatin is located around the nucleoli, and this localization is correlated with gene silencing. Although there is some evidence for trans-acting factors organizing genomic loci around the nucleolus, the characterization of proteins and /or RNAs involved in perinculeolar heterochromatin localization and maintenance is incomplete. Notably, the mammalian female inactive X chromosome, a well-studied model of facultative heterochromatin, frequently resides in the perinucleolar regions during mid to late S phase. The disruption of the Xi–nucleolus association results in the erosion of heterochromatin compartment and silencing, which renders it a good model to investigate the mechanism and biological relevance of heterochromatin organization around the nucleolus. This dissertation will present evidence showing that Ki-67 regulates inactive X (Xi) chromosome association with nucleoli, maintains Xi heterochromatic structures, and regulates cell cycle progression, in cell-type-specific manner dependent on checkpoint proficiency. Ki-67 protein plays roles in heterochromatin organization during interphase. Upon Ki-67 depletion, a subset of Xi in human female hTERT-RPE1 moved away from nucleolus and displayed several features of compromised heterochromatin maintenance. These chromatin alterations were limited to Xi chromosomes localized away from the nuclear lamina and were not observed in virally transformed 293T cells upon Ki-67 depletion. Furthermore, I demonstrated that the different Xi heterochromatin alteration responses result from cell-type-specific reduced proportion of cells in S phase upon Ki-67 depletion. In human hTERT-RPE1, WI-38, IMR90, hTERT-BJ cell lines, depletion of Ki-67 slowed entry into S phase and coordinately downregulated genes related to DNA replication. These cell lines are able to induce p21 expression upon Ki-67 depletion. On the contrary, alteration of transcription and cell cycle progression were not observed in tumor-derived HeLa, U2OS and 293T cell lines. These cell lines do not induce p21 expression either. I additionally examined the Ki-67 function in mouse cell cultures. Depletion of Ki-67 neither redistributes inactive X chromosome nor regulates S phase progression in primary female mouse embryonic cells.
27

Genetic variation and complex disease: the examination of an X-linked disorder and a multifactorial disease

Cottrell, Catherine E. 10 December 2007 (has links)
No description available.
28

Triagem funcional de genes envolvidos no processo de manutenção da inativação do cromossomo X em humanos / Functional screening of genes involved in the maintenance of X chromosome inactivation in humans

Vergani, Naja 01 April 2014 (has links)
A compensação da dosagem gênica entre fêmeas XX e machos XY em mamíferos é adquirida através de um complexo mecanismo epigenético que resulta na inativação de grande parte de um dos cromossomos X nas células femininas. O processo de inativação do cromossomo X (XCI) se inicia cedo durante a embriogênese, concomitantemente à diferenciação celular, e envolve a aquisição de modificações epigenéticas características do cromossomo X inativo (Xi). Uma estabelecido, o padrão de inativação é estavelmente mantido através de todas as mitoses celulares subsequentes e por toda a vida do organismo (exceto para células germinativas que sofrem reativação do Xi). Os mecanismos envolvidos na iniciação e estabelecimento da XCI foram extensivamente estudados, especialmente em camundongos. Embora algumas características epigenéticas associadas à manutenção da XCI tenham sido descritas, a identidade e modo específico de ação de fatores envolvidos durante essa fase da XCI são aspectos ainda não bem compreendidos. Além disso, o processo de XCI apresenta diferenças importantes entre humanos e camundongos e estudos direcionados para a identificação de novos componentes envolvidos na manutenção da XCI em humanos tornam-se de fundamental importância. Triagens funcionais genômicas por bibliotecas de shRNAs constituem uma ferramenta poderosa para a identificação de genes envolvidos em diferentes mecanismos celulares e vias bioquímicas. Sendo assim, utilizamos essa ferramenta para triar genes envolvidos na manutenção da XCI em humanos. Células somáticas femininas primárias HPRT+/-/HPRT- foram transduzidas com uma biblioteca lentiviral de shRNAs e posteriormente tratadas em meio de cultura contendo a droga HAT para seleção de células HPRT+ nas quais esperava-se que o cromossomo Xi presente tivesse sofrido reativação em decorrência do knockdown de genes envolvidos na manutenção da XCI. Essa estratégia nos permitiu identificar 20 novos genes candidatos a estarem envolvidos na manutenção da XCI. Esses candidatos deverão ser avaliados individualmente para confirmar seu papel no processo de controle epigenético do cromossomo X / Transcriptional dosage compensation between mammalian XX females and XY males is acquired through a complex epigenetic mechanism that leads to the inactivation of most part of one of the X chromosomes in the female cells. The X chromosome inactivation (XCI) process takes place early during embryogenesis and involves the acquisition of epigenetic modifications that are characteristic of the inactive X chromosome (Xi). Once silencing is established, the inactivation pattern is maintained in through all the subsequent mitosis and the same X chromosome remains stably silenced in all the descendant cells and throughout the life of the organism (except for the germ line cells that undergo X chromosome reactivation). The initiation of XCI has been studied extensively, especially in mice. Although some epigenetic features associated with the maintenance of XCI have already been described, the identity and specific mode of action of the factors involved in this phase of XCI are largely unknown. Moreover, the XCI process presents important differences between mice and humans, and studies directed to the identification of new players involved in the maintenance of human XCI are fundamentally important. Functional genome-wide screens using multiplex shRNA libraries are a powerful tool for the identification of genes involved in different cellular mechanisms and biochemical pathways. In order to screen for genes involved in the maintenance of XCI in humans, a population of HPRT+/-/HPRT- primary somatic female cells were transduced with a multiplex lentiviral shRNA library and subsequently treated in HAT medium to select for HPRT+ cells in which we expected that the Xi would undergo reactivation as a result of the knockdown of genes involved in the maintenance of XCI. As a result, we identified 20 new candidate genes that could potentially be involved in the maintenance of XCI. These candidates should be individually evaluated in order to confirm their role in the epigenetic control of the X chromosome
29

Estudo da deficiência mental de herança ligada ao cromossomo X / Investigation of X-linked intellectual disability

Santos, José Oliveira dos 19 June 2013 (has links)
Este trabalho teve o objetivo de identificar genes candidatos para deficiência mental de herança ligada ao cromossomo X (DMLX). Foram investigadas quatro famílias, nas quais a deficiência mental de causa desconhecida segregava num padrão típico de herança ligada ao X, e 24 irmandades que incluíam pelo menos dois afetados do sexo masculino. O padrão de inativação do cromossomo X foi determinado nas mães dos afetados, pois desvios extremos no padrão de inativação são frequentes em mulheres portadoras de mutações no cromossomo X que causam DMLX. Nas famílias com padrão de herança ligada ao X, a deficiência mental foi mapeada, usando marcadores moleculares do tipo microssatélite, localizados ao longo do cromossomo X. Desequilíbrios cromossômicos submicroscópicos foram investigados por hibridação genômica comparativa baseada em array (array-CGH). Genes candidatos posicionais que já haviam sido associados a deficiência mental foram sequenciados pelo método de Sanger, em busca de mutações patogênicas. Em três famílias com DMLX, o probando teve seu exoma sequenciado. Nas três famílias com DMLX em que o sequenciamento do exoma foi realizado, foram detectadas mutações missense, levando à substituição de resíduos de aminoácidos conservados, que segregavam com a deficiência mental. Essas mutações foram consideradas como prováveis causas dos fenótipos nessas famílias: c.12378C>G no gene HUWE1 (HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase); c.1413C>A no gene SHROOM4 (shroom family member 4) e c.262G>A no gene KIAA2022. As mulheres heterozigóticas quanto a essas mutações apresentaram desvio completo de inativação do cromossomo X (100:0). Mutações de ponto ou interrupção desses genes por rearranjos cromossômicos foram previamente descritas em alguns pacientes com deficiência mental. Em uma família, em que a DMLX estava associada a microcefalia e malformação de Dandy-Walker, uma microduplicação de aproximadamente 300 kb em Xq28 (ChrX :153,578,110-153,880,794;Hg19) foi detectada segregando com a doença. As mulheres heterozigóticas quanto a essa duplicação apresentaram desvios de inativação do X (80:20 e 90:10). Duplicações semelhantes foram anteriormente descritas em três famílias europeias e em um caso esporádico; a malformação de Dandy-Walker foi documentada em alguns desses pacientes. No estudo das 24 irmandades com pelo menos dois indivíduos do sexo masculino apresentando deficiência mental, o padrão de inativação do cromossomo X de suas mães foi determinado. Quatro mulheres (16,7%) apresentaram desvio total de inativação do cromossomo X (100:0), frequência significativamente maior do que a descrita para população geral de mulheres adultas (cerca de 2 %). Considerando que desvios extremos de inativação do cromossomo X são observados em aproximadamente 30% das portadoras de mutações que causam DMLX, concluiu-se que as quatro mães de homens que apresentam deficiência mental eram provavelmente portadores de mutações no cromossomo X, causadoras da deficiência mental em seus filhos. Não foram encontradas microdeleções ou microduplicações no cromossomo X nos probandos das quatro irmandades. / This study aimed at identifying candidate genes for X-linked intellectual disability (ID). Four families in which ID of unknown cause segregated as an X-linked trait, and 24 sibships with at least two affected males were investigated. The pattern of X-inactivation was determined in the mothers of affected males, taking into account that extremely skewing of X-inactivation is frequently found in women carrying mutations causative of X-linked intellectual disability (XLID). In the XLID families, ID was mapped by the genotyping of microsatellite markers localized throughout the X chromosome. Cryptic X-chromosome imbalances were investigated by array-based comparative genomic hybridization (a-CGH). Positional candidate genes that had been associated with ID were directly sequenced in the search for causative mutations. In three XLID families, the propositus had their exome sequenced. In three XLID families missense mutations that led to substitutions of conservative aminoacid residues were found that segregated with ID, and were probably causative of the clinical phenotypes: c.12378C>G in HUWE1 (HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase) gene; c.1413C>A in the SHROOM4 (shroom family member 4) gene; c.262G>A in the KIAA2022 gene. Heterozygotes for these mutations had completely skewed X-inactivation (100:0 inactivation ratio). Point mutations or disruption of these genes by rearrangement breakpoints have been previously described in a few patients with ID. In one family in which XLID was associated with microcephaly and Dandy-Walker malformation, a duplication of approximately 300 kb at Xq28 (ChrX:153,578,110-153,880,794 - Hg19) was found segregating with the disease. Heterozygotes for this duplication had skewed X-inactivation (80:20 and 90:10 inactivation ratios). Similar duplications have been described in three European families and one sporadic case, Dandy-Walker malformation being documented in some patients. In the study of the 24 sibships with at least two males presenting with ID, the maternal pattern of X-inactivation was determined. Four women (16.7%) showed completely skewing of X-inactivation (100:0 inactivation ratio), a frequency significantly higher than the reported frequency of skewing >= 95% in women from the general population (about 2%). Considering this finding and that extremely skewed X-inactivation have been reported in about 30% of carriers of mutations causing XLID, it was assumed that the four mothers of males presenting with ID were most probably carriers of the mutations causative of ID in their sons. Chromosome X microimbalances were not found in the propositus, in these four sibships.
30

Triagem funcional de genes envolvidos no processo de manutenção da inativação do cromossomo X em humanos / Functional screening of genes involved in the maintenance of X chromosome inactivation in humans

Naja Vergani 01 April 2014 (has links)
A compensação da dosagem gênica entre fêmeas XX e machos XY em mamíferos é adquirida através de um complexo mecanismo epigenético que resulta na inativação de grande parte de um dos cromossomos X nas células femininas. O processo de inativação do cromossomo X (XCI) se inicia cedo durante a embriogênese, concomitantemente à diferenciação celular, e envolve a aquisição de modificações epigenéticas características do cromossomo X inativo (Xi). Uma estabelecido, o padrão de inativação é estavelmente mantido através de todas as mitoses celulares subsequentes e por toda a vida do organismo (exceto para células germinativas que sofrem reativação do Xi). Os mecanismos envolvidos na iniciação e estabelecimento da XCI foram extensivamente estudados, especialmente em camundongos. Embora algumas características epigenéticas associadas à manutenção da XCI tenham sido descritas, a identidade e modo específico de ação de fatores envolvidos durante essa fase da XCI são aspectos ainda não bem compreendidos. Além disso, o processo de XCI apresenta diferenças importantes entre humanos e camundongos e estudos direcionados para a identificação de novos componentes envolvidos na manutenção da XCI em humanos tornam-se de fundamental importância. Triagens funcionais genômicas por bibliotecas de shRNAs constituem uma ferramenta poderosa para a identificação de genes envolvidos em diferentes mecanismos celulares e vias bioquímicas. Sendo assim, utilizamos essa ferramenta para triar genes envolvidos na manutenção da XCI em humanos. Células somáticas femininas primárias HPRT+/-/HPRT- foram transduzidas com uma biblioteca lentiviral de shRNAs e posteriormente tratadas em meio de cultura contendo a droga HAT para seleção de células HPRT+ nas quais esperava-se que o cromossomo Xi presente tivesse sofrido reativação em decorrência do knockdown de genes envolvidos na manutenção da XCI. Essa estratégia nos permitiu identificar 20 novos genes candidatos a estarem envolvidos na manutenção da XCI. Esses candidatos deverão ser avaliados individualmente para confirmar seu papel no processo de controle epigenético do cromossomo X / Transcriptional dosage compensation between mammalian XX females and XY males is acquired through a complex epigenetic mechanism that leads to the inactivation of most part of one of the X chromosomes in the female cells. The X chromosome inactivation (XCI) process takes place early during embryogenesis and involves the acquisition of epigenetic modifications that are characteristic of the inactive X chromosome (Xi). Once silencing is established, the inactivation pattern is maintained in through all the subsequent mitosis and the same X chromosome remains stably silenced in all the descendant cells and throughout the life of the organism (except for the germ line cells that undergo X chromosome reactivation). The initiation of XCI has been studied extensively, especially in mice. Although some epigenetic features associated with the maintenance of XCI have already been described, the identity and specific mode of action of the factors involved in this phase of XCI are largely unknown. Moreover, the XCI process presents important differences between mice and humans, and studies directed to the identification of new players involved in the maintenance of human XCI are fundamentally important. Functional genome-wide screens using multiplex shRNA libraries are a powerful tool for the identification of genes involved in different cellular mechanisms and biochemical pathways. In order to screen for genes involved in the maintenance of XCI in humans, a population of HPRT+/-/HPRT- primary somatic female cells were transduced with a multiplex lentiviral shRNA library and subsequently treated in HAT medium to select for HPRT+ cells in which we expected that the Xi would undergo reactivation as a result of the knockdown of genes involved in the maintenance of XCI. As a result, we identified 20 new candidate genes that could potentially be involved in the maintenance of XCI. These candidates should be individually evaluated in order to confirm their role in the epigenetic control of the X chromosome

Page generated in 0.3356 seconds