• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 77
  • 43
  • 15
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 332
  • 92
  • 70
  • 69
  • 58
  • 57
  • 56
  • 54
  • 43
  • 43
  • 30
  • 29
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Equivariant Localization in Supersymmetric Quantum Mechanics

Hössjer, Emil January 2018 (has links)
We review equivariant localization and through the Feynman formalism of quantum mechanics motivate its role as a tool for calculating partition functions. We also consider a specific supersymmetric theory of one boson and two fermions and conclude that by applying localization to its partition function we may arrive at a known result that has previously been derived using different approaches. This paper follows a similar article by Levent Akant.
162

Cohomologia de grupos e invariante algébricos /

Santos, Anderson Paião dos. January 2006 (has links)
Orientador: Ermínia de Lourdes Campello Fanti / Banca: Oziride Manzoli Neto / Banca: Maria Gorete Carreira Andrade / Resumo: Para todo grupo G infinito, finitamente gerado, pode-se obter para o invariante algébrico "end", mais precisamente o número de ends e(G), uma fórmula cohomológica 1-dimensional. O principal objetivo deste trabalho é apresentar, sob certas hipóteses, uma fórmula cohomológica 1-dimensional para o invariante algébrico e(G,H), definido por Scott e Houghton, onde H é um subgrupo de G (Teorema de Swarup). Para tanto, o conceito de subconjunto H-quase invariante de G e resultados como a interpretação do grupo de cohomologia H1(G,M) em termos de derivações (à direita), onde M é um ZG-módulo, e o Lema de Shapiro, são resultados imprescindíveis. Algumas relações desses invariantes com ends de espaços são também apresentadas. / Abstract: For all infinite group G, finitely generated, one can obtain for the algebric invariant "end", more precisely the number of ends e(G), a cohomological 1-dimensional formula. The main objective of this work is to present, under certain hypotheses, a cohomological 1-dimensional formula for the algebric invariant e(G,H), defined by Scott and Houghton, where H is a subgroup of G (Swarup's Theorem). In order to do so, the concept of subset H-almost invariant of G and results like the interpretation of the cohomological group H1(G,M) in terms of derivations (to the right), where M is a ZG-module, and the Shapiro's Lemma, are fundamental results. Some relations of these invariants with space ends are also presented. / Mestre
163

Cohomologia de grupos e algumas aplicações /

Castro, Francielle Rodrigues de. January 2006 (has links)
Orientador: Ermínia de Lourdes Campello Fanti / Banca: Luiz Queiroz Pergher / Banca: Maria Gorete Carreira Andrade / Resumo: O objetivo principal deste trabalho é estudar a Teoria de Cohomologia de Grupos visando apresentar de forma detalhada algumas aplicações dessa teoria na Topologia e na Algebra, mais especificamente na Teoria de Grupos, com destaque para o Teorema de Schur-Zassenhaus e o Teorema de Classificação de p-grupos que possuem um subgrupo ciclico de índice p (p primo). / Abstract: The aim of this work is to study the Cohomology Theory of Groups in order to present in detailed form some applications of this theory in Topology and in Algebra, more specifically, in the Theory of Groups, with prominence for the Schur-Zassenhaus Theorem and the Theorem of Classification of p-groups which contain a cyclic subgroup of index p, where p is a prime. / Mestre
164

Uma introdução à Cohomologia local

Sousa, Wállace Mangueira de 20 December 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:14Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 773765 bytes, checksum: b63ba4fb3ff15c5a4aef5a708fce596e (MD5) Previous issue date: 2012-12-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The goal this work is to understand the local cohomology functor, and some of its properties. We show that this functor has a relation with the functor Ext. Furthermore, we show the followings theorems: Grothendieck's Vanishing Theorem, Hartshorne's Vanishing Theorem, Grothendieck's Non-Vanishing Theorem and Hartshorne-Linchenbaum's Vanishing Theorem. / O objetivo desta dissertação é entender o funtor de Cohomologia Local, assim como algumas de suas propriedades. Mostramos que este funtor tem uma relação com o funtor Ext. Além disso, expomos os seguintes teoremas: Teorema do Anulamento de Grothendieck, Teorema do Anulamento de Hartshorne, Teorema do Não Anulamento de Grothendieck e o Teorema do Anulamento de Hartshorne-Linchtenbaum.
165

Cohomologia e propriedades estocásticas de transformações expansoras e observáveis lipschitzianos / Cohomology and stochastics properties of expanding maps and lipschitzians observables

Amanda de Lima 20 March 2007 (has links)
Provamos o Teorema do Limite Central para transformações expansoras por pedaços em um intervalo e observáveis com variação limitada. Utilizamos a abordagem desenvolvida por R. Rousseau-Egele, como apresentada por A. Broise. O método da demonstração se baseia no estudo de pertubações do operador de transferência de Ruelle-Perron-Frobenius. Uma contribuição original é dada no último capítulo, onde provamos que, para transformações markovianas expansoras, todos os observáveis não constantes, contínuos e com variação limitada não são infinitamente cohomólogos à zero, generalizando um resultado de Bamón, Rivera-Letelier, Urzúa and Kiwi para observáveis lipschitzianos e transformações \'z POT. n\' . A demonstração se baseia na teoria dos operadores de Ruelle-Perron-Frobenius desenvolvida nos capítulos anteriores / We prove the Central Limit Theorem for piecewise expanding interval transformations and observables with bounded variation, using the approach of J.Rousseau-Egele as described by A. Broise. This approach makes use of pertubations of the so-called Ruelle-Perron-Frobenius transfer operator. An original contribution is given in the last chapter, where we prove that for Markovian expanding interval maps all observables which are non constant, continuous and have bounded variation are not infinitely cohomologous with zero, generalizing a result by Bamón, Rivera-Letelier, Urzúa and Kiwi for Lipschitzian observables and the transformations \'z POT. n\' . Our demosntration uses the theory of Ruelle-Perron-Frobenius operators developed in the previos chapters
166

Propriedades da homologia local com respeito a um par de ideais e limite inverso de homologia local / Properties of local homology with respect to a pair of ideals and inverse limit of local homology

Carlos Henrique Tognon 07 October 2016 (has links)
Neste trabalho, introduzimos uma generalização da noção de módulo de homologia local de um módulo com respeito a um ideal, o qual nós chamamos de módulo de homologia local com respeito a um par de ideais. Estudamos suas várias propriedades tais como teoremas de anulamento e de não anulamento, e Artinianidade. Também fazemos sua conexão com a homologia e cohomologia local usual. Introduzimos uma generalização da noção de largura de um ideal sobre um módulo aplicando o conceito de módulo de homologia local com respeito a um par de ideais. Também introduzimos o conceito de um módulo co-Cohen-Macaulay para um par de ideais, o qual é uma generalização o conceito de um módulo co-Cohen-Macaulay. Para finalizar, introduzimos o limite inverso de homologia local, e estudamos algumas de suas propriedades, analisamos a sua estrutura, o anulamento, não anulamento e Artinianidade. / In this work, we introduce a generalization of the notion of local homology module of a module with respect to an ideal, which we call of local homology module with respect to a pair of ideals. We study its various properties such as vanishing and nonvanishing theorems, and Artinianness. We also do its connection with ordinary local homology and cohomology. We introduce a generalization of the notion of width of an ideal on a module applying the concept of local homology module with respect to a pair of ideals. Also we introduce the concept of a co-Cohen-Macaulay module for a pair of ideals, what is a generalization of the concept of a co-Cohen-Macaulay module. To finish, we introduce the inverse limit of local homology, and we study some of its properties, we analyze the their structure, the vanishing, non-vanishing and Artinianness.
167

Algebraic topology of PDES

Al-Zamil, Qusay Soad January 2012 (has links)
We consider a compact, oriented,smooth Riemannian manifold $M$ (with or without boundary) and wesuppose $G$ is a torus acting by isometries on $M$. Given $X$ in theLie algebra of $G$ and corresponding vector field $X_M$ on $M$, onedefines Witten's inhomogeneous coboundary operator $\d_{X_M} =\d+\iota_{X_M}: \Omega_G^\pm \to\Omega_G^\mp$ (even/odd invariantforms on $M$) and its adjoint $\delta_{X_M}$. First, Witten [35] showed that the resulting cohomology classeshave $X_M$-harmonic representatives (forms in the null space of$\Delta_{X_M} = (\d_{X_M}+\delta_{X_M})^2$), and the cohomologygroups are isomorphic to the ordinary de Rham cohomology groups ofthe set $N(X_M)$ of zeros of $X_M$. The first principal purpose isto extend Witten's results to manifolds with boundary. Inparticular, we define relative (to the boundary) and absoluteversions of the $X_M$-cohomology and show the classes haverepresentative $X_M$-harmonic fields with appropriate boundaryconditions. To do this we present the relevant version of theHodge-Morrey-Friedrichs decomposition theorem for invariant forms interms of the operators $\d_{X_M}$ and $\delta_{X_M}$; the proofinvolves showing that certain boundary value problems are elliptic.We also elucidate the connection between the $X_M$-cohomology groupsand the relative and absolute equivariant cohomology, followingwork of Atiyah and Bott. This connection is then exploited to showthat every harmonic field with appropriate boundary conditions on$N(X_M)$ has a unique corresponding an $X_M$-harmonic field on $M$to it, with corresponding boundary conditions. Finally, we define the interior and boundary portion of $X_M$-cohomology and then we definethe \emph{$X_M$-Poincar\' duality angles} between the interiorsubspaces of $X_M$-harmonic fields on $M$ with appropriate boundaryconditions.Second, In 2008, Belishev and Sharafutdinov [9] showed thatthe Dirichlet-to-Neumann (DN) operator $\Lambda$ inscribes into thelist of objects of algebraic topology by proving that the de Rhamcohomology groups are determined by $\Lambda$.In the second part of this thesis, we investigate to what extent is the equivariant topology of a manifold determined by a variant of the DN map?.Based on the results in the first part above, we define an operator$\Lambda_{X_M}$ on invariant forms on the boundary $\partial M$which we call the $X_M$-DN map and using this we recover the longexact $X_M$-cohomology sequence of the topological pair $(M,\partialM)$ from an isomorphism with the long exact sequence formed from thegeneralized boundary data. Consequently, This shows that for aZariski-open subset of the Lie algebra, $\Lambda_{X_M}$ determinesthe free part of the relative and absolute equivariant cohomologygroups of $M$. In addition, we partially determine the mixed cup product of$X_M$-cohomology groups from $\Lambda_{X_M}$. This shows that $\Lambda_{X_M}$ encodes more information about theequivariant algebraic topology of $M$ than does the operator$\Lambda$ on $\partial M$. Finally, we elucidate the connectionbetween Belishev-Sharafutdinov's boundary data on $\partial N(X_M)$and ours on $\partial M$.Third, based on the first part above, we present the(even/odd) $X_M$-harmonic cohomology which is the cohomology ofcertain subcomplex of the complex $(\Omega^{*}_G,\d_{X_M})$ and weprove that it is isomorphic to the total absolute and relative$X_M$-cohomology groups.
168

Function Theory On Non-Compact Riemann Surfaces

Philip, Eliza 05 1900 (has links) (PDF)
The theory of Riemann surfaces is quite old, consequently it is well developed. Riemann surfaces originated in complex analysis as a means of dealing with the problem of multi-valued functions. Such multi-valued functions occur because the analytic continuation of a given holomorphic function element along different paths leads in general to different branches of that function. The theory splits in two parts; the compact and the non-compact case. The function theory developed on these cases are quite dissimilar. The main difficulty one encounters in the compact case is the scarcity of global holomorphic functions, which limits one’s study to meromorphic functions. This however is not an issue in non-compact Riemann surfaces, where one enjoys a vast variety of global holomorphic functions. While the function theory of compact Riemann surfaces is centered around the Riemann-Roch theorem, which essentially tells us how many linearly independent meromorphic functions there are having certain restrictions on their poles, the function theory developed on non-compact Riemann surface engages tools for approximation of functions on certain subsets by holomorphic maps on larger domains. The most powerful tool in this regard is the Runge’s approximation theorem. An intriguing application of this is the Gunning-Narasimhan theorem, which says that every connected open Riemann surface has an immersion into the complex plane. The main goal of this project is to prove Runge’s approximation theorem and illustrate its effectiveness in proving the Gunning-Narasimhan theorem. Finally we look at an analogue of Gunning-Narasimhan theorem in the case of a compact Riemann surface.
169

Geometric Realizations of the Basic Representation of the Affine General Linear Lie Algebra

Lemay, Joel January 2015 (has links)
The realizations of the basic representation of the affine general linear Lie algebra on (r x r) matrices are well-known to be parametrized by partitions of r and have an explicit description in terms of vertex operators on the bosonic/fermionic Fock space. In this thesis, we give a geometric interpretation of these realizations in terms of geometric operators acting on the equivariant cohomology of certain Nakajima quiver varieties.
170

Characteristic classes of modules

Kong, Maynard 25 September 2017 (has links)
In this paper we have developed a general theory of characteristic classes of modules. To a given invariant map defined on a Lie algebra, we associate a cohomology class by using the curvature form of a certain kind of connections. Here we present a very simple proof of the invariance theorem (Theorem 12), which states that equivalent connections give rise to the same characteristic class. We have used those invariant maps of {9} to define Chern classes of projective modules and we have derived their basic properties. It might be interesting to observe that this theory could be applied to define characteristic classes of bilinear maps. In particular, the Euler classes of {6} can be obtained in this way.

Page generated in 0.0489 seconds