201 |
On properties about local cohomology modules, finiteness of torsion and extension functors, and integral closure relative to Artinian modules / Propriedades sobre módulos de cohomologia local, finitude dos funtores torção e extensão, e fecho integral relativo a módulos ArtinianosMerighe, Liliam Carsava 19 March 2019 (has links)
Let R be a non-zero commutative Noetherian ring with unit 1 ≠ 0, a be an ideal of R, and M and N be R-modules. This thesis makes a contribution to the study of generalized local cohomology modules, namely Hia (M;N), with applications for the study of attached primes, torsion product and extension functors, and integral closures and multiplicities relative to Artinian modules. In particular, we obtained results on the following topics: counting the number of non-isomorphic top generalized local cohomology modules, conditions to finiteness, cofiniteness, artinianess and representability of generalized local cohomology modules, torsion product and extension functors applied to R-modules, and conditions to equality between some types of integral closures and multiplicities. / Sejam R um anel Noetheriano comutativo com unidade 1 ≠ 0, a um ideal de R e M e N módulos sobre R. Nessa tese, fazemos contribuições ao estudo dos módulos de cohomologia local generalizada, a saber Hia (M;N), com aplicações ao estudo dos ideais primos anexados de R, funtores torção e extensão, e fecho integral e multiplicidades relativos a módulos artinianos. Em particular, estabelecemos resultados nos seguintes temas: contar o número de módulos de cohomologia local generalizados no topo não isomorfos; condições para os módulos de cohomologia local e os funtores torção e extensão aplicados a R-módulos terem características finitas (finitamente gerado, finitos primos associados, etc), serem cofinitos, serem artinianos e serem representáveis; e condições para a igualdade entre tipos de fechos integrais e multiplicidades.
|
202 |
Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée / Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomologyPirutka, Alena 12 October 2011 (has links)
Dans cette thèse, on s'intéresse à des propriétés arithmétiques de variétés algébriques. Elle contient deux parties et huit chapitres que l'on peut lire indépendamment. Dans la première partie on étudie la R-équivalence sur les points rationnels des variétés algébriques. Dans le chapitre I.1 on établit que pour certaines familles projectives et lisses X→Y de variétés géométriquement rationnelles sur un corps local k de caractéristique nulle le nombre des classes de R-équivalence de la fibre Xy(k) est localement constant quand y varie dans Y(k). Dans le chapitre I.2 on s'intéresse à des variétés rationnellement simplement connexes. On établit que la R-équivalence est triviale sur de telles variétés définies sur C(t). Dans le chapitre I.3 on introduit une autre relation d'équivalence sur les points rationnels des variétés définies sur un corps muni d'une valuation discrète et on étudie quelques propriétés de cette relation d'équivalence. Dans le chapitre I.4 on étudie la R-équivalence sur les variétés rationnellement connexes définies sur les corps réels clos ou p-adiqument clos. La deuxième partie de cette thèse est consacrée à l'étude de quelques questions liées à la cohomologie non ramifiée. Dans le chapitre II.1 on utilise le troisième groupe de cohomologie non ramifiée pour donner un exemple d'une variété projective et lisse géométriquement rationnelle X, définie sur un corps fini Fp, telle que l'application de groupes de Chow de codimension deux de la variété X dans le groupe de Chow de cycles de codimension deux sur la clôture algébrique, fixés par l’action de Galois, n'est pas surjective. Dans le chapitre II.2 on s'intéresse aux fibrations au-dessus d'une surface sur un corps fini dont la fibre générique est une variété de Severi-Brauer et on montre que le troisième groupe de cohomologie non ramifiée s'annule pour de telles variétés. Dans le chapitre II.3, on établit l'invariance birationnelle de certains termes de la suite spectrale de Bloch et Ogus pour des variétés sur un corps de dimension cohomologique bornée. Sur un corps fini, on relie un de ces invariants avec le conoyau de l'application classe de cycle l-adique pour les 1-cycles. Dans le chapitre II.4, on s'intéresse à “borner” la ramification des éléments des groupes de cohomologie Hr(K, Z/n), r>0, si K est le corps des fonctions d'une variété intègre définie sur un corps de caractéristique nulle k. / In this Ph.D. thesis, we investigate some arithmetic properties of algebraic varieties. The thesis consists of two parts, divided into eight chapters. The first part is devoted to the study of R-equivalence on rational points of algebraic varieties. In chapter I.1, we prove that for some families X→Y of smooth projective geometrically rational varieties defined over a finite extension of Qp, the number of R-equivalence classes on Xy(k) is a locally constant function on Y(k). In chapter I.2, we establish the triviality of R-equivalence for rationally simply connected varieties defined over C(t). In chapter I.3, we introduce and analyze a different equivalence relation on rational points of varieties defined over a field equipped with a discrete valuation, and then compare it with R-equivalence. In chapter I.4, we study R-equivalence for varieties over real closed and p-adically closed fields. The second part of the thesis deals with some questions involving unramified cohomology. In chapter II.1, we use the third unramified cohomology group to give an example of a smooth, projective, geometrically rational variety X defined over a finite field Fp, such that the map from the Chow group of codimension two cycles on X to the Chow group of codimension two cycles over an algebraic closure, fixed by the Galois action, is not surjective. In chapter II.2, we prove the vanishing of the third unramified cohomology group for certain fibrations over a surface defined over a finite field whose generic fibre is a Severi-Brauer variety. In chapter II.3, we show that certain terms of the Bloch-Ogus spectral sequence are birational invariants for varieties over fields of bounded cohomological dimension. Then in the case of a finite field, we relate one of these invariants to the cokernel of the l-adic cycle class map for 1-cycles. Finally, in chapter II.4, we establish a “bound” for ramification of elements of the group Hr(K, Z/n), r>0, where K is the function field of an integral variety defined over a field of characteristic zero.
|
203 |
Medidas transversas, correntes e sistemas dinâmicos / Transverse measures, currents and dynamical systemsParejas, Jorge Luis Crisostomo 25 February 2013 (has links)
Neste trabalho, fazemos um estudo das correntes e das medidas transversas invariantes por holonomia, e mostraremos o resultado de D. Sullivan [23] sobre a correspondência biunívoca entre estes dois objetos. Em particular mostraremos um resultado conhecido de J. Plante [17] sobre a existência de medidas transversas invariantes sob a hipótese de crescimento sub-exponencial. Apresentamos também, o resultado devido a Ruelle-Sullivan [19] de que a medida de máxima entropia de um difeomorfismo topologicamente mixing pode-se expressar como o produto de duas medidas transversas invariantes para as folheações estáveis e instáveis. Por último, mostramos que os difeomorfismos de Anosov topologicamente mixing, que preservam a orientação das folhas estáveis e folhas instáveis induzem elementos da cohomologia de DeRham / In this work, we make a study of currents and holonomy invariant transverse measure, and we will show the result of D. Sullivan [23] about the biunivocal correspondence between these two objects. In particular we show a known result of J. Plante [17] about the existence of invariant transverse measures under the hypothesis of sub-exponential growth. Also we will present, the result due to Ruelle-Sullivan [19] that the maximum entropy measure of a diffeomorphism topologically mixing can be expressed as the product of two invariant transverse measures for stable and unstable foliations. Finally, we show that the Anosov diffeomorphisms topologically mixing, which preserve the orientation of the leaves stable and unstable induce elements DeRham cohomology
|
204 |
Grupos split metacíclicos e formas espaciais esféricas metacíclicas / Split metacyclic groups and split metacyclic spherical space formsFemina, Ligia Laís 02 December 2011 (has links)
Neste trabalho, estudamos a ação dos grupos split metacíclicos \'D IND. (2h+1) POT. 2 nas esferas. Encontramos uma região fundamental dos espaços quocientes, chamados de Formas Espaciais Esféricas Metacíclicas, que foi utilizada para construirmos um conveniente complexo de cadeias destas formas com o qual calculamos o anel de cohomologia e a torção de Reidemeister. Obtivemos também uma relação entre as diferentes torções encontradas / In this work, we study the action of the split metacyclic groups \'D IND. (2h+1) POT. 2 on the spheres. We find a fundamental domain of the quotient spaces, called Metacyclic Spherical Space Forms. Through this region we have built a convenient chain complex of these spaces and we used it to calculate their cohomology ring and Reidemeister torsion. We obtained also a relation between the different torsions found
|
205 |
"Enumeração dos fibrados vetoriais sobre superfícies fechadas" / "Enumeration of vector bundles over closed surfaces"Melo, Thiago de 08 April 2005 (has links)
O objetivo desse trabalho é fazer uma enumeração dos fibrados planos reais sobre algumas superfícies, como por exemplo, a esfera e o g-toro. Entre outras ferramentas, utilizamos a co-homologia das superfícies, com coeficientes locais, e também o método desenvolvido por Larmore para contar classes de homotopia de levantamento de funções. / The aim of this work is enumerate the plane bundles over some surfaces, for example the sphere and the g-torus. Among other tools we used cohomology of the surfaces with local coefficients and also the method developed by Larmore to count homotopy classes of lifting of functions.
|
206 |
Intersection cohomology of hypersurfacesWotzlaw, Lorenz 28 January 2008 (has links)
Bekannte Theoreme von Carlson und Griffiths gestatten es, die Variation von Hodgestrukturen assoziiert zu einer Familie von glatten Hyperflächen sowie das Cupprodukt auf der mittleren Kohomologie explizit zu beschreiben. Wir benutzen M. Saitos Theorie der gemischten Hodgemoduln, um diesen Kalkül auf die Variation der Hodgestruktur der Schnittkohomologie von Familien nodaler Hyperflächen zu verallgemeinern. / Well known theorems of Carlson and Griffiths provide an explicit description of the variation of Hodge structures associated to a family of smooth hypersurfaces together with the cupproduct pairing on the middle cohomology. We give a generalization to families of nodal hypersurfaces using M. Saitos theory of mixed Hodge modules.
|
207 |
Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade / On G-maps between cohomology spheres and a representation of the Reeb Graph as a subcomplex of a manifoldSilva, Nelson Antonio 29 April 2016 (has links)
Bartsch (BARTSCH, 1993) introduziu uma teoria de índice cohomológico, conhecida como o length, para G-espaços, no qual G é um grupo de Lie compacto. Apresentamos o cálculo do length de G-espaços os quais são esferas de cohomologia e G = (Z2)k, (Zp)k ou (S1)k, k ≥ 1. Como consequências, obtemos um teorema de Borsuk-Ulam neste contexto e damos condições suficientes para a existência de aplicações G-equivariantes entre uma esfera de cohomologia e uma esfera de representação quando G = (Zp)<sup<k. Também, uma versão Bourgin-Yang do teorema de Borsuk-Ulam é apresentada. Como segunda parte desta tese, uma nova definição do grafo de Reeb R( f) de uma função suave f : MR com pontos críticos isolados, como um subcomplexo de M é dada. Para isto, um complexo 1-dimensional Γ (f ) mergulhado em M e equivalente por homotopia a R( f ) é construído. Como consequência, mostramos que para toda função f sobre uma variedade com grupo fundamental finito, o grafo de Reeb de f é uma árvore. Se π1(M) é um grupo abeliano, ou mais geralmente, um grupo amenable1, então R( f ) conterá no máximo um laço. Finalmente, é provado que o número de laços do grafo de Reeb de toda função sobre uma superfície Mg é estimado superiormente por g, o genus de Mg. Os resultados desta segunda parte estão publicados em (KALUBA; MARZANTOWICZ; SILVA, 2015). / Bartsch (BARTSCH, 1993) introduced a numerical cohomological index theory, known as the length, for G-spaces, where G is a compact Lie group. We present the length of G-spaces which are cohomology spheres and G = (Z2)k, (Zp)k or (S1)k, k ≥ 1. As consequences, we obtain a Borsuk-Ulam theorem in this context and we give a sucient condition for the existence of G-maps between a cohomological sphere and a representation sphere when G = (Zp)k. Also, a Bourgin-Yang version of the Borsuk-Ulam theorem is presented. As a second part of this thesis, a new definition of the Reeb graph R( f ) of a smooth function f : M → R with isolated critical points as a subcomplex of M is given. For that, a 1-dimensional complex Γ ( f ) embedded into M and homotopy equivalent to R( f ) is constructed. As consequence it is shown that for every function f on a manifold with finite fundamental group, the Reeb graph of f is a tree. If π 1 (M) is an abelian group, or more generally, an amenable group2, then R( f ) contais at most one loop. Finally, it is proved that the number of loops of the Reeb graph of every function on a surface Mg is estimated from above by g, the genus of Mg. The results of this second part is published in (KALUBA; MARZANTOWICZ; SILVA, 2015).
|
208 |
Sobre o estado fundamental de teorias de n-gauge abelianas topológicas / On the ground state of abelian topological higher gauge theoriesEspiro, Javier Ignacio Lorca 11 September 2017 (has links)
O caso finito de teorias topológicas de 1-gauge, quando nenhuma simetria global está presente, é bastante bem compreendido e classificado. Nos últimos anos, as tentativas de generalizar as teorias de 1-gauge através das chamadas teorias de 2-gauge abriram a porta para novos modelos interessantes e novas fases topológicas, as quais não são descritas pelos esquemas de classificação anteriores. Nesta tese, vamos além da construção de 2-gauge, e consideramos uma classe de modelos que vivem em maiores dimensões. Esses modelos estão inseridos em uma estrutura de complexos de cadeia de grupos abelianos, forçando a generalizar o conceito usual de configurações de gauge. A vantagem de tal abordagem é que, a ordem topológica fica manifestamente explcita. Isto é feito em ter- mos de uma cohomologia com coeficientes em um complexo de cadeia finita. Além disso, mostramos que a degenerescência do estado fundamental suporta um conjunto conve- niente de números quânticos que indexam os estados e que, além, foram completamente caracterizados. Consequentemente, nós também mostramos que muitos dos exemplos abelianos de teorias de 1 -gauge 2-gauge são recuperados como casos especiais desta construção. / The finite case of 1-gauge topological theories, when no global symmetries are present, is fairly well understood and classified. In recent years, attempts to generalize the latter situation through the so called 2-gauge theories have opened the door to interesting new models and new topological phases, not described by the previous schemes of classifica- tion. In this paper we go even beyond the 2-gauge construction by considering a class of models that live in arbitrary higher dimensions. These models are embedded in a structure of chain complexes of abelian groups, forcing to generalize the usual notion of gauge configurations. The advantage of such an approach is that, the topological order is explicitly manifest when the ground state space of these models is described. This is done in terms of a cohomology with coefficients in a finite chain complex. Furthermore, we show that the ground state degeneracy underpins a convenient set of quantum num- bers that label the states and that have been completely characterized. We also show that abelian examples of 1-gauge 2-gauge theories are recovered as special cases of this construction.
|
209 |
Structures symplectiques sur les espaces de superlacets / Sympletic structures of superloops-spacesBovetto, Nicolas 19 December 2011 (has links)
Le but initial de cette thèse était d’étudier les espaces de superlacets, version géométrique des espaces de supercordes en Physique. Le point de départ était alors d’étendre les résultats de classifications de l’article de Oleg Mokhov : Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems au cadre de la supergéométrie. Dans cet article l’auteur établit une classification des formes symplectiques locales homogènes d’ordre 0, 1 et 2 sur l’espace des lacets LM = C1(S1;M) à partir d’objets géométriques sur la variété différentiable M. Dans cette thèse, on remplace la variété M par une supervariété Mpjq et le cercle S1 par un supercercle S1jn et l’on étudie l’espace des morphismes de supervariétésMor(S1jn;Mpjq). Dans les deux premières parties, l’on définit les structures géométriques classiques et super des espaces de superlacets. Pour ce faire, l’on se restreint aux deux supercercles S1j1 et en s’inspirant des travaux sur LM, l’on détermine une structure de variété de Fréchet des espaces de superlacets SLM = Mor(S1j1;M). Puis l’on introduit la structure super qui nous a semblé la plus naturelle sur SLM en terme de faisceaux. Afin de pouvoir travailler en coordonnées, l’on introduit la structure super par un autre point de vue en considérant l’espace de superlacets SLM comme le foncteur de points SLM. De plus, en interprétant les calculs de Mokhov en terme de jets, ceci nous permet d’une part d’apporter une justification rigoureuse aux-dits calculs et d’autre part, d’obtenir une généralisation directe des méthodes de calculs en coordonnées ("à la physicienne"). Le troisième chapitre expose les résultats de classification obtenus. Comme dans le cas classique, on obtient un théorème de dépendance limitée de l’ordre des jets qui interviennent dans les formes d’ordre 0 et 1. Puis, on obtient une classification des formes d’ordre 0 au moyen de formes différentielles sur la supervariété Mpjq. Une classification des formes homogènes d’ordre 1 et 2 au moyen de métriques Riemaniennes et de connexions sur Mpjq. Enfin le quatrième chapitre est consacré à la généralisation des résultats d’un autre article de O. Mokhov : Complex homogeneous forms on loop spaces of smooth manifolds and their cohomology groups. De par la présence de la variable impaire, on précise tout d’abord la définition des formes homogènes locales sur SLM, puis on démontre que muni de la différentielle extérieure, l’espace des formes homogènes sur SLM d’ordre m 2 N donné définit un complexe. On calcule alors complètement les espaces de cohomologie pour les ordres m = 0 et 1, partiellement pour les ordres 2 et 3 et on explicite ainsi les formes symplectiques exactes obtenues au troisième chapitre. / The goal of the thesis was to study superloopspaces, the geometric version of superstrings in Physics, by extending the classification results contained in Oleg Mokov’s paper : Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems to the supergeometric setting. In it, lies the classification of local homogeneous symplectic forms of order 0, 1 and 2 on the loopspace LM = C1(S1;M) by means of geometric objects on the manifold M. In this thesis, the manifold M becomes a supermanifold Mpjq, the circle S1 becomes a supercircle S1jn and we consider the superloopspace as the space of morphisms of supermanifolds Mor(S1jn;Mpjq). In the two first chapters, we look at the classical and super geometric structures of the superloopspaces. To do this, we restrict ourselves to the two supercircles S1j1 and using the previous works on LM, we define a Fréchet manifold structure on the superloopspaces SLM = Mor(S1j1;M). Then we bring in what we consider as the most natural superstructure on SLM by means of sheaves. In order to work with coordinates, we adopt another point of view considering SLM as the functor of points SLM. Moreover, rewriting Mokhov results in terms of jets allows us to give a rigorous proof of those calculations and also to extend right away the methods of calculations in coordinates. The third chapter contains the new classification results we obtained. Similarly to the classical case, we first show that the order of the jets in the forms of order 0 and 1 is bounded. Then we give the complete classification of the symplectics forms of order 0 by means of differential forms on the manifold Mpjq and of homogeneous symplectics forms of order 1 and 2 using Riemannian metrics and connections on Mpjq. Finally, the fourth chapter is devoted to extending the cohomology results of an other Mokhov’s article : Complex homogeneous forms on loop spaces of smooth manifolds and their cohomology groups. We first discuss the dependance of the odd variable in the homogeneous forms on SLM, and show that with the exterior derivative, the space of homogeneous forms on SLM of a given order m 2 N is a complex. We then calculate the cohomological spaces, completely for the order m = 0 and 1, partially for the order 2 and 3 and we identify the exact forms amongst those of the third chapter.
|
210 |
Much ado about nothing : the superconformal index and Hilbert series of three dimensional N =4 vacuaBarns-Graham, Alexander Edward January 2019 (has links)
We study a quantum mechanical $\sigma$-model whose target space is a hyperKähler cone. As shown by Singleton, [184], such a theory has superconformal invariance under the algebra $\mathfrak{osp}(4^*|4)$. One can formally define a superconformal index that counts the short representations of the algebra. When the hyperKähler cone has a projective symplectic resolution, we define a regularised superconformal index. The index is defined as the equivariant Hirzebruch index of the Dolbeault cohomology of the resolution, hereafter referred to as the index. In many cases, the index can be explicitly calculated via localisation theorems. By limiting to zero the fugacities in the index corresponding to an isometry, one forms the index of the submanifold of the target space invariant under that isometry. There is a limit of the fugacities that gives the Hilbert series of the target space, and often there is another limit of the parameters that produces the Poincaré polynomial for $\mathbb C^\times$-equivariant Borel-Moore homology of the space. A natural class of hyperKähler cones are Nakajima quiver varieties. We compute the index of the $A$-type quiver varieties by making use of the fact that they are submanifolds of instanton moduli space invariant under an isometry. Every Nakajima quiver variety arises as the Higgs branch of a three dimensional $\mathcal N =4$ quiver gauge theory, or equivalently the Coulomb branch of the mirror dual theory. We show the equivalence between the descriptions of the Hilbert series of a line bundle on the ADHM quiver variety via localisation, and via Hanany's monopole formula. Finally, we study the action of the Poisson algebra of the coordinate ring on the Hilbert series of line bundles. We restrict to the case of looking at the Coulomb branch of balanced $ADE$-type quivers in a certain infinite rank limit. In this limit, the Poisson algebra is a semiclassical limit of the Yangian of $ADE$-type. The space of global sections of the line bundle is a graded representation of the Poisson algebra. We find that, as a representation, it is a tensor product of the space of holomorphic functions with a finite dimensional representation. This finite dimensional representation is a tensor product of two irreducible representations of the Yangian, defined by the choice of line bundle. We find a striking duality between the characters of these finite dimensional representations and the generating function for Poincaré polynomials.
|
Page generated in 0.0533 seconds