• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 77
  • 43
  • 15
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 332
  • 92
  • 70
  • 69
  • 58
  • 57
  • 56
  • 54
  • 43
  • 43
  • 30
  • 29
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Cotangent Schubert Calculus in Grassmannians

Oetjen, David Christopher 15 June 2022 (has links)
We find formulas for the Segre-MacPherson classes of Schubert cells in T-equivariant cohomology and the motivic Segre classes of Schubert cells in T-equivariant K-theory. In doing so we look at the pushforward of the projection map from the Bott-Samelson (Kempf-Laksov) desingularization to the Grassmannian. We find that the Segre-MacPherson classes are stable under pullbacks of maps embedding a Grassmannian into a bigger Grassmannian. We also express these formulas using certain Demazure-Lusztig operators that have previously been used to study these classes. / Doctor of Philosophy / Schubert calculus was first introduced in the nineteenth century as a way to answer certain questions in enumerative geometry. These computations relied on the multiplication of Schubert classes in the cohomology ring of Grassmannians, which parameterize k-dimensional linear subspaces of a vector space. More recently Schubert calculus has been broadened to refer to computations in generalized cohomology theories, such as (equivariant) K-theory. In this dissertation, we study Segre-MacPherson classes and motivic Segre classes of Schubert cells in Grassmannians. Segre-MacPherson classes are related to Chern-Schwartz-MacPherson classes, which are a generalization to singular spaces of the total Chern class of the tangent bundle. Motivic Segre classes are similarly related to motivic Chern classes, which are a K-theory analogue of Chern-Schwartz-MacPherson classes. This dissertation also studies the relationship between Schubert varieties and their Bott-Samelson desingularizations, specifically their (T-equivariant) cohomology and K-theory rings. Since equivariant cohomology (or K-theory) classes can be represented by polynomials, we can represent the Segre-MacPherson (or motivic Segre) classes as rational functions. Furthermore, we use certain operators that act on such polynomials (or rational functions) to find formulas for the rational function representatives of the aforementioned classes.
232

Toroidal algebra representations and equivariant elliptic surfaces

DeHority, Samuel Patrick January 2024 (has links)
We study the equivariant cohomology of moduli spaces of objects in the derived category of elliptic surfaces in order to find new examples of infinite dimensional quantum integrable systems and their geometric representation theoretic interpretation in enumerative geometry. This problem is related to a program to understand the cohomological and K-theoretic Hall algebras of holomorphic symplectic surfaces and to understand how it related to the Donaldson-Thomas theory of threefolds fibered in those surfaces. We use the theory of noncommutative deformations of Poisson surfaces and especially van den Berg’s noncommutative P1 bundles as well as Rains’s analysis of moduli theory for quasi-ruled noncommutative surfaces as well as the theory of Bridgeland stability conditions and their relative versions to understand equivariant deformations and birational transformations of Hilbert schemes of points on equivariant elliptic surfaces. The moduli spaces are closely related to elliptic versions of classical integrable systems. We also use these moduli spaces to construct vertex algebra representations of extensions of toroidal extended affine algebras on their equivariant cohomology, building on work of Eswara-Rao–Moody–Yokonuma, of Billig, and of Chen–Li–Tan on vertex representations of toroidal algebras, full toroidal algebras, and toroidal extended affine algebras. Using Fourier-Mukai transforms and their relative action on families of dg-categories we study the relationship between automorphisms of toroidal extended affine algebras and families of derived equivalences on dg categories, in particular finding a relativistic (difference) generalization of the Laumon-Rothstein deformation of the Fourier-Mukai duality. Finally, using the above analysis we extend the construction of Maulik–Okounkov’s stable envelopes to moduli of framed torsionfree sheaves on noncommutative surfaces in some cases and use this to study coproducts on associated algebras assigned to elliptic surfaces with applications to understanding new representation theoretic structures in the Donaldson-Thomas theory of local curves.
233

QUANTUM COHOMOLOGY OF TORIC BUNDLES / トーリック束の量子コホモロジー

Koto, Yuki 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25088号 / 理博第4995号 / 新制||理||1713(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 入谷 寛, 教授 塚本 真輝, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
234

Symmetric Squaring in Homology and Bordism / Symmetrisches Quadrieren in Homologie und Bordismus

Krempasky, Seyide Denise 25 August 2011 (has links)
Betrachtet man das kartesische Produkt X × X eines topologischen Raumes X mit sich selbst, so kann auf diesem Objekt insbesondere die Involution betrachtet werden, die die Koordinaten vertauscht, die also (x,y) auf (y,x) abbildet. Das sogenannte 'Symmetrische Quadrieren' in Čech-Homologie mit Z/2-coefficients wurde von Schick et al. 2007 als Abbildung von der k-ten Čech-Homologiegruppe eines Raumes X in die 2k-te Čech-Homologiegruppe von X × X modulu der oben genannten Involution definiert. Es stellt sich heraus, dass diese Konstruktion entscheidend ist für den Beweis eines parametrisierten Borsuk-Ulam-Theorems.Das Symmetrische Quadrieren kann zu einer Abbildung in Bordismus verallgemeinert werden, was der Hauptgegenstand dieser Dissertation ist. Genauer gesagt werden wir zeigen, dass es eine wohldefinierte, natürliche Abbildung von der k-ten singulären Bordismusgruppe von X in die 2k-te Bordismusgruppe von X × X modulu der obigen Involution gibt.Insbesondere ist dieses Quadrieren wirklich eine Verallgemeinerung der Konstruktion in Čech-Homologie, denn es ist vertauschbar mit dem Übergang von Bordismus zu Homologie via dem Fundamentalklassenhomomorphismus. Auf dem Weg zu diesem Resultat wird das Konzept des Čech-Bordismus als Kombination aus Bordismus und Čech-Homologie zunächst definiert und dann mit Čech-Homologie verglichen.
235

Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs / Depth, dimension and resolutions in commutative algebra : some effective aspects

Tête, Claire 21 October 2014 (has links)
Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper aux idéaux premiers et ceci afin de manier des objets élémentaires et explicites. Parmi ces objets, figurent les complexes algébriques de Koszul et de Cech dont nous étudions les propriétés cohomologiques grâce à des résultats simples portant sur la cohomologie du totalisé d'un bicomplexe. Dans le cadre de la cohomologie de Cech, nous avons établi la longue suite exacte de Mayer-Vietoris avec un traitement reposant uniquement sur le maniement des éléments. Une autre notion importante est celle de dimension de Krull. Sa caractérisation en termes de monoïdes bords permet de montrer de manière expéditive le théorème d'annulation de Grothendieck en cohomologie de Cech. Nous fournissons également un algorithme permettant de compléter un polynôme homogène en un h.s.o.p.. La profondeur est intimement liée à la théorie des résolutions libres/projectives finies, en témoigne le théorème de Ferrand-Vasconcelos dont nous rapportons une généralisation due à Jouanolou. Par ailleurs, nous revenons sur des résultats faisant intervenir la profondeur des idéaux caractéristiques d'une résolution libre finie. Nous revisitons, dans un cas particulier, une construction due à Tate permettant d'expliciter une résolution projective totalement effective de l'idéal d'un point lisse d'une hypersurface. Enfin, nous abordons la théorie de la régularité en dimension 1 via l'étude des idéaux inversibles et fournissons un algorithme implémenté en Magma calculant l'anneau des entiers d'un corps de nombres. / This Commutative Algebra thesis focuses mainly on the depth theory. We try to provide an approach without noetherian hypothesis in order to escape prime ideals and to handle only basic and explicit concepts. We study the algebraic complexes of Koszul and Cech and their cohomological properties by using simple results on the cohomology of the totalization of a bicomplex. In the Cech cohomology context we established the long exact sequence of Mayer-Vietoris only with a treatment based on the elements. Another important concept is that of Krull dimension. Its characterization in terms of monoids allows us to show expeditiously the vanishing Grothendieck theorem in Cech cohomology.We also provide an algorithm to complete a omogeneous polynomial in a h.s.o.p.. The depth is closely related to the theory of finite free/projective resolutions. We report a generalization of the Ferrand-Vasconcelos theorem due to Jouanolou. In addition, we review some results involving the depth of the ideals of expected ranks in a finite free resolution.We revisit, in a particular case, a construction due to Tate. This allows us to give an effective projective resolution of the ideal of a point of a smooth hypersurface. Finally, we discuss the regularity theory in dimension 1 by studying invertible ideals and provide an algorithm implemented in Magma computing the ring of integers of a number field.
236

The mathematical structure of non-locality and contextuality

Mansfield, Shane January 2013 (has links)
Non-locality and contextuality are key features of quantum mechanics that distinguish it from classical physics. We aim to develop a deeper, more structural understanding of these phenomena, underpinned by robust and elegant mathematical theory with a view to providing clarity and new perspectives on conceptual and foundational issues. A general framework for logical non-locality is introduced and used to prove that 'Hardy's paradox' is complete for logical non-locality in all (2,2,l) and (2,k,2) Bell scenarios, a consequence of which is that Bell states are the only entangled two-qubit states that are not logically non-local, and that Hardy non-locality can be witnessed with certainty in a tripartite quantum system. A number of developments of the unified sheaf-theoretic approach to non-locality and contextuality are considered, including the first application of cohomology as a tool for studying the phenomena: we find cohomological witnesses corresponding to many of the classic no-go results, and completely characterise contextuality for large families of Kochen-Specker-like models. A connection with the problem of the existence of perfect matchings in k-uniform hypergraphs is explored, leading to new results on the complexity of deciding contextuality. A refinement of the sheaf-theoretic approach is found that captures partial approximations to locality/non-contextuality and can allow Bell models to be constructed from models of more general kinds which are equivalent in terms of non-locality/contextuality. Progress is made on bringing recent results on the nature of the wavefunction within the scope of the logical and sheaf-theoretic methods. Computational tools are developed for quantifying contextuality and finding generalised Bell inequalities for any measurement scenario which complement the research programme. This also leads to a proof that local ontological models with `negative probabilities' generate the no-signalling polytopes for all Bell scenarios.
237

Bounding The Hochschild Cohomological Dimension

Kratsios, Anastasis 08 1900 (has links)
Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de borner la dimension cohomologique des k-algèbres par dessous; montrant que presque aucune k-algèbre commutative est quasi-libre. / The aim of this master’s thesis is two-fold. Firstly to develop and interpret the low dimensional Hochschild cohomology of a k-algebra and secondly to establish a lower bound for the Hochschild cohomological dimension of a k-algebra; showing that nearly no commutative k-algebra is quasi-free.
238

Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques / The Brauer group of homogeneous spaces with non connected stabilizer and arithmetical applications

Lucchini Arteche, Giancarlo 29 September 2014 (has links)
Dans cette thèse, on s'intéresse au groupe de Brauer non ramifié des espaces homogènes à stabilisateur non connexe et à ses applications arithmétiques. On développe notamment différentes formules de nature algébrique et/ou arithmétique permettant de calculer explicitement, tant sur un corps fini que sur un corps de caractéristique 0, la partie algébrique du groupe de Brauer non ramifié d'un espace homogène G\G' sous un groupe linéaire G' semi-simple simplement connexe à stabilisateur fini G, le tout en donnant des exemples de calculs que l'on peut faire avec ces formules. Pour ce faire, on démontre au préalable (à l'aide d'un théorème de Gabber sur les altérations) un résultat décrivant la partie de torsion première à p du groupe de Brauer non ramifié d'une variété V lisse et géométriquement intègre sur un corps fini ou sur un corps global de caractéristique p au moyen de l'évaluation des éléments de Br(V) sur ses points locaux. Les formules pour un stabilisateur fini sont ensuite généralisées au cas d'un stabilisateur G quelconque via une réduction de la cohomologie galoisienne du groupe G à celle d'un certain sous-quotient fini. Enfin, pour K un corps global et G un K-groupe fini résoluble, on démontre sous certaines hypothèses sur une extension déployant G que l'espace homogène V:=G\G' avec G' un K-groupe semi-simple simplement connexe vérifie l'approximation faible (ces hypothèses assurant la nullité du groupe de Brauer non ramifié algébrique). On utilise une version plus précise de ce résultat pour démontrer ensuite le principe de Hasse pour des espaces homogènes X sous un K-groupe G' semi-simple simplement connexe à stabilisateur géométrique fini et résoluble, sous certaines hypothèses sur le K-lien défini par X. / This thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X.
239

Contributions à l'étude cohomologique des points rationnels sur les variétés algébriques / Contributions to the cohomological study of rational points on algebraic varieties

Smeets, Arne 22 September 2014 (has links)
Le thème principal de cette thèse est l’interaction entre le “comportement” des points rationnels sur certaines classes de variétés définies sur des corps globaux et locaux, et la cohomologie de ces variétés.Dans la partie I, on étudie l’obstruction de Brauer-Manin à la validité des principes locaux-globaux (comme le principe de Hasse et l’approximation faible) qui vient du groupe de Brauer d’une variété. Dans certains cas, pour des fibrations en torseurs sous un tore constant défini sur un corps de nombres, on démontre que l’obstruction de Brauer-Manin est suffisante pour expliquer le défaut des principes locaux-globaux. On donne également des nouveaux examples de variétés pour lesquelles l’obstruction de Brauer-Manin et ses raffinements ne suffisent pas pour expliquer le défaut du principe de Hasse.Dans la partie II, on étudie la relation entre le volume rationnel d’une variété lisse, projective sur un corps strictement local, et la trace de l’opérateur de monodromie modérée sur la cohomologie étale de la variété. Ceci est motivé par un travail de Nicaise-Sebag sur une formule de traces pour l’invariant de Serre motivique, inspiré par la formule de Grothendieck-Lefschetz pour les variétés sur les corps fini. On utilise ici le formalisme de la géométrie logarithmique. / The main theme of this thesis is the interplay between the “behaviour” of the rational points on certain classes of algebraic varieties defined over global and local fields, andthe cohomology of these varieties. Part I studies the Brauer-Manin obstruction to the validity of local-global principles (such as the Hasse principle and weak approximation) coming from the Brauer groupof a variety. In some cases, for certain families of torsors under a constant torusdefined over a number field, we prove that the Brauer-Manin obstruction is sufficientto explain the failure of these local-global principles. We also give new examples of varieties for which the Brauer-Manin obstruction and its refinements are insufficientto explain the failure of the Hasse principle.In Part II, we investigate the relationship between the rational volume of a smooth, projective variety defined over a strictly local field, and the trace of the tame monodromy operator on the étale cohomology of this variety. The motivation is work of Nicaise–Sebag on a trace formula for the motivic Serre invariant, inspired by the Grothendieck–Lefschetz trace formula for varieties over finite fields. We study this relationship using the framework of logarithmic geometry.
240

O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um / Product of two spheres embedded in sphere in codimension one

Penteado, Northon Canevari Leme 22 February 2011 (has links)
James W. Alexander, no artigo[1],mostra que se tivermos um mergulho PL f : \'S POT. 1\' × \'S POT. 1\' \'S POT. 3\', então o fecho de uma das componentes conexas de \'S POT. 3\' f(\'S POT. 1\' × \'S POT. 1\') é homeomorfo a um toro sólido, isto é, homeomorfo a \'S POT. 1\' × \'D POT. 2\'. Este teorema ficou conhecido por Teorema do toro de Alexander. Nesta dissertação, estamos detalhando a demonstração deste teorema feita em[25] que é diferente da demonstração apresentada em [1]. Mais geralmente, para um mergulho diferenciável f : \'S POT. p\' × \'S POT. q\' \'S POT. p + q+1\' , demonstra-se que o fecho de uma das componentes conexasde \'S POT. p +q + 1\' f(\'S POT. p\' × \'S POT. q\') é difeomorfo a \'S POT. p\' × \'D POT. q + 1\' se p q 1 e p + q \'DIFERENTE DE\' 3 ou se p = 2 e q = 1 um dos fechos será homeomorfo a \'S POT. 2\' × \'D POT. 2\' , nesta dissertação estaremos também detalhando estas demonstrações feita em [20] / James W. Alexander shows in[1] that the closure of one of the two connected components of \'S POT. 3\'f( \'S POT. 1 × \'S POT. 1\') is homeomorphic to a solid torus \'S POT. 1\' × \'D POT. 2\' , where f : \'S POT. 1\' ×\' SPOT. 1\' \'S POT. 3\' is a PL embedding. This result became known as Alexanders torus theorem. In this dissertation we are detailing the proof of this theorem made in[25] which is different from the demonstration presented in[1]. More generally, when considering a smooth embeding f : \'S POT. p\' × \'S POT. q\' \' SPOT. p+q+1\' , it is demonstrated that the closure of one of the two connected components \'S POT. p+q+1\' f (\'S POT. p\' × \'S POT. q\' ) is diffeomorphic to \'S POT. p\' × \'D POT. q+1\' if p q 1 and p+q \'DIFFERENT OF\' 3 or if p = 2 and q = 1 one of the closures will be homeomorphic to \'S POT. 2\' × \'D POT. 2\'. In this work we are also detailing the proves made in[20]

Page generated in 0.0446 seconds