151 |
Deformations of Quantum Symmetric Algebras Extended by GroupsShakalli Tang, Jeanette 2012 May 1900 (has links)
The study of deformations of an algebra has been a topic of interest for quite some time, since it allows us to not only produce new algebras but also better understand the original algebra. Given an algebra, finding all its deformations is, if at all possible, quite a challenging problem. For this reason, several specializations of this question have been proposed. For instance, some authors concentrate their efforts in the study of deformations of an algebra arising from an action of a Hopf algebra.
The purpose of this dissertation is to discuss a general construction of a deformation of a smash product algebra coming from an action of a particular Hopf algebra. This Hopf algebra is generated by skew-primitive and group-like elements, and depends on a complex parameter. The smash product algebra is defined on the quantum symmetric algebra of a nite-dimensional vector space and a group. In particular, an application of this result has enabled us to find a deformation of such a smash product algebra which is, to the best of our knowledge, the first known example of a deformation in which the new relations in the deformed algebra involve elements of the original vector space. Finally, using Hochschild cohomology, we show that these
deformations are nontrivial.
|
152 |
De Rham Theory and Semialgebraic GeometryShartser, Leonid 31 August 2011 (has links)
This thesis consists of six chapters and deals with four topics related to De Rham Theory on semialgebraic sets.
The first topic deals with L-infinity cohomology on semialgebraic sets. We introduce smooth L-infinity differential forms on a singular (semialgebraic) space X in Rn. Roughly speaking, a smooth L-infinity differential form is a collection of smooth forms on disjoint smooth subsets (stratification) of X with matching tangential components on the adjacent strata and of
bounded size (in the metric induced from Rn).
We identify the singular homology of X as the homology of the chain complex generated
by semialgebraic singular simplices, i.e. continuous semialgebraic maps from the
standard simplex into X. Singular cohomology of X is defined as the homology of the
Hom dual to the chain complex of the singular chains. Finally, we prove a De Rham
type theorem establishing a natural isomorphism between the singular cohomology and the cohomology of smooth L-infinity forms.
The second topic is a construction of a Lipschitz deformation retraction on a neighborhood of a point in a semialgebraic set with estimates on its derivatives. Such a
deformation retraction is the key to the results of the first and the third topics.
The third topic is related to Poincare inequality on a semialgebraic set. We study
Poincare type Lp inequality for differential forms on a compact semialgebraic subset of Rn
for p >> 1. First we derive a local inequality by using a Lipschitz deformation retraction with estimates on its derivatives from the second topic and then we extend it to a global inequality by employing a technique developed in the appendix. As a consequence we obtain an isomorphism between Lp cohomology and singular cohomology of a normal compact semialgebraic set.
The final topic is in the appendix. It deals with an explicit proof of Poincare type
inequality for differential forms on compact manifolds. We prove the latter inequality by
means of a constructive 'globalization' method of a local Poincare inequality on convex sets. The appendix serves as a model case for the results of the third topic in Chapter 5.
|
153 |
De Rham Theory and Semialgebraic GeometryShartser, Leonid 31 August 2011 (has links)
This thesis consists of six chapters and deals with four topics related to De Rham Theory on semialgebraic sets.
The first topic deals with L-infinity cohomology on semialgebraic sets. We introduce smooth L-infinity differential forms on a singular (semialgebraic) space X in Rn. Roughly speaking, a smooth L-infinity differential form is a collection of smooth forms on disjoint smooth subsets (stratification) of X with matching tangential components on the adjacent strata and of
bounded size (in the metric induced from Rn).
We identify the singular homology of X as the homology of the chain complex generated
by semialgebraic singular simplices, i.e. continuous semialgebraic maps from the
standard simplex into X. Singular cohomology of X is defined as the homology of the
Hom dual to the chain complex of the singular chains. Finally, we prove a De Rham
type theorem establishing a natural isomorphism between the singular cohomology and the cohomology of smooth L-infinity forms.
The second topic is a construction of a Lipschitz deformation retraction on a neighborhood of a point in a semialgebraic set with estimates on its derivatives. Such a
deformation retraction is the key to the results of the first and the third topics.
The third topic is related to Poincare inequality on a semialgebraic set. We study
Poincare type Lp inequality for differential forms on a compact semialgebraic subset of Rn
for p >> 1. First we derive a local inequality by using a Lipschitz deformation retraction with estimates on its derivatives from the second topic and then we extend it to a global inequality by employing a technique developed in the appendix. As a consequence we obtain an isomorphism between Lp cohomology and singular cohomology of a normal compact semialgebraic set.
The final topic is in the appendix. It deals with an explicit proof of Poincare type
inequality for differential forms on compact manifolds. We prove the latter inequality by
means of a constructive 'globalization' method of a local Poincare inequality on convex sets. The appendix serves as a model case for the results of the third topic in Chapter 5.
|
154 |
Topics in Random Knots and R-Matrices from Frobenius AlgebrasKaradayi, Enver 27 October 2010 (has links)
In this dissertation, we study two areas of interest in knot theory: Random knots in the unit cube, and the Yang-Baxter solutions constructed from Frobenius algebras.
The study of random knots can be thought of as a model of DNA strings situated in confinement. A random knot with n vertices is a polygonal loop formed by selecting n distinct points in the unit cube, for a positive integer n, and connecting these points by straight line segments successively, such that the last point selected is joined with the first one. We present a step by step description of our algorithm and Maple codes for generating random knots in the unit cube, with a given vertex number n. To detect non-trivial knots, we use a knot invariant called the determinant. We present an algorithm and its Maple code for computing the determinant for random knots. For each vertex number n, we generate large number of random knots and form data sets of values of the determinant. Then we analyze our data sets in various ways. For instance, for each vertex number n, we form data sets of the number of p-colorable random knots by finding the set of prime divisors of each determinant output. We define the stick number for p-colorability to be the minimum number of line segments required to form a p-colorable knot. We use our data sets to find upper bounds for stick numbers for p-colorability, for primes p _ 191. We also find distributions of p-colorable knots and small determinant values.
The second topic on random knots is the linking number of random links. A random link is a collection of disjoint random knots produced simultaneously. We present descriptions of our algorithm and its Maple code for constructing random links of two components, and calculating their linking numbers in detail. By running the code for 1000 times, for the vertex number n less than or equal to 30, we obtain data sets of linking numbers for two-component random links such that each component is a random knot with n vertices. Then we find the distribution of linking numbers and calculate upper bounds for the stick number for the linking numbers ` _ 15.
The second area we investigate is applications of Fobenius algebras to knot theory. Chain complexes and Yang-Baxter solutions (R-matrices) are constructed by the skein theoretic approach using Frobenius algebras, and deformed R-matrices are constructed by using 2-cocyles. We compute cohomology groups, Yang-Baxter solutions and their cocycle deformations for group algebras, polynomial algebras and complex numbers. We construct knot and link invariants using these R-matrices from Frobenius algebras via Turaev’s criteria. Then a series of skein relations of the invariant are introduced for oriented knot or link diagrams. We also present calculations of the Frobenius skein invariant for various knots and links.
|
155 |
UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUESHo, Phuoc L. 01 January 2010 (has links)
We establish the upper bounds for the difference between the first two eigenvalues of the relative and absolute eigenvalue problems. Relative and absolute boundary conditions are generalization of Dirichlet and Neumann boundary conditions on functions to differential forms respectively. The domains are taken to be a family of symmetric regions in Rn consisting of two cavities joined by a straight thin tube. Our operators are Hodge Laplacian operators acting on k-forms given by the formula Δ(k) = dδ+δd, where d and δ are the exterior derivatives and the codifferentials respectively. A result has been established on Dirichlet case (0-forms) by Brown, Hislop, and Martinez [2]. We use the same techniques to generalize the results on exponential decay of eigenforms, singular perturbation on domains [1], and matrix representation of the Hodge Laplacian restricted to a suitable subspace [2]. From matrix representation, we are able to find exponentially small upper bounds for the difference between the first two eigenvalues.
|
156 |
The RO(G)-graded Serre spectral sequence /Kronholm, William C., January 2008 (has links)
Thesis (Ph. D.)--University of Oregon, 2008. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 71-72). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
|
157 |
Cohomologia de grupos e algumas aplicaçõesCastro, Francielle Rodrigues de [UNESP] 15 March 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-03-15Bitstream added on 2014-06-13T19:47:19Z : No. of bitstreams: 1
castro_fr_me_sjrp.pdf: 783980 bytes, checksum: fd80e9aa8c69641da08ee43dfa94509d (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo principal deste trabalho é estudar a Teoria de Cohomologia de Grupos visando apresentar de forma detalhada algumas aplicações dessa teoria na Topologia e na Algebra, mais especificamente na Teoria de Grupos, com destaque para o Teorema de Schur-Zassenhaus e o Teorema de Classificação de p-grupos que possuem um subgrupo ciclico de índice p (p primo). / The aim of this work is to study the Cohomology Theory of Groups in order to present in detailed form some applications of this theory in Topology and in Algebra, more specifically, in the Theory of Groups, with prominence for the Schur-Zassenhaus Theorem and the Theorem of Classification of p-groups which contain a cyclic subgroup of index p, where p is a prime.
|
158 |
Caractère de Chern en cohomologie basique équivariante / Chern character in equivariant basic cohomologyLiu, Wenran 29 November 2017 (has links)
Depuis 1980, il est un problème ouvert de donner des formules cohomologiques pour l'indice basique d'un opérateur différentiel basique transversalement elliptique sur un fibré vectoriel au dessus d'une variété feuilletée. Dans les années 1990, El Kacimi-Alaoui a proposé d'utiliser la théorie de Molino pour étudier cette indice. Molino a montré qu'à tout feuilletage Riemannien transversalement orienté, nous pouvons associer une variété, appelée variété basique, qui est munie d'une action du groupe orthogonal, El Kacimi-Alaoui a montré comment associer à l'opérateur basique transversalement elliptique un opérateur sur un fibré vectoriel, appelé fibré utile, au dessus de la variété basique.L'idée est d'obtenir la formule cohomologique espérée à partir des résultats sur l'opérateur sur le fibré utile. Cette thèse est une première étape dans cette direction. Lorsque le feuilletage Riemannien est de Killing, Goertsches et Töben ont remarqué qu'il existe un isomorphisme cohomologique naturel entre la cohomologie basique équivariante du feuilletage de Killing et la cohomologie équivariante de la variété basique.Le résultat principal de cette thèse est de donner une réalisation géométrique de l'isomorphisme cohomologique ci-dessus à travers les caractères de Chern sous certaine Hypothèse. / From 1980s, it is an open problem of proposing cohomologic formula for the basic index of a transversally elliptic basic differential operator on a vector bundle over a foliated manifold. In 1990s, El Kacimi-Alaoui has proprosed to use the Molino theory for study this index. Molino has proved that to every transversally oriented Riemannien foliation, we can associate a manifold, called basique manifold, which is équiped with an action of orthogonal group, El Kacimi-Alaoui has shown how to associate a transversally elliptic basic differential operator an operator on a vector bundle, called useful bundle, over the basique manifold.The idea is to obtain the desired cohomologic formula from résultats about the operator on the useful bundle. This thesis is a first step in this direction. While the Riemannien foliation is Killing, Goertsches et Töben have remarked that there exists a naturel cohomologic isomorphism between the equivariant basique cohomology of the Killing foliation and the equivariant cohomology of the basique manifold.The principal result of this thesis is the geometric realisation of the cohomologic isomorphism by Chern characters under some hypothèses.
|
159 |
Forma cohomológica do Teorema de CauchySilva, Leda da [UNESP] 04 May 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-05-04Bitstream added on 2014-06-13T18:06:54Z : No. of bitstreams: 1
silva_l_me_rcla.pdf: 767647 bytes, checksum: 77c93a6aec1e31ebbe544fac7c6cb314 (MD5) / O objetivo desta dissertação é apresentar uma abordagem cohomológica do Teorema de Cauchy e alguns resultados equivalentes a que um subconjunto aberto e conexo de C seja simplesmente conexo. Ressaltamos que um dos objetivos desta dissertação, inserida no Mestrado Profissional, Matemática Universitária, é estabelecer uma conexão entre as diversas áreas da Matemática, dando uma visão global da mesma, necessária ao professor universitário. Desta forma, o tema escolhido Teorema de Cauchyé um assunto visto na graduação, porém a abordagem usando grupos de cohomologia, números de voltas, espaços de recobrimento, feixes de germes de funções holomorfas, contribuem para o enriquecimento da formação da mestranda / In this work we present a cohomological approach of the Cauchy’s Theorem and also present several characterizations of simply connected domains of C
|
160 |
Invariants cohomologiques des groupes de Coxeter finis / Cohomological invariants of finite Coxeter groups.Ducoat, Jerôme 22 October 2012 (has links)
Cette thèse traite des invariants cohomologiques en cohomologie galoisienne des groupes de Coxeter finis en caractéristique nulle. On établit d'abord un principe général d'annulation vérifié par tout invariant cohomologique d'un groupe de Coxeter fini sur un corps de caractéristique nulle suffisamment grand. On utilise ensuite ce principe pour déterminer tous les invariants cohomologiques des groupes de Weyl de type classique à coefficients modulo 2 sur un corps de caractéristique nulle. / This PhD thesis deals with cohomological invariants in Galois cohomology of finite Coxeter groups in characteristic zero. We first state a general vanishing principle for the cohomological invariants of a finite Coxeter group over a sufficiently large field of characteristic zero. We then use this principle to determine all the cohomological invariants of the Weyl groups of classical type with coefficients modulo 2 over a field of characteristic zero.
|
Page generated in 0.0637 seconds