• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 39
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Evoluční resyntéza kombinačních obvodů / Evolutionary Resynthesis of Combinational Circuits

Kocnová, Jitka January 2017 (has links)
This master thesis is concerned about the resynthesis of combinational circuits with the help of evolutional principles. The first part of this text describes logic synthesis and its weak spots, evolutional synthesis and its advantages, and also some of the existing synthesis programs. The second part shows usage of graph algorithms in logic synthesis and their possible usage in an extension for the chosen synthesis program. Suggested design and practical implementation of the extension is also described in this part. In the third part extension testing is mentioned. The fourth part is the last one and concludes gained knowledge and results.
32

Evoluční resyntéza kombinačních obvodů / Evolutionary Combinational Circuit Resynthesis

Pták, Ondřej January 2013 (has links)
This project deals with combinational digital circuits and their optimization. First there are presented main levels of abstraction utilized in the design of combinational digital circuits. Afterwards different methods are surveyed for optimization of combinational digital circuits. The next part of this project is mainly devoted to evolutionary algorithms, their common characteristics and branches: genetic algorithms, evolutionary strategies, evolutionary programming and genetic programming. The variant of genetic programming called Cartesian Genetic Programming (CGP) and the use of CGP in various areas, particularly in the synthesis and optimization of combinational logic circuits are described in detail. The project also discusses some modifications of CGP and the scalability problem of evolutionary circuit design. Consequential part of this thesis describes the method for evolution resynthesis of combinational digital circuits. There is description of design, especially the method of splitting circuits into subcircuits, and implementation details. Finally experiments with these method and their results are described.
33

Evoluční návrh využívající booleovské sítě / Evolutionary Design Using Random Boolean Networks

Mrnuštík, Michal January 2010 (has links)
This master's thesis introduces the Random Boolean Networks as a developmental model in the evolutionary design. The representation of the Random Boolean Networks is described. This representation is combined with an evolutionary algorithm. The genetic operators are described too. The Random Boolean Networks are used as the developmental model for  the evolutionary design of the combinational circuits and the sorting networks. Moreover a representation of the Random Boolean Networks for the design of image filters is introduced. The proposed methods are evaluated in different case-studies. The results of the experiments are discussed together with the potential improvements  and topics of the next research.
34

Celulární automat v evolučním procesu / Cellular Automaton in Evolutionary Process

Hejč, Michal Unknown Date (has links)
The aim of this master's theses it to focuse on the usage of genetic algorithms in combination with a technique of biologically inspired development in cellular automata. The principles of the proposed method is described. The main part of this work deals with the design of combinational logic circuits. The genetic algorithm is utilized to design a nonuniform one-dimensional cellular automaton (in particular, the local transition functions) which serves as a circuit generator. Experiments have been conducted to design of basic types of combinational circuits and polymorphic circuits. Finally, the results are presented and compared with the results obtained in the previous work in which a uniform cellular automaton was applied.
35

Design of Low-Power Reduction-Trees in Parallel Multipliers

Oskuii, Saeeid Tahmasbi January 2008 (has links)
<p>Multiplications occur frequently in digital signal processing systems, communication systems, and other application specific integrated circuits. Multipliers, being relatively complex units, are deciding factors to the overall speed, area, and power consumption of digital computers. The diversity of application areas for multipliers and the ubiquity of multiplication in digital systems exhibit a variety of requirements for speed, area, power consumption, and other specifications. Traditionally, speed, area, and hardware resources have been the major design factors and concerns in digital design. However, the design paradigm shift over the past decade has entered dynamic power and static power into play as well.</p><p>In many situations, the overall performance of a system is decided by the speed of its multiplier. In this thesis, parallel multipliers are addressed because of their speed superiority. Parallel multipliers are combinational circuits and can be subject to any standard combinational logic optimization. However, the complex structure of the multipliers imposes a number of difficulties for the electronic design automation (EDA) tools, as they simply cannot consider the multipliers as a whole; i.e., EDA tools have to limit the optimizations to a small portion of the circuit and perform logic optimizations. On the other hand, multipliers are arithmetic circuits and considering arithmetic relations in the structure of multipliers can be extremely useful and can result in better optimization results. The different structures obtained using the different arithmetically equivalent solutions, have the same functionality but exhibit different temporal and physical behavior. The arithmetic equivalencies are used earlier mainly to optimize for area, speed and hardware resources.</p><p>In this thesis a design methodology is proposed for reducing dynamic and static power dissipation in parallel multiplier partial product reduction tree. Basically, using the information about the input pattern that is going to be applied to the multiplier (such as static probabilities and spatiotemporal correlations), the reduction tree is optimized. The optimization is obtained by selecting the power efficient configurations by searching among the permutations of partial products for each reduction stage. Probabilistic power estimation methods are introduced for leakage and dynamic power estimations. These estimations are used to lead the optimizers to minimum power consumption. Optimization methods, utilizing the arithmetic equivalencies in the partial product reduction trees, are proposed in order to reduce the dynamic power, static power, or total power which is a combination of dynamic and static power. The energy saving is achieved without any noticeable area or speed overhead compared to random reduction trees. The optimization algorithms are extended to include spatiotemporal correlations between primary inputs. As another extension to the optimization algorithms, the cost function is considered as a weighted sum of dynamic power and static power. This can be extended further to contain speed merits and interconnection power. Through a number of experiments the effectiveness of the optimization methods are shown. The average number of transitions obtained from simulation is reduced significantly (up to 35% in some cases) using the proposed optimizations.</p><p>The proposed methods are in general applicable on arbitrary multi-operand adder trees. As an example, the optimization is applied to the summation tree of a class of elementary function generators which is implemented using summation of weighted bit-products. Accurate transistor-level power estimations show up to 25% reduction in dynamic power compared to the original designs.</p><p>Power estimation is an important step of the optimization algorithm. A probabilistic gate-level power estimator is developed which uses a novel set of simple waveforms as its kernel. The transition density of each circuit node is estimated. This power estimator allows to utilize a global glitch filtering technique that can model the removal of glitches in more detail. It produces error free estimates for tree structured circuits. For circuits with reconvergent fanout, experimental results using the ISCAS85 benchmarks show that this method generally provides significantly better estimates of the transition density compared to previous techniques.</p>
36

Design of Low-Power Reduction-Trees in Parallel Multipliers

Oskuii, Saeeid Tahmasbi January 2008 (has links)
Multiplications occur frequently in digital signal processing systems, communication systems, and other application specific integrated circuits. Multipliers, being relatively complex units, are deciding factors to the overall speed, area, and power consumption of digital computers. The diversity of application areas for multipliers and the ubiquity of multiplication in digital systems exhibit a variety of requirements for speed, area, power consumption, and other specifications. Traditionally, speed, area, and hardware resources have been the major design factors and concerns in digital design. However, the design paradigm shift over the past decade has entered dynamic power and static power into play as well. In many situations, the overall performance of a system is decided by the speed of its multiplier. In this thesis, parallel multipliers are addressed because of their speed superiority. Parallel multipliers are combinational circuits and can be subject to any standard combinational logic optimization. However, the complex structure of the multipliers imposes a number of difficulties for the electronic design automation (EDA) tools, as they simply cannot consider the multipliers as a whole; i.e., EDA tools have to limit the optimizations to a small portion of the circuit and perform logic optimizations. On the other hand, multipliers are arithmetic circuits and considering arithmetic relations in the structure of multipliers can be extremely useful and can result in better optimization results. The different structures obtained using the different arithmetically equivalent solutions, have the same functionality but exhibit different temporal and physical behavior. The arithmetic equivalencies are used earlier mainly to optimize for area, speed and hardware resources. In this thesis a design methodology is proposed for reducing dynamic and static power dissipation in parallel multiplier partial product reduction tree. Basically, using the information about the input pattern that is going to be applied to the multiplier (such as static probabilities and spatiotemporal correlations), the reduction tree is optimized. The optimization is obtained by selecting the power efficient configurations by searching among the permutations of partial products for each reduction stage. Probabilistic power estimation methods are introduced for leakage and dynamic power estimations. These estimations are used to lead the optimizers to minimum power consumption. Optimization methods, utilizing the arithmetic equivalencies in the partial product reduction trees, are proposed in order to reduce the dynamic power, static power, or total power which is a combination of dynamic and static power. The energy saving is achieved without any noticeable area or speed overhead compared to random reduction trees. The optimization algorithms are extended to include spatiotemporal correlations between primary inputs. As another extension to the optimization algorithms, the cost function is considered as a weighted sum of dynamic power and static power. This can be extended further to contain speed merits and interconnection power. Through a number of experiments the effectiveness of the optimization methods are shown. The average number of transitions obtained from simulation is reduced significantly (up to 35% in some cases) using the proposed optimizations. The proposed methods are in general applicable on arbitrary multi-operand adder trees. As an example, the optimization is applied to the summation tree of a class of elementary function generators which is implemented using summation of weighted bit-products. Accurate transistor-level power estimations show up to 25% reduction in dynamic power compared to the original designs. Power estimation is an important step of the optimization algorithm. A probabilistic gate-level power estimator is developed which uses a novel set of simple waveforms as its kernel. The transition density of each circuit node is estimated. This power estimator allows to utilize a global glitch filtering technique that can model the removal of glitches in more detail. It produces error free estimates for tree structured circuits. For circuits with reconvergent fanout, experimental results using the ISCAS85 benchmarks show that this method generally provides significantly better estimates of the transition density compared to previous techniques.
37

Evoluční návrh kombinačních obvodů / EVOLUTIONARY DESIGN OF COMBINATIONAL DIGITAL CIRCUITS

Hojný, Ondřej January 2021 (has links)
This diploma thesis deals with the use of Cartesian Genetic Programming (CGP) for combinational circuits design. The work addresses the issue of optimizaion of selected logic circuts, arithmetic adders and multipliers, using Cartesian Genetic Programming. The implementation of the CPG is performed in the Python programming language with the aid of NumPy, Numba and Pandas libraries. The method was tested on selected examples and the results were discussed.
38

Acceleration Methods for Evolutionary Design of Digital Circuits / Acceleration Methods for Evolutionary Design of Digital Circuits

Vašíček, Zdeněk Unknown Date (has links)
Ačkoliv můžeme v literatuře nalézt řadu příkladů prezentujících evoluční návrh jakožto zajímavou a slibnou alternativu k tradičním návrhovým technikám používaným v oblasti číslicových obvodů, praktické nasazení je často problematické zejména v důsledku tzv. problému škálovatelnosti, který se projevuje např. tak, že evoluční algoritmus je schopen poskytovat uspokojivé výsledky pouze pro malé instance řešeného problému. Vážný problém představuje tzv. problém škálovatelnosti evaluace fitness funkce, který je markantní zejména v oblasti syntézy kombinačních obvodů, kde doba potřebná pro ohodnocení kandidátního řešení typicky roste exponenciálně se zvyšujícím se počtem primárních vstupů. Tato disertační práce se zabývá návrhem několika metod umožňujících redukovat problem škálovatelnosti evaluace v oblasti evolučního návrhu a optimalizace číslicových systémů. Cílem je pomocí několika případových studií ukázat, že s využitím vhodných akceleračních technik jsou evoluční techniky schopny automaticky navrhovat inovativní/kompetitivní řešení praktických problémů. Aby bylo možné redukovat problém škálovatelnosti v oblasti evolučního návrhu číslicových filtrů, byl navržen doménově specifický akcelerátor na bázi FPGA. Tato problematika reprezentuje případ, kdy je nutné ohodnotit velké množství trénovacích dat a současně provést mnoho generací. Pomocí navrženého akcelerátoru se podařilo objevit efektivní implementace různých nelineárních obrazových filtrů. S využitím evolučně navržených filtrů byl vytvořen robustní nelineární filtr implusního šumu, který je chráněn užitným vzorem. Navržený filtr vykazuje v porovnání s konvenčními řešeními vysokou kvalitu filtrace a nízkou implementační cenu. Spojením evolučního návrhu a technik známých z oblasti formální verifikace se podařilo vytvořit systém umožňující výrazně redukovat problém škálovatelnosti evoluční syntézy kombinačních obvodů na úrovni hradel. Navržená metoda dovoluje produkovat komplexní a přesto kvalitní řešení, která jsou schopna konkurovat komerčním nástrojům pro logickou syntézu. Navržený algoritmus byl experimentálně ověřen na sadě několika benchmarkových obvodů včetně tzv. obtížně syntetizovatelných obvodů, kde dosahoval v průměru o 25% lepších výsledků než dostupné akademické i komerční nástroje. Poslední doménou, kterou se práce zabývá, je akcelerace evolučního návrhu lineárních systémů. Na příkladu evolučního návrhu násobiček s vícenásobnými konstantními koeficienty bylo ukázáno, že čas potřebný k evaluaci kandidátního řešení lze výrazně redukovat (defacto na ohodocení jediného testovacího vektoru), je-li brán v potaz charakter řešeného problému (v tomto případě linearita).
39

AUTOMATED OPTIMAL FORECASTING OF UNIVARIATE MONITORING PROCESSES : Employing a novel optimal forecast methodology to define four classes of forecast approaches and testing them on real-life monitoring processes

Razroev, Stanislav January 2019 (has links)
This work aims to explore practical one-step-ahead forecasting of structurally changing data, an unstable behaviour, that real-life data connected to human activity often exhibit. This setting can be characterized as monitoring process. Various forecast models, methods and approaches can range from being simple and computationally "cheap" to very sophisticated and computationally "expensive". Moreover, different forecast methods handle different data-patterns and structural changes differently: for some particular data types or data intervals some particular forecast methods are better than the others, something that is usually not known beforehand. This raises a question: "Can one design a forecast procedure, that effectively and optimally switches between various forecast methods, adapting the forecast methods usage to the changes in the incoming data flow?" The thesis answers this question by introducing optimality concept, that allows optimal switching between simultaneously executed forecast methods, thus "tailoring" forecast methods to the changes in the data. It is also shown, how another forecast approach: combinational forecasting, where forecast methods are combined using weighted average, can be utilized by optimality principle and can therefore benefit from it. Thus, four classes of forecast results can be considered and compared: basic forecast methods, basic optimality, combinational forecasting, and combinational optimality. The thesis shows, that the usage of optimality gives results, where most of the time optimality is no worse or better than the best of forecast methods, that optimality is based on. Optimality reduces also scattering from multitude of various forecast suggestions to a single number or only a few numbers (in a controllable fashion). Optimality gives additionally lower bound for optimal forecasting: the hypothetically best achievable forecast result. The main conclusion is that optimality approach makes more or less obsolete other traditional ways of treating the monitoring processes: trying to find the single best forecast method for some structurally changing data. This search still can be sought, of course, but it is best done within optimality approach as its innate component. All this makes the proposed optimality approach for forecasting purposes a valid "representative" of a more broad ensemble approach (which likewise motivated development of now popular Ensemble Learning concept as a valid part of Machine Learning framework). / Denna avhandling syftar till undersöka en praktisk ett-steg-i-taget prediktering av strukturmässigt skiftande data, ett icke-stabilt beteende som verkliga data kopplade till människoaktiviteter ofta demonstrerar. Denna uppsättning kan alltså karakteriseras som övervakningsprocess eller monitoringsprocess. Olika prediktionsmodeller, metoder och tillvägagångssätt kan variera från att vara enkla och "beräkningsbilliga" till sofistikerade och "beräkningsdyra". Olika prediktionsmetoder hanterar dessutom olika mönster eller strukturförändringar i data på olika sätt: för vissa typer av data eller vissa dataintervall är vissa prediktionsmetoder bättre än andra, vilket inte brukar vara känt i förväg. Detta väcker en fråga: "Kan man skapa en predictionsprocedur, som effektivt och på ett optimalt sätt skulle byta mellan olika prediktionsmetoder och för att adaptera dess användning till ändringar i inkommande dataflöde?" Avhandlingen svarar på frågan genom att introducera optimalitetskoncept eller optimalitet, något som tillåter ett optimalbyte mellan parallellt utförda prediktionsmetoder, för att på så sätt skräddarsy prediktionsmetoder till förändringar i data. Det visas också, hur ett annat prediktionstillvägagångssätt: kombinationsprediktering, där olika prediktionsmetoder kombineras med hjälp av viktat medelvärde, kan utnyttjas av optimalitetsprincipen och därmed få nytta av den. Alltså, fyra klasser av prediktionsresultat kan betraktas och jämföras: basprediktionsmetoder, basoptimalitet, kombinationsprediktering och kombinationsoptimalitet. Denna avhandling visar, att användning av optimalitet ger resultat, där optimaliteten för det mesta inte är sämre eller bättre än den bästa av enskilda prediktionsmetoder, som själva optimaliteten är baserad på. Optimalitet reducerar också spridningen från mängden av olika prediktionsförslag till ett tal eller bara några enstaka tal (på ett kontrollerat sätt). Optimalitet producerar ytterligare en nedre gräns för optimalprediktion: det hypotetiskt bästa uppnåeliga prediktionsresultatet. Huvudslutsatsen är följande: optimalitetstillvägagångssätt gör att andra traditionella sätt att ta hand om övervakningsprocesser blir mer eller mindre föråldrade: att leta bara efter den enda bästa enskilda prediktionsmetoden för data med strukturskift. Sådan sökning kan fortfarande göras, men det är bäst att göra den inom optimalitetstillvägagångssättet, där den ingår som en naturlig komponent. Allt detta gör det föreslagna optimalitetstillvägagångssättetet för prediktionsändamål till en giltig "representant" för det mer allmäna ensembletillvägagångssättet (något som också motiverade utvecklingen av numera populär Ensembleinlärning som en giltig del av Maskininlärning).

Page generated in 0.1989 seconds