• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 77
  • 43
  • 15
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 332
  • 92
  • 70
  • 69
  • 58
  • 57
  • 56
  • 54
  • 43
  • 43
  • 30
  • 29
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Hochschild Cohomology of Finite Cyclic Groups Acting on Polynomial Rings

Lawson, Colin M. 05 1900 (has links)
The Hochschild cohomology of an associative algebra records information about the deformations of that algebra, and hence the first step toward understanding its deformations is an examination of the Hochschild cohomology. In this dissertation, we use techniques from homological algebra, invariant theory, and combinatorics to analyze the Hochschild cohomology of skew group algebras arising from finite cyclic groups acting on polynomial rings over fields of arbitrary characteristic. These algebras are the natural semidirect product of the group ring with the polynomial ring. Many families of algebras arise as deformations of skew group algebras, such as symplectic reflection algebras and rational Cherednik algebras. We give an explicit description of the Hochschild cohomology governing graded deformations of skew group algebras for cyclic groups acting on polynomial rings. For skew group algebras, a description of the Hochschild cohomology is known in the nonmodular setting (i.e., when the characteristic of the field and the order of the group are coprime). However, in the modular setting (i.e., when the characteristic of the field divides the order of the group), much less is known, as techniques commonly used in the nonmodular setting are not available.
192

Inequalities related to Lech's conjecture and other problems in local and graded algebra

Cheng Meng (17591913) 07 December 2023 (has links)
<p dir="ltr">This thesis consists of four parts that study different topics in commutative algebra. The main results of the first part of the dissertation are in Chapter 3, which is based on the author’s paper [1]. Let R be a commutative Noetherian ring graded by a torsionfree abelian group G. We introduce the notion of G-graded irreducibility and prove that G-graded irreducibility is equivalent to irreducibility in the usual sense. This is a generalization of a result by Chen and Kim in the Z-graded case. We also discuss the concept of the index of reducibility and give an inequality for the indices of reducibility between any radical non-graded ideal and its largest graded subideal. The second topic is developed in Chapter 4 which is based on the author’s paper [2]. In this chapter, we prove that if P is a prime ideal of inside a polynomial ring S with dim S/P = r, and adjoining s general linear forms to the prime ideal changes the (r − s)-th Hilbert coefficient of the quotient ring by 1 and doesn’t change the 0th to (r − s − 1)-th Hilbert coefficients where s ≤ r, then the depth of S/P is n − s − 1. This criterion also tells us about possible restrictions on the generic initial ideal of a prime ideal inside a polynomial ring. The third part of the thesis is Chapter 5 which is based on the author’s paper [3]. Let R be a polynomial ring over a field. We introduce the concept of sequentially almost Cohen-Macaulay modules, describe the extremal rays of the cone of local cohomology tables of finitely generated graded R-modules which are sequentially almost Cohen-Macaulay, and also describe some cases when the local cohomology table of a module of dimension 3 has a nontrivial decomposition. The last part is Chapter 6 which is based on the author’s paper [4]. We introduce the notion of strongly Lech-independent ideals as a generalization of Lech-independent ideals defined by Lech and Hanes, and use this notion to derive inequalities on multiplicities of ideals. In particular, we prove a new case of Lech’s conjecture, namely, if (R, m) → (S, n) is a flat local extension of local rings with dim R = dim S, the completion of S is the completion of a standard graded ring over a field k with respect to the homogeneous maximal ideal, and the completion of mS is the completion of a homogeneous ideal, then e(R) ≤ e(S).</p>
193

Instanton Counting, Matrix Models, and Characters

Tamagni, Spencer 01 January 2022 (has links)
In this thesis we study symmetries of quantum field theory visible only at the non-perturbative level, which arise from large deformations of the integration contour in the path integral. We exposit the recently-developed theory of qq-characters that organizes such symmetries in the case of N = 2 supersymmetric gauge theories in four dimensions. We sketch the physical origin of such observables from intersecting branes in string theory, and the mathematical origin as certainequivariant integrals over Nakajima quiver varieties. We explain some of the main applications, including the derivation of Seiberg-Witten geometry for quiver gauge theories and the relations to quantum integrable systems.
194

Quasi-isometries of graph manifolds do not preserve non-positive curvature

Nicol, Andrew 15 October 2014 (has links)
No description available.
195

Supersymmetric Backgrounds in string theory

Parsian, Mohammadhadi 06 May 2020 (has links)
In the first part of this thesis, we investigate a way to find the complex structure moduli, for a given background of type IIB string theory in the presence of flux in special cases. We introduce a way to compute the complex structure and axion dilaton moduli explicitly. In the second part, we discuss $(0,2)$ supersymmetric versions of some recent exotic $mathcal{N}=(2,2)$ supersymmetric gauged linear sigma models, describing intersections of Grassmannians. In the next part, we consider mirror symmetry for certain gauge theories with gauge groups $F_4$, $E_6$, and $E_7$. In the last part of this thesis, we study whether certain branched-double-cover constructions in Landau-Ginzburg models can be extended to higher covers. / Doctor of Philosophy / This thesis concerns string theory, a proposal for unification of general relativity and quantum field theory. In string theory, the building block of all the particles are strings, such that different vibrations of them generate particles. String theory predicts that spacetime is 10-dimensional. In string theorist's intuition, the extra six-dimensional internal space is so small that we haven't detected it yet. The physics that string theory predicts we should observe, is governed by the shape of this six-dimensional space called a `compactification manifold.' In particular, the possible ways in which this geometry can be deformed give rise to light degrees of freedom in the associated observable physical theory. In the first part of this thesis, we determine these degrees of freedom, called moduli, for a large class of solutions of the so-called type IIB string theory. In the second part, we focus on constructing such spaces explicitly. We also show that there can be different equivalent ways of constructing the same internal space. The third part of the thesis concerns mirror symmetry. Two compactification manifolds are called mirror to each other, when they both give the same four-dimensional effective theory. In this part, we describe the mirror of two-dimensional gauge theories with $F_4$, $E_6$, and $E_7$ gauge group, using the Gu-Sharpe proposal.
196

Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces

Tshilombo, Mukinayi Hermenegilde 08 1900 (has links)
This thesis deals with cohomologies on the symplectic quotient of a Frölicher space which is locally diffeomorphic to a Euclidean Frölicher subspace of Rn of constant dimension equal to n. The symplectic reduction under consideration in this thesis is an extension of the Marsden-Weinstein quotient (also called, the reduced space) well-known from the finite-dimensional smooth manifold case. That is, starting with a proper and free action of a Frölicher-Lie-group on a locally Euclidean Frölicher space of finite constant dimension, we study the smooth structure and the topology induced on a small subspace of the orbit space. It is on this topological space that we will construct selected cohomologies such as : sheaf cohomology, Alexander-Spanier cohomology, singular cohomology, ~Cech cohomology and de Rham cohomology. Some natural questions that will be investigated are for instance: the impact of the symplectic structure on these di erent cohomologies; the cohomology that will give a good description of the topology on the objects of category of Frölicher spaces; the extension of the de Rham cohomology theorem in order to establish an isomorphism between the five cohomologies. Beside the algebraic, topological and geometric study of these new objects, the thesis contains a modern formalism of Hamiltonian mechanics on the reduced space under symplectic and Poisson structures. / Mathematical Sciences / D. Phil. (Mathematics)
197

Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces

Tshilombo, Mukinayi Hermenegilde 08 1900 (has links)
This thesis deals with cohomologies on the symplectic quotient of a Frölicher space which is locally diffeomorphic to a Euclidean Frölicher subspace of Rn of constant dimension equal to n. The symplectic reduction under consideration in this thesis is an extension of the Marsden-Weinstein quotient (also called, the reduced space) well-known from the finite-dimensional smooth manifold case. That is, starting with a proper and free action of a Frölicher-Lie-group on a locally Euclidean Frölicher space of finite constant dimension, we study the smooth structure and the topology induced on a small subspace of the orbit space. It is on this topological space that we will construct selected cohomologies such as : sheaf cohomology, Alexander-Spanier cohomology, singular cohomology, ~Cech cohomology and de Rham cohomology. Some natural questions that will be investigated are for instance: the impact of the symplectic structure on these di erent cohomologies; the cohomology that will give a good description of the topology on the objects of category of Frölicher spaces; the extension of the de Rham cohomology theorem in order to establish an isomorphism between the five cohomologies. Beside the algebraic, topological and geometric study of these new objects, the thesis contains a modern formalism of Hamiltonian mechanics on the reduced space under symplectic and Poisson structures. / Mathematical Sciences / D. Phil. (Mathematics)
198

Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations / Poisson Structures on Polynomial Algebras, Cohomology and Deformations

Butin, Frédéric 13 November 2009 (has links)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles / Deformation quantization and McKay correspondence form the main themes of the study which deals with singular algebraic varieties, quotients of polynomial algebras, and polynomial algebras invariant under the action of a finite group. Our main tools are Poisson and Hochschild cohomologies and representation theory. Certain calculations are made with Maple and GAP. We calculate Hochschild homology and cohomology spaces of Klein surfaces by developing a generalization of HKR theorem in the case of non-smooth varieties and use the multivariate division and the Groebner bases. The closure of the minimal nilpotent orbit of a simple Lie algebra is a singular algebraic variety : on this one we construct invariant star-products, with the help of the BGS decomposition of Hochschild homology and cohomology, and of results on the invariants of the classical groups. We give the generators of the Joseph ideal associated to this orbit and calculate the infinitesimal characters. For simple Lie algebras of type B, C, D, we establish general results on the Poisson homology space in degree 0 of the invariant algebra, which support Alev's conjecture, then we are interested in the ranks 2 and 3. We compute Poincaré series of 2 variables for the finite subgroups of the special linear group in dimension 3, show that they are rational fractions, and associate to the subgroups a generalized Cartan matrix in order to obtain a McKay correspondence in dimension 3. All the study comes from 4 papers
199

Ortho-ambivalence des groupes finis / Ortho-ambivalence of finite groups

Ntabuhashe Zahinda, Obed 16 May 2008 (has links)
Soient G un groupe fini et k un corps dont la caractéristique ne divise pas l’ordre de G. Il est établi, d’une part que pour que tous les caractères irréductibles de G soient réels, il faut et il suffit que G soit ambivalent; d’autre part, que pour que la restriction de l’involution canonique à chaque composante simple de l’algèbre de groupe kG soit une involution de première espèce, il faut et il suffit que G soit ambivalent. G est dit ortho-ambivalent par rapport à k si la restriction de l’involution canonique à chaque composante simple de l’algèbre de groupe kG est une involution orthogonale. Dans cette thèse, nous démontrons que les propositions suivantes sont équivalentes : (i) G est ortho-ambivalent par rapport à k ; (ii) G est totalement orthogonal ; (iii) G est ambivalent et tout caractère irréductible de G est de type 1 ; (iv) G est ambivalent et la somme des degrés des caractères irréductibles de G égale le nombre d’éléments de G dont les carrés sont égaux à l’élément neutre de G ; de plus, si la caractéristique de k est différente de 2, ces propositions sont équivalentes à la suivante : (v) G est ambivalent et le premier groupe de Witt tordu de la catégorie des kG-modules libres finiment engendrés munie d’une dualité définie en fonction de l’involution canonique sur kG est trivial. L’étude des 2-groupes spéciaux occupe une partie importante. Nous démontrons qu’un 2-groupe spécial ambivalent G d’application quadratique q est ortho-ambivalent par rapport à k si et seulement si pour toute forme linéaire s sur le centre de G (par rapport au corps à 2 éléments), l’invariant d’Arf de la forme quadratique induite par le transfert de q par s est nul. / Let G be a finite group and k a field whose characteristic does not divide the order of G. It is established, on the one hand that all irreducible characters of G are real if and only if G is ambivalent; in addition, that the restriction of the canonical involution on each simple component of the group algebra kG is an involution of first kind if and only if G is ambivalent. We say that G is ortho-ambivalent compared to k if the restriction of the canonical involution on each simple component of the group algebra kG is an orthogonal involution. In this thesis, we show that the following conditions are equivalent: (I) G is ortho-ambivalent compared to k; (II) G is totaly orthogonal; (III) G is ambivalent and any irreducible character of G is of type 1; (iv) G is ambivalent and the sum of the degrees of the irreducible characters of G equalizes the number of elements of G whose squares are equal to the neutral element of G; moreover, if the characteristic of k is different from 2, these conditions are equivalent to the following one: (v) G is ambivalent and the first twisted Witt group of the category of the free kG-modules finitely generated provided with a duality defined according to the canonical involution on kG is trivial. The study of the special 2-groups occupies a great part. We show that an ambivalent special 2-group G of quadratic application q is ortho-ambivalent compared to k if and only if for any linear form s on the center of G (compared to the field with 2 elements), the Arf invariant of the quadratic form induced by the transfer of q by s is null.
200

On Toric Symmetry of P1 x P2

Beckwith, Olivia D 01 May 2013 (has links)
Toric varieties are a class of geometric objects with a combinatorial structure encoded in polytopes. P1 x P2 is a well known variety and its polytope is the triangular prism. Studying the symmetries of the triangular prism and its truncations can lead to symmetries of the variety. Many of these symmetries permute the elements of the cohomology ring nontrivially and induce nontrivial relations. We discuss some toric symmetries of P1 x P2, and describe the geometry of the polytope of the corresponding blowups, and analyze the induced action on the cohomology ring. We exhaustively compute the toric symmetries of P1 x P2.

Page generated in 0.0414 seconds