• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 11
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 14
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Metal oxide synthesis and its application in the heterogeneous catalytic oxidation processes, using H2O2 or peroxydisulfate as oxidant / Propriétés de nanostructures d'oxydes de métaux de transition pour les procédés avancés d'oxydation dans l'eau, en présence de peroxyde d'hydrogène et de peroxydisulfate comme oxydant

Hou, Liwei 13 September 2013 (has links)
Parmi les procédés avancés d'oxydation (AOPs), les procédés de type Fenton (réactif de Fenton: Fe2+/H2O2) et les procédés d'oxydation par le persulfate, sont décrits comme des procédés très performants. Le procédé Fenton est une voie prometteuse et attractive pour le traitement d'une large variété de composés organiques polluants, difficiles à traiter par les voies classiques de dépollution. Au cours du procédé Fenton, des radicaux hydroxyles, molécules à fort pouvoir oxydant capable de réagir avec pratiquement tous types de composés organiques et inorganiques, sont générés. De même, du fait de la structure similaire entre H2O2 et les ions peroxydisulfate, ces derniers peuvent se décomposer en radicaux sulfates (SO4-•), un autre type d'oxydant hautement réactif pouvant réagir avec les composés organiques. Cependant, les procédés Fenton et d'activation du peroxydisulfate classiques présentent plusieurs inconvénients. En effet, la solution doit être acidifiée avant la réaction, et des procédés complexes de purification / séparation sont nécessaires après réaction. Afin de contourner ces inconvénients, le développement de procédés de traitement hétérogènes est proposé pour le traitement de l'eau. Dans cette optique de développement de procédés économes, les oxydes de fer comme la magnétite sont proposés comme remplaçants des sels solubles de fer. Une utilisation de tels matériaux, à l'état solide, présente des avantages indéniables, dont la séparation aisée de l'espèce active après réaction par sédimentation ou filtration. Dans le cadre de ce travail de doctorat, différents types d'oxydes de fer, hématite ou magnétite, ont été synthétisés en milieu liquide ionique. La morphologie, les propriétés structurales, les rapports de surface FeII/FeIII, les surfaces spécifiques, les tailles de domaine cristallin, etc. ont été évaluées. Deux molécules différentes, la tétracycline (TC) et le phenol, couramment utilisées dans l'industrie chimique, ont été sélectionnées comme polluants modèles afin d'évaluer les performances des matériaux préparés pour leur élimination. Une partie importante du travail de doctorat a donc été l'étude des propriétés des matériaux pour l'élimination de polluants organiques par le procédé Fenton hétérogène. Les résultats montrent clairement que les principaux facteurs affectant les performances du procédé sont reliés aux propriétés de la phase active, du fait du caractère surfacique des réactions. La stabilité des systèmes catalytiques préparés est néanmoins une propriété cruciale également étudiée. Le manuscrit de doctorat met donc l'accent sur la conception de matériaux originaux destinés à une utilisation dans les procédés avancés d'oxydation dans l'eau. / Fenton reaction (Fenton reagent: (Fe2+/H2O2)) and persulfate oxidation process, as advanced oxidation processes, are powerful oxidations used world around. Fenton reaction has been evidenced to be a promising and attractive treatment method for the degradation of a wide variety of hazardous organic pollutants, which are difficult to be treated using traditional soft treatment technologies. During Fenton process, free hydroxyl radicals (HO•), strong oxidant molecules capable of reacting with practically all types of organic and inorganic compounds, are generated. In the meanwhile, due to the similar structure between H2O2 and peroxydisulfate ions, peroxydisulfate ions can be decomposed to sulfate radicals (SO4-•), another kind of highly active oxidant that can react with organic compounds. However, the classical Fenton or peroxydisulfate activation processes present some disadvantages. Indeed, the solution needed acidification before carrying out the reaction and complex separation processes have to be applied after reaction. To overcome these drawbacks, heterogeneous catalytic oxidation processes were introduced for wastewater treatment. In this line, magnetite was evidenced as potential substituent to soluble iron ions, and it offers significant advantages such as an easy separation after reaction since the active material can be easily recovered by sedimentation or filtration for further used. In this PhD work, iron oxides, hematite and magnetite, were synthesized using an ionic liquid mediated process. The morphology, structural properties, FeII/FeIII surface ratios, specific surface areas (SSA), mean particle diameters, site densities, etc. were evaluated. Two different model pollutants (tetracycline (TC) and phenol), which are widely used chemicals all over the world, were selected to evaluate the performance of the prepared active materials. A significant part of the PhD study was then on the study of heterogeneous Fenton-like reaction for phenol and TC degradation. Experiments showed that the main factors affecting the heterogeneous Fenton-like system are related to the heterogeneous active phase properties, due to the surface reaction nature occurring over iron oxide surface. However, stability of this active phase, with progressive dissolution under reaction, is also a real challenge. This PhD manuscript, focusing on the design of highly active materials for advanced oxidation processes (AOPs), is constituted of five experiment result parts.
52

Manganese and cobalt oxides as highly active catalysts for CO oxidation

Iablokov, Viacheslav 14 October 2011 (has links)
Durant ce travail de thèse, d’importants paramètres concernant la synthèse de matériaux catalytiques nanostructurés à base de manganèse et d’oxydes de cobalt ont été établis. La corrélation entre les propriétés structurales du catalyseur et l’activité catalytique, ainsi que le mécanisme d’oxydation du CO ont été analysé au moyen d’une grande variété de méthodes expérimentales physico-chimiques.<p>De l’oxyde de manganèse non-stœchiométrique (MnOx) a été préparé par décomposition spinodale d’oxalate de manganèse trihydraté en ayant recours à la technique d’oxydation programmée en température (TPO). Tant l’analyse quantitative relatives à ces données TPO que les résultats obtenus par spectroscopie de structure au front d’absorption des rayons X (XANES), ainsi que par spectroscopie des photoélectrons X (XPS) ont permis d’estimer la stœchiométrie de l’oxyde avec un x situé entre 1.61 et 1.67. En accord avec à la fois la surface spécifique élevée et la combinaison d’isothermes d’adsorption/désorption de type I et IV, la microscopie électronique à transmission à haute résolution (HRTEM) démontre la présence de micro-bâtonnets caractéristiques et « imbriqués » les uns dans les autres, accompagné de particules nanocristalline à l’extrémité de ces bâtonnets.<p>Les découvertes faites par spectroscopie infra-rouge de réflexion diffuse par transformée de Fourier (DRIFTS), par études isotopiques et cinétiques suggère que l’adsorption des deux molécules, CO et O2, est suivie par leur réaction en surface via des intermédiaires de type carbonate/formate, pour finalement produire du CO2. Nous supposons un mécanisme de type Mars-van Krevelen où l’oxygène appartenant à la structure de type MnOx prend part dans l’oxydation catalytique du CO à basse température. Cependant, ces espèces mobiles d’oxygènes ne faisaient pas partie du cœur de phase du réseau d’oxyde, et de ce fait, ont été capables de « sauter » sur la surface et approvisionner les espèces oxygénées nécessaires à l’oxydation du CO déjà adsorbé.<p>Une structure spinelle d’oxyde de cobalt Co3O4 dans lequel le cobalt présente deux états de valence (+2 et +3) a été choisie pour élucider l’effet de la taille des particules sur l’activité lors de la réaction d’oxydation du CO. Tout d’abord, des nanoparticules monodispersées de cobalt métallique présentant une déviation standard en taille inférieure à 8% ont été synthétisées à partir de carbonyle de cobalt (Co2(CO)8) par une méthode optimisée «d’injection chaude». Un contrôle de la taille des nanoparticules dans la gamme 3 à 11 nm a pu être obtenu en variant la température d’injection du carbonyle de cobalt dans une solution de dichlorobenzène et d’acide oléique. La microscopie électronique à transmission (TEM) nous montre que ces particules de cobalt sont quasiment hémisphériques. Ensuite, de la silice poreuse (de type MCF-17) a été imprégnée par des nanoparticules de cobalt, et ensuite activée par TPO menant à des nanoparticules d’oxyde de cobalt. Des études par diffraction des rayons X (XRD) et spectroscopie des photoélectrons X (XPS) ont démontré la structure spinelle Co3O4. Finalement, l’activité des catalyseurs obtenus vis-à-vis de l’oxydation du monoxyde de carbone fut mesurée à 423 K et ce en fonction de la taille des particules. Les particules de Co3O4 présentant une taille allant de 5 à 8 nm se sont révélées les plus actives. Ceci peut s’expliquer par une plus grande mobilité des atomes d’oxygène en surface des nanoparticules d’oxyde de cobalt.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
53

Développement d'une nouvelle voie de synthèse de catalyseurs métalliques autosupportés (nanomousses) : étude des propriétés structurales et catalytiques / New synthesis way for self-supported metal catalysts (nanofoams) : study of strutural and catalytic properties

Deronzier, Thierry 16 October 2012 (has links)
L’or, habituellement considéré comme catalytiquement inactif, fait preuve d’une activité étonnante pour diverses réactions d’oxydation pourvu qu’il soit supporté sur un oxyde approprié. Ces dix dernières années, des méthodes de synthèse par dissolution sélective du composé le moins noble d’un alliage métallique (dealloying) ont permis l’obtention de catalyseurs d’or nanoporeux. Ces catalyseurs font preuve d’une très forte activité catalytique vis-à-vis de la réaction d’oxydation du monoxyde de carbone. Cependant, des études plus récentes semblent montrer que cette activité est due aux impuretés présentes dans les catalyseurs, qui sont imputables aux limitations de la méthode de synthèse utilisée. Dans cette étude, un catalyseur nanoporeux d’or pur a été obtenu par oxydation spontanée d’un alliage AuZr à température ambiante puis dissolution sélective totale de ZrO2 dans HF. Ce catalyseur démontre des caractéristiques structurales et morphologiques similaires à celles des échantillons obtenus par dealloying. Leur évaluation catalytique a été réalisée par réaction d’oxydation du CO et en PrOx : les résultats montrent que l’or pur nanoporeux n’est pas catalytiquement actif. La préparation de catalyseurs AgAu selon la même méthode a permis l’obtention de catalyseurs de différentes teneurs en argent, proches des résidus obtenus par dealloying. L’impact de la présence de l’impureté d’argent sur la catalyse est avéré : elle permet d’exacerber l’activité de l’or à température ambiante par synergie des deux éléments. Cependant, l’effet promoteur de l’hydrogène disparaît en PrOx et l’impact de la concentration d’argent est faible lors de l’oxydation du CO. Une étude exploratoire sur les nanomousses NiPd a été menée en parallèle. Le palladium, qui présente le meilleur compromis activité/sélectivité pour les hydrogénations sélectives, voit son activité exacerbée lorsqu’il est déposé à la surface d’un monocristal de Nickel. Cet effet n’existe pas pour des nanoparticules Pd/Ni supportées. Un catalyseur NiPd a donc été préparé dans cette étude selon la méthode des nickels de Raney® afin de combiner les propriétés des monocristaux et des nanoparticules / Gold, generally considered as catalytically inactive, demonstrates a surprising activity toward several oxidation reactions when supported on a proper oxide. New synthesis ways have been developed for ten years to obtain nanoporous gold catalysts based on selective dissolution of the less noble component of a metallic alloy (dealloying). These catalysts exhibit very high activity towards the carbon monoxide oxidation reaction. However recent studies seem to reveal that this activity could be due to impurities inherent to dealloying. In this study a very pure nanoporous catalyst was obtained by spontaneous oxidation of a AuZr alloy at room temperature; a total selective dissolution of ZrO2 was then carried out in HF. Its structural and morphological characteristics proved to be similar to the dealloyed catalysts ones. The evaluation of its catalytic properties by CO oxidation showed that pure nanoporous gold was not catalytically active. Besides bimetallic AgAu catalysts were prepared following the same preparation method with three silver concentrations chosen close to the residual impurities concentrations obtained by dealloying. Their catalytic properties proved to be impacted by silver impurities: gold activity was emphasized at room temperature by synergy between the two elements. However, the promotional effect of hydrogen disappeared in PrOx and the role of silver concentration was low for CO oxidation. In parallel an exploratory study was carried out on NiPd nanofoams. The catalysts were prepared following the Raney® nickel method to improve the palladium activity towards the selective hydrogenation reaction. The results showed a slight increase of the catalytic activity
54

Structural and Kinetic Study of Low-temperature Oxidation Reactions on Noble Metal Single Atoms and Subnanometer Clusters

Lu, Yubing 23 April 2019 (has links)
Supported noble metal catalysts make the best utilization of noble metal atoms. Recent advances in nanotechnology have brought many attentions into the rational design of catalysts in the nanometer and subnanometer region. Recent studies showed that catalysts in the subnanometer regime could have extraordinary activity and selectivity. However, the structural performance relationships behind their unique catalytic performances are still unclear. To understand the effect of particle size and shape of noble metals, it is essential to understand the fundamental reaction mechanism. Single atoms catalysts and subnanometer clusters provide a unique opportunity for designing heterogeneous catalysts because of their unique geometric and electronic properties. CO oxidation is one of the important probe reactions. However, the reaction mechanism of noble single atoms is still unclear. Additionally, there is no agreement on whether the activity of supported single atoms is higher or lower than supported nanoparticles. In this study, we applied different operando techniques including x-ray absorption fine structure (XAFS), diffuse reflectance infrared spectroscopy (DRIFTS), with other characterization techniques including calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the active and stable structure of Ir/MgAl2O4 and Pt/CeO2 single-atom catalysts during CO oxidation. With all these characterization techniques, we also performed a kinetic study and first principle calculations to understand the reaction mechanism of single atoms for CO oxidation. For Ir single atoms catalysts, our results indicate that instead of poisoning by CO on Ir nanoparticles, Ir single atoms could adsorb more than one ligand, and the Ir(CO)(O) structure was identified as the most stable structure under reaction condition. Though one CO was strongly adsorbed during the entire reaction cycle, another CO could react with the surface adsorbed O* through an Eley-Rideal reaction mechanism. Ir single atoms also provide an interfacial site for the facile O2 activation between Ir and Al with a low barrier, and therefore O2 activation step is feasible even at room temperature. For Pt single-atom catalysts, our results showed that Pt(O)3(CO) structure is stable in O2 and N2 at 150 °C. However, when dosing CO at 150 °C, one surface O* in Pt(O)3(CO) could react with CO to form CO2, and the reacted O* can be refilled when flowing O2 again at 150 °C. This suggests that an adsorbed CO is present in the entire reaction cycle as a ligand, and another gas phase CO could react with surface O* to form CO2 during low-temperature CO oxidation. Supported single atoms synthesized with conventional methods usually consist of a mixture of single atoms and nanoparticles. It is important to quantify the surface site fraction of single atoms and nanoparticles when studying catalytic performances. Because of the unique reaction mechanism of Ir single atoms and Ir nanoparticles, we showed that kinetic measurements could be applied as a simple and direct method of quantifying surface site fractions. Our kinetic methods could also potentially be applied to quantifying other surface species when their kinetic behaviors are significantly different. We also benchmarked other in-situ and ex-situ methods of quantifying surface site fraction of single atoms and nanoparticles. To bridge the gap between single atoms and nanoparticles and have a better understanding of the effect of nuclearity on CO oxidation, we also studied supported Ir subnanometer clusters with the average size less than 0.7 nm (< 13 atoms) prepared by both inorganic precursor and organometallic complex Ir4(CO)12. Low-temperature CO adsorption indicates that CO and O2/O could co-adsorb on Ir subnanometer clusters, however on larger nanoparticle the particle surface is covered by CO only. Additional co-adsorption of CO and O2 was studied by CO and O2 calorimetry at room temperature. CO oxidation results showed that Ir subnanometer clusters are more active than Ir single atoms and Ir nanoparticles at all conditions, and this could be explained by the competitive adsorption of CO and O2 on subnanometer clusters. / Doctor of Philosophy / CO oxidation is one of the important reactions in catalytic converters. Three-way catalysts, typically supported noble metals, are very efficient at high temperature but could be poisoned by CO at cold start. Better designed catalysts are required to improve the performance of the catalytic converter to lower the emissions of gasoline engines. To reach this goal, more efficient use of the noble metal is required. Single-atom catalysts consist of isolated noble metal atoms supported on different supports, which provide the best utilization of noble metal atoms and provides a new opportunity for a better design of heterogeneous catalysts. The unique electronic and geometric properties of metal single atoms catalysts could lead to a better activity and selectivity. Subnanometer clusters have also been shown to have unique electronic properties. With a better understanding of the structure of supported single atoms and subnanometer clusters, their catalytic performance can be optimized for better catalysts in the catalytic converter and other applications. In this work, we applied in-situ and operando characterization, kinetic studies and first principle calculations aiming to understand the active and stable structure of noble metal single atoms and vi subnanometer clusters under reaction condition, and their reaction mechanisms during CO oxidations. For MgAl₂O₄ supported Ir single atoms, our results suggest that CO could be co-adsorbed with O₂/O under reaction conditions. These multiple ligands adsorption leads to a unique reaction mechanism during CO oxidation. Though one CO was adsorbed during the whole reaction cycle, another gas phase CO could react with the O* species co-adsorbed with CO through an Eley-Rideal mechanism. This suggests that Ir single atoms are no longer poisoned by CO, and on the other hand the O₂ can be activated on an interfacial site with a low reaction barrier. Ir subnanometer clusters showed higher activities than Ir single atoms and nanoparticles. In-situ IR and high energy resolution fluorescence detected – X-ray absorption near edge spectroscopy (HERFD-XANES) showed that CO could co-adsorb with O₂ at room temperature, and this competitive adsorption could explain the high activity during CO oxidation. Supported Ir single atoms and subnanometer clusters are not poisoned by CO and O₂ could be co-adsorbed, this could be potentially applied to solve the poisoning of catalyst in the catalytic converter at cold start temperature. We also performed kinetic study on CeO₂ supported Pt single atoms. Similar behavior was observed, and we showed that the CO and O co-adsorbed complex is stable in O₂ and N₂, but could react in CO. With the understanding of the active structure of noble metal single atoms and the origin of activities, better-designed catalysts can be synthesized to improve the activity and selectivity of low-temperature oxidation reactions.
55

Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry

Bauer, John C. 2009 May 1900 (has links)
Alloys, intermetallic compounds and multi-metal oxides are generally made by traditional solid-state methods that often require melting or grinding/pressing powders followed by high temperature annealing (> 1000 degrees C) for days or weeks. The research presented here takes advantage of the fact that nanoparticles have a large fraction of their atoms on the surface making them highly reactive and their small size virtually eliminates the solid-solid diffusion process as the rate limiting step. Materials that normally require high temperatures and long annealing times become more accessible at relatively low-temperatures because of the increased interfacial contact between the nanoparticle reactants. Metal nanoparticles, formed via reduction of metal salts in an aqueous solution and stabilized by PVP (polyvinylpyrrolidone), were mixed into nanoparticle composites in stoichometric proportions. The composite mixtures were then annealed at relatively low temperatures to form alloy and intermetallic compounds at or below 600 degrees C. This method was further extended to synthesizing multi-metal oxide systems by annealing metal oxide nanoparticle composites hundreds of degrees lower than more traditional methods. Nanoparticles of Pt (supported or unsupported) were added to a metal salt solution of tetraethylene glycol and heated to obtain alloy and intermetallic nanoparticles. The supported intermetallic nanoparticles were tested as catalysts and PtPb/Vulcan XC-72 showed enhanced catalytic activity for formic acid oxidation while Pt3Sn/Vulcan XC-72 and Cu3Pt/y-Al2O3 catalyzed CO oxidiation at lower temperatures than supported Pt. Intermetallic nanoparticles of Pd were synthesized by conversion chemistry methods previously mentioned and were supported on carbon and alumina. These nanoparticles were tested for Suzuki cross-coupling reactions. However; the homocoupled product was generally favored. The catalytic activity of Pd3Pb/y-Al2O3 was tested for the Heck reaction and gave results comparable to Pd/y-Al2O3 with a slightly better selectivity. Conversion chemistry techniques were used to convert Pt nanocubes into Ptbased intermetallic nanocrystals in solution. It was discovered that aggregated clusters of Pt nanoparticles were capable of converting to FePt3; however, when Pt nanocubes were used the intermetallic phase did not form. Alternatively, it was possible to form PtSn nanocubes by a conversion reaction with SnCl2.
56

Implementing Ion Imaging to Probe Chemical Kinetics and Dynamics at Surfaces

Neugebohren, Jannis 27 June 2018 (has links)
No description available.
57

Ordre chimique et réactivité de la surface d'alliage AuPd(100) : Du vide aux conditions de la réaction. / Chemical order and reactivity of AuPd(100) alloy surface : from vacuum to reaction conditions.

Oguz, Ismail Can 24 November 2017 (has links)
La compréhension des phénomènes de ségrégation superficielle induite par la présence de gaz est de première importance afin de modéliser "correctement" les propriétés catalytiques des catalyseurs bimétalliques. L'objectif principal de cette thèse a été de développer une méthodologie théorique capable de reproduire et de prédire le comportement de la ségrégation du Pd dans le système AuPd(100) en présence de CO. Cela a été réalisé grâce à la combinaison des calculs DFT et de la simulation Monte Carlo. Plus précisément, un modèle d’Ising basé sur un potentiel inter-atomique décrivant à la fois les interactions métal-métal, métal-gaz et gaz-gaz a été construit grâce à des calculs DFT. Ensuite, des simulations Monte Carlo ont été développées pour tracer les isothermes de ségrégation et pour obtenir des informations sur l'évolution de la concentration de Pd en surface et en volume en fonction du recouvrement en CO. Les résultats montrent une ségrégation inversée du Pd dès l’adsorption du gaz. Ainsi, la ségrégation de Pd induite par l'adsorption de CO a été simulée pour différentes températures et pression de CO. Les différents ordres chimiques de surface identifiés ont été analysés et leurs réactivités vis-à-vis de la réaction d’oxydation de CO ont été identifiées. / The understanding of surface segregation phenomena induced by the presence of gas is of prior importance to “correctly” model the catalytic properties of bimetallic catalysts. The main objective of this thesis is to develop a theoretical methodology able to reproduce and predict the segregation behavior in Au-Pd system exposed to CO gas. This is achieved thanks to the combination of Density functional calculations (DFT) and Monte Carlo (MC) simulations. Firstly a, DFT-based Ising model is considered to build inter-atomic potential that includes interactions between: (i) the metal atoms in the alloy; (ii) the metal atoms in the surface and the adsorbed molecules and (iii) the adsorbed molecules. Secondly, the Pd segregation isotherms and the evolution of the Pd surface concentration with the Pd bulk concentration as a function of the CO coverage are studied with Monte Carlo simulations. The results show a reversed segregation of Pd upon the adsorption of CO. Thus, adsorption-induced Pd segregation was analyzed through the calculation of segregation isotherms at different temperature and CO pressure. The different obtained chemical ordered phases are thoroughly analyzed and their reactivity toward CO oxidation reaction was investigated.
58

Activity and Selectivity in Oxidation Catalysis

Woods, Matthew P. January 2008 (has links)
No description available.
59

Compréhension des mécanismes d’interaction des catalyseurs bimétalliques des piles PEMFC avec les polluants de l’hydrogène et de l’air atmosphérique / Understanding of the interaction mechanisms of PEM fuel cells catalysts with the pollutants of hydrogen and atmospheric air

Cheah, Seng Kian 09 January 2012 (has links)
Ce travail a pour objectif général de développer une compréhension approfondie de l’interaction du CO avec des catalyseurs anodiques dans les piles à combustible de type PEM (PEMFC), et d’évaluer son impact vis-à-vis de leur réactivité et stabilité lors de l’oxydation de l’hydrogène. Premièrement un modèle physique multi-échelle a été conçu pour simuler les performances de piles PEMFC alimentées par de l’hydrogène contenant des traces de CO. Il est basé sur la simulation Monte Carlo et la modélisation cinétique des étapes électrochimiques/chimie élémentaires. Une étude expérimentale de l’adsorption et de l’oxydation de CO simulant la technique d’ « O2 bleeding » a été utilisée pour mieux comprendre les mécanismes. Des catalyseurs de Pt ainsi que des bimétalliques PtxCoy et PtRu, supportés sur du carbone de grande aire spécifique, ont été étudiés. La spectroscopie IR (DRIFTS) et l’analyse QMS ont été utilisées pour l’étude de l’adsorption et oxydation de CO. Les défauts de surface, l’historique du catalyseur dans son interaction avec les différents gaz (H2, O2, CO), la température, la charge en Pt, la taille des particules, l’alliage de Pt avec Co ou Ru se sont révélé des paramètres clés dans la réactivité de CO avec O2. Le modèle multi-échelle a été appliqué aux catalyseurs Pt et PtxCoy. Les catalyseurs PtxCoy se révèlent plus tolérants au CO mais, en fonction du rapport Pt/Co, ils peuvent se dégrader par dissolution de Co comme démontré par nos expériences / The general objective of this work is to develop a deep understanding of the interaction of the CO with anodic catalysts in PEM Fuel Cells (PEMFCs), and to evaluate its impact on the reactivity towards the hydrogen oxidation and their stability. Firstly, a multiscale kinetic model is built up based on Monte Carlo simulation and kinetic modelling of elementary electrochemical/chemical steps as a tool to simulate the performance of PEMFCs fed with H2 containing CO traces. Experiments on CO adsorption and oxidation mimicking O2 bleeding were used to better understand the mechanisms. Monometallic Pt and bimetallic PtxCoy and PtRu catalysts supported on high surface area carbon were studied. CO adsorption and oxidation were investigated by means of DRIFT spectroscopy and QMS analysis. Defect sites (kink, edge), history of interaction with different gases (H2, O2, CO), temperature, Pt loading, particle size, alloying with Co or Ru are key parameters influencing the CO reactivity with O2. The multiscale kinetic model was applied to Pt and PtxCoy. PtxCoy nanocatalysts are shown to be highly CO tolerant but might degrade by Co dissolution in long term operation, depending on the Pt to Co ratio
60

Platine sur silice : exemples réussis de synthèse par voie organométallique pour la catalyse hétérogène : validation par l'adsorption et la réactivité du CO / Platinum on silica : Successful examples of organometallic syntheses for heterogeneous catalysis : confirmation by CO adsorption and reactivity

Garnier, Anaïs 25 November 2013 (has links)
Chimie organométallique résonne avec catalyse homogène, et chimie des surfaces avec catalyse hétérogène. Mais la frontière établie entre ces deux domaines est en réalité très mince. Leur rapprochement aboutit dans les années 1990 au développement d’une nouvelle science : la chimie organométallique de surface, qui souligne leur complémentarité. L’objectif de cette science, dans laquelle s’inscrit ce travail de thèse, est de créer des catalyseurs hétérogènes à partir de composés organométalliques. Notre objectif est d’apporter une contribution à la compréhension de la formation de nanoparticules de platine - métal incontournable en catalyse hétérogène - sur des supports de silice amorphe, et ce grâce à la chimie organométallique. Au cours de ce travail, une palette de catalyseurs Pt/SiO2 a été préparée à partir de trois précurseurs de platine : le composé classique H2PtIVCl6.xH2O et deux composés organométalliques PtII(η 4-C8H12)Cl2 et Pt0(η 2-C7H10)3 , et de trois supports : une silice commerciale (Davison), une silice mésoporeuse SBA-15 synthétisée au laboratoire et unesilice naturelle, la diatomite. De plus, l’étude du catalyseur de référence au platine « EuroPt-1 » a permis de développer une méthodologie de suivi operando par Spectroscopie Infrarouge à Transformée de Fourier par Réflexion Diffuse (DRIFTS) de l’adsorption du monoxyde de carbone (CO) sur les différents sites d’une nanoparticule de platine. En conclusion, les catalyseurs préparés à partir de Pt0(η 2-C7H10)3 s’avèrent être plus actifs qu’EuroPt-1 pour la réaction d’oxydation du CO, ce qui démontre le potentiel d’utilisation des composés organométalliques dans le domaine de la catalyse hétérogène. / Organometallic chemistry resonates with homogeneous catalysis, and surface chemistry with heterogeneous catalysis. But the frontier between these two fields is very thin. In the 90’s, these fields approached each other and led to the development of a new science: organometallic surface chemistry, which underlines their complementarity. The goal of this science, with which this work is associated, is to create heterogeneous catalysts from organometallic compounds. Our goal is to contribute to the understanding of platinum nanoparticle formation - platinum being an important metal in heterogeneous catalysis - onto amorphous silica supports, thanks to organometallic chemistry. During this work, various Pt/SiO2 catalysts were prepared fromthree platinum precursors: the classical one, H2PtIVCl6.xH2O and two organometallic compounds PtII(η 4-C8H12)Cl2 et Pt0(η2-C7H10)3, and involved three supports: a commercial silica (Davison), a mesoporous silica SBA-15 synthesized in the laboratory, and a natural silica, the diatomite. Moreover, the study of the standard platinum reference catalyst “EuroPt-1” lead to the development of a methodology of operando Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) of carbon monoxide (CO) adsorption on the different sites of a platinum nanoparticle. Catalysts prepared from Pt0(η 2-C7H10)3 are more active than EuroPt-1 for the CO oxidation reaction, and this work shows the potential of organometallic precursors in the domain of heterogeneous catalysis.

Page generated in 0.0816 seconds