• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 77
  • 43
  • 15
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 332
  • 92
  • 70
  • 69
  • 58
  • 57
  • 56
  • 54
  • 43
  • 43
  • 30
  • 29
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Géométrie algébrique : théorèmes d'annulation sur les variétés toriques

Girard, Vincent 08 1900 (has links)
No description available.
252

Gromov-Witten Theory of Blowups of Toric Threefolds

Ranganathan, Dhruv 31 May 2012 (has links)
We use toric symmetry and blowups to study relationships in the Gromov-Witten theories of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. These two spaces are birationally equivalent via the common blowup space, the permutohedral variety. We prove an equivalence of certain invariants on blowups at only points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$ by showing that these invariants descend from the blowup. Further, the permutohedral variety has nontrivial automorphisms of its cohomology coming from toric symmetry. These symmetries can be forced to descend to the blowups at just points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. Enumerative consequences are discussed.
253

Cohomology and K-theory of aperiodic tilings

Savinien, Jean P.X. 19 May 2008 (has links)
We study the K-theory and cohomology of spaces of aperiodic and repetitive tilings with finite local complexity. Given such a tiling, we build a spectral sequence converging to its K-theory and define a new cohomology (PV cohomology) that appears naturally in the second page of this spectral sequence. This spectral sequence can be seen as a generalization of the Leray-Serre spectral sequence and the PV cohomology generalizes the cohomology of the base space of a Serre fibration with local coefficients in the K-theory of its fiber. We prove that the PV cohomology of such a tiling is isomorphic to the Cech cohomology of its hull. We give examples of explicit calculations of PV cohomology for a class of 1-dimensional tilings (obtained by cut-and-projection of a 2-dimensional lattice). We also study the groupoid of the transversal of the hull of such tilings and show that they can be recovered: 1) from inverse limit of simpler groupoids (which are quotients of free categories generated by finite graphs), and 2) from an inverse semi group that arises from PV cohomology. The underslying Delone set of punctures of such tilings modelizes the atomics positions in an aperiodic solid at zero temperature. We also present a study of (classical and harmonic) vibrational waves of low energy on such solids (acoustic phonons). We establish that the energy functional (the "matrix of spring constants" which describes the vibrations of the atoms around their equilibrium positions) behaves like a Laplacian at low energy.
254

Dualidade de Poincaré e invariantes cohomológicos /

Cellini, Caroline Paula. January 2008 (has links)
Orientador: Ermínia de Lourdes Campello Fanti / Banca: Fernanda Soares Pinto Cardona / Banca: Maria Gorete Carreira Andrade / Resumo: Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos "ends" e grupos de dualidade são apresentados. / Abstract: In this work we consider some aspects of duality theory. It can be divided in three principal parts. In the first we prove the Poincaré Duality theorem for orientable manifolds (without boundary). For that, it is necessary the use of the direct limit and cohomology with compact supports. In the second part we de¯ne duality groups, in particular, Poincaré duality groups, we introduce some results and observations about the relationship between such groups and fundamental groups of aspherical closed manifolds, that still is an open problem. Finally, some results envolving the cohomological invariant "ends" and duality groups are presented. / Mestre
255

Decomposição de grupos de dualidade de Poincaré, obstruções sing e invariantes cohomológicos

Cavalcanti, Maria Paula dos Santos [UNESP] 26 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-26Bitstream added on 2014-06-13T20:16:04Z : No. of bitstreams: 1 cavalcanti_mps_me_sjrp.pdf: 612728 bytes, checksum: 47d18c69b5ae7b113879890007734ec5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O obejtivo principal deste trabalho é estudar as obstruções sing que desempenham papel importante nas demonstrações de certos resultados sobre decomposição de grupos que satisfazem certas hipóteses de dualidade apresentados em [16] e [17], em particular, sobre decomposição de um grupo G adapatada a uma família S de subgrupos de G com (G,S) um par de dualidade de Poincaré. Alguns invariantes cohomológicos e certos resultados envolvendo tais invariantes, decomposição de grupos e/ou grupos e pares de dualidade são também apresentados. / The main objective of this work to study the obstructions sing which play an important role in demonstrating certain results on the splittings of groups that satisfy certain hypotheses of duality presented in [16] and [17], in particular, the decomposition of a group G adapted to a family S of subgroups of G with (G,S) a Poincaré duality pair. Some cohomological invariants and certain results involving such invariants, a splittings of groups and/or groups and pairs of duality are also presented.
256

Cohomologia de grupos e invariante algébricos

Santos, Anderson Paião dos [UNESP] 12 April 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-04-12Bitstream added on 2014-06-13T19:55:23Z : No. of bitstreams: 1 santos_ap_me_sjrp.pdf: 749833 bytes, checksum: 8be58c6f81e3ac600ff8f26430348533 (MD5) / Para todo grupo G infinito, finitamente gerado, pode-se obter para o invariante algébrico end, mais precisamente o número de ends e(G), uma fórmula cohomológica 1-dimensional. O principal objetivo deste trabalho é apresentar, sob certas hipóteses, uma fórmula cohomológica 1-dimensional para o invariante algébrico e(G,H), definido por Scott e Houghton, onde H é um subgrupo de G (Teorema de Swarup). Para tanto, o conceito de subconjunto H-quase invariante de G e resultados como a interpretação do grupo de cohomologia H1(G,M) em termos de derivações (à direita), onde M é um ZG-módulo, e o Lema de Shapiro, são resultados imprescindíveis. Algumas relações desses invariantes com ends de espaços são também apresentadas. / For all infinite group G, finitely generated, one can obtain for the algebric invariant end, more precisely the number of ends e(G), a cohomological 1-dimensional formula. The main objective of this work is to present, under certain hypotheses, a cohomological 1-dimensional formula for the algebric invariant e(G,H), defined by Scott and Houghton, where H is a subgroup of G (Swarup's Theorem). In order to do so, the concept of subset H-almost invariant of G and results like the interpretation of the cohomological group H1(G,M) in terms of derivations (to the right), where M is a ZG-module, and the Shapiro's Lemma, are fundamental results. Some relations of these invariants with space ends are also presented.
257

Invariantní differenciální operátory pro 1-gradované geometrie / Invariant differential operators for 1-graded geometries

Tuček, Vít January 2017 (has links)
In this thesis we classify singular vectors in scalar parabolic Verma modules for those pairs (sl(n, C), p) of complex Lie algebras where the homogeneous space SL(n, C)/P is the Grassmannian of k-planes in Cn . We calculate cohomology of nilpotent radicals with values in certain unitarizable highest weight modules. According to [BH09] these modules have BGG resolutions with weights determined by this cohomology. Such resolutions induce complexes of invariant differential operators on sections of associated bundles over Hermitian symmetric spaces. We describe formal completions of unitarizable highest weight modules that one can use to modify method from [CD01] that constructs sequences of differential operators over any 1-graded (aka almost Hermitian) geometry. We suggest uniform description of octonionic planes that could serve as a basis for better understanding of the exceptional Hermitian symmetric space for group E6.
258

Supersymmetric Quantum Mechanics and the Gauss-Bonnet Theorem

Olofsson, Rikard January 2018 (has links)
We introduce the formalism of supersymmetric quantum mechanics, including super-symmetry charges,Z2-graded Hilbert spaces, the chirality operator and the Wittenindex. We show that there is a one to one correspondence of fermions and bosons forenergies different than zero, which implies that the Witten index measures the dif-ference of fermions and bosons at the ground state. We argue that the Witten indexis the index of an elliptic operator. Quantization of the supersymmetric non-linearsigma model shows that the Witten index equals the Euler characteristic of the un-derlying Riemannian manifold over which the theory is defined. Finally, the pathintegral representation of the Witten index is applied to derive the Gauss-Bonnettheorem. Apart from this we introduce elementary mathematical background in thesubjects of topological invariance, Riemannian manifolds and index theory / Vi introducucerar formalismen f ̈or supersymmetrisk kvantmekanik, d ̈aribland super-symmetryladdningar,Z2-graderade Hilbertrum, kiralitetsoperatorn och Wittenin-dexet. Vi visar att det r ̊ader en till en-korrespondens mellan fermioner och bosonervid energiniv ̊aer skillda fr ̊an noll, vilket medf ̈or att Wittenindexet m ̈ater skillnadeni antal fermioner och bosoner vid nolltillst ̊andet. Vi argumenterar f ̈or att Wittenin-dexet ̈ar indexet p ̊a en elliptisk operator. Kvantisering av den supersymmetriskaicke-linj ̈ara sigmamodellen visar att Wittenindexet ̈ar Eulerkarakteristiken f ̈or denunderliggande Riemannska m ̊angfald ̈over vilken teorin ̈ar definierad. Slutligenapplicerar vi v ̈agintegralrepresentationen av Wittenindexet f ̈or att h ̈arleda Gauss-Bonnets sats. Ut ̈over detta introduceras ocks ̊a grundl ̈aggande matematisk bakrundi ämnena topologisk invarians, Riemmanska m ̊angfalder och indexteori.
259

As esferas que admitem uma estrutura de grupo de Lie / Spheres that admit a Lie group structure

Lima, Kennerson Nascimento de Sousa 02 March 2010 (has links)
We will show that the only connected Euclidean spheres admitting a structure of Lie group are S1 and S3, for all n greater than or equal to 1. We will do this through the study of properties of the De Rham cohomology groups of sphere Sn and of compact connected Lie groups. / Fundação de Amparo a Pesquisa do Estado de Alagoas / Mostraremos que as únicas esferas euclidianas conexas que admitem uma estrutura de grupo de Lie são S1 e S3, para todo n maior ou igual a 1. Faremos isso por intermédio do estudo de propriedades dos grupos de cohomologia de De Rham das esfereas Sn e dos grupos de Lie compactos e conexos.
260

Fórmulas integrais para a curvatura r-média e aplicações / Spheres that admit a Lie group structure

Santos, Viviane de Oliveira 29 January 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação, descrevemos resultados obtidos por Hilário Alencar e A. Gervasio Colares, publicado no Annals of Global Analysis and Geometry em 1998. Inicialmente, obtemos fórmulas integrais para a curvatura r-média, as quais generalizam fórmulas de Minkowski. Além disso, usando estas fórmulas, caracterizamos as hipersuperfícies compactas imersas no espaço Euclidiano, esférico ou hiperbólico cujo conjunto de pontos nestes espaços que não pertencem as hipersuperfícies totalmente geodésicas tangentes às hipersuperfícies compactas é aberto e não vazio. Outrossim, obtemos ainda resultados relacionados com a estabilidade. As demonstrações destes resultados são obtidas através da fórmula integral de Dirichlet para o operador linearizado da curvatura r-média de uma hipersuperfície imersa no espaço Euclidiano, esférico ou hiperbólico, bem como do uso de um resultado recente provado por Hilário Alencar, Walcy Santos e Detang Zhou no preprint Curvature Integral Estimates for Complete Hypersurfaces. Ressaltamos que esta dissertação foi baseada na versão corrigida por Hilário Alencar do artigo publicado no Annals of Global Analysis and Geometry.

Page generated in 0.0585 seconds