181 |
Periods and Algebraic deRham CohomologyFriedrich, Benjamin 20 October 2017 (has links)
The prehistory of Algebraic Topology dates back to Euler, Riemann and Betti, who started the idea of attaching various invariants to a topological space. With his simplicial (co)homology theory, Poincaré was the first to give an instance of what in modern terms we would call a contravariant functor H° from the category of (sufficiently nice) topological spaces to the category of cyclic complexes of abelian groups.
|
182 |
Cohomology of the moduli space of curves of genus three with level two structureBergvall, Olof January 2014 (has links)
In this thesis we investigate the moduli space M3[2] of curves of genus 3 equipped with a symplectic level 2 structure. In particular, we are interested in the cohomology of this space. We obtain cohomological information by decomposing M3[2] into a disjoint union of two natural subspaces, Q[2] and H3[2], and then making S7- resp. S8-equivariantpoint counts of each of these spaces separately. / Målet med denna uppsats är att undersöka modulirummet M3[2] av kurvor av genus 3 med symplektisk nivå 2 struktur. Mer specifikt vill vi hitta informationom kohomologin av detta rum. För att uppnå detta delar vi först upp M[2] i en disjunkt union av två naturliga delrum, Q[2] och H3[2], och räknar därefter punkterna av dessa rum S7- respektive S8-ekvivariant.
|
183 |
Stable equivariant motivic homotopy theory and motivic Borel cohomologyHerrmann, Philip 10 August 2012 (has links)
Im Mittelpunkt der Untersuchungen stehen Grundlagen für äquivariante motivische Homotopietheorie. Für eine neue Grothendieck-Topologie auf einer Kategorie von äquivarianten glatten k-Schemata werden unstabile und stabile motivische Homotopietheorie entwickelt. Im zweiten Teil der Arbeit wird als Anwendung der stabilen Theorie eine Adams-Spektralsequenz mit motivischer Borel-Kohomologie konstruiert.
|
184 |
Homological and combinatorial properties of toric face rings / Homologische und kombinatorische Eigenschaften torischer SeitenringeNguyen, Dang Hop 21 August 2012 (has links)
Toric face rings are a generalization of Stanley-Reisner rings and affine monoid rings. New problems and results are obtained by a systematic study of toric face rings, shedding new lights to the understanding of Stanley-Reisner rings and affine monoid rings. We study algebra retracts of Stanley-Reisner rings, in particular, classify all the $\mathbb{Z}$-graded algebra retracts. We consider the Koszul property of toric face rings via Betti numbers and properties of the defining ideal. The last chapter is devoted to local cohomology of seminormal toric face rings and applications to singularities of toric face rings in positive characteristics.
|
185 |
単連結べき零Lie群のパラメータ剛性をもつ作用 / Parameter rigid actions of simply connected nilpotent Lie groups丸橋, 広和 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18044号 / 理博第3922号 / 新制||理||1566(附属図書館) / 30902 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 浅岡 正幸, 教授 加藤 毅, 教授 藤原 耕二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
186 |
Extremal transition and quantum cohomology / 端転移と量子コホモロジーXiao, Jifu 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19259号 / 理博第4114号 / 新制||理||1592(附属図書館) / 32261 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 入谷 寛, 教授 加藤 毅, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
187 |
Hodge-Tate conditions for Landau-Ginzburg models / Landau-Ginzburg模型に対するHodge-Tate条件Shamoto, Yota 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20885号 / 理博第4337号 / 新制||理||1623(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 望月 拓郎, 教授 中島 啓, 教授 小野 薫 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
188 |
Building Data for Stacky Covers and the Étale Cohomology Ring of an Arithmetic Curve : Du som saknar dator/datorvana kan kontakta phdadm@math.kth.se för informationAhlqvist, Eric January 2020 (has links)
This thesis consists of two papers with somewhat different flavours. In Paper I we compute the étale cohomology ring H^*(X,Z/nZ) for X the ring of integers of a number field K. As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim. We also give examples of two distinct number fields whose rings of integers have isomorphic cohomology groups but distinct cohomology ring structures. In Paper II we define stacky building data for stacky covers in the spirit of Pardini and give an equivalence of (2, 1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a stacky building datum comes from a ramified cover for a finite abelian group scheme over k, generalizing a result of Biswas–Borne. / Denna avhandling består av två artiklar som skiljer sig något i karaktär. I Artikel I beräknar vi den étala kohomologiringen H^*(X,Z/nZ) då X är ringen av heltal av en talkropp K. Som en tillämpning, ger vi ett kriterium i form av en formel för när en invariant definierad av Minhyong Kim är noll eller ej. Vi ger också exempel på två olika talkroppar vars ringar av heltal har isomorfa kohomologigrupper men olika kohomologiringstrukturer. I Artikel II definierar vi stackig byggnadsdata för stackiga övertäckningar i Pardinis anda och visar en ekvivalens av (2,1)-kategorier mellan kategorin av stackiga övertäckningar och kategorin av stackig byggnadsdata. Vi visar att varje stackig övertäckning är en platt rotstack i Olsson och Borne–Vistolis mening och vi ger en intrinsisk beskrivning av den som en rotstack med hjälp av stackig byggnadsdata. När basen S är definierad över en kropp, ger vi ett kriterium för när ett stackigt byggnadsdatum kommer från en ramifierad övertäckning för ett ändligt abelskt gruppschema över k. Detta generaliserar ett resultat av Biswas–Borne.
|
189 |
[en] A DEFORMATION OF POISSON STRUCTURE IN TORIC VARIETY AND COHOMOLOGICAL CONSIDERATIONS / [pt] UMA DEFORMAÇÃO DE ESTRUTURA POISSON EM VARIEDADE TÓRICA E CONSIDERAÇÕES COHOMOLÓGICASMARCELO SANTOS DA SILVA 13 July 2021 (has links)
[pt] O estudo de deformações e degenerações de estruturas de Poisson
ocupa posição especial dentro do marco clássico de análise de degenerações
de estruturas geométricas. Nesta tese como resultado principal construímos
uma deformação não trivial na qual a estrutura quadrática canônica do
espaço projetivo complexo n-dimensional é limite contínuo de estruturas
Kahlerianas. Além disso, como resultado segundário de estudos de
deformações mostramos que uma estrutura Poisson invariante numa
variedade tórica com número finito de folhas não pode ser exata na
cohomologia Poisson. Nosso estudo também inclui considerações sobre
cohomologia Poisson da estrutura quadrática canônica do espaço vetorial
complexo n-dimensional. / [en] The study of deformations and degenerations of Poisson structures
occupies a special position within the classical framework of analysis of
degenerations of geometric structures. In this thesis as the main result we
build a non-triavial deformation in which the canonical quadratic structure
in CP(n) is a continuous limit of Kahlerian structures. Furthermore, as a
secondary result of deformation studies we have shown that an invariant
Poisson structure in a toric variety with finite number of leaves cannot be
exact in Poisson cohomology. Our study also includes considerations about
Poisson cohomology of the canonical quadratic structure of C(n).
|
190 |
Properties of Singular Schubert VarietiesKoonz, Jennifer 01 September 2013 (has links)
This thesis deals with the study of Schubert varieties, which are subsets of flag varieties indexed by elements of Weyl groups. We start by defining Lascoux elements in the Hecke algebra, and showing that they coincide with the Kazhdan-Lusztig basis elements in certain cases. We then construct a resolution (Zw, π) of the Schubert variety Xw for which Rπ*(C[l(w)]) is a sheaf on Xw whose expression in the Hecke algebra is closely related to the Lascoux element. We also define two new polynomials which coincide with the intersection cohomology Poincar\'e polynomial in certain cases. In the final chapter, we discuss some interesting combinatorial results concerning Bell and Catalan numbers which arose throughout the course of this work.
|
Page generated in 0.0472 seconds