21 |
[pt] FORMAÇÃO DE PORTFÓLIO SOB INCERTEZA DE UMA EMPRESA DE PRODUÇÃO E REFINO DE PETRÓLEO / [en] PORTFOLIO SELECTION OF AN OIL AND GAS COMPANY UNDER UNCERTAINTY17 September 2020 (has links)
[pt] A formação do portfólio de uma empresa de Petróleo envolve complexas decisões devido ao ambiente de incertezas e é de extrema importância na definição do futuro estratégico da empresa. Recentemente, a otimização de um portfólio de ativos de exploração e produção de petróleo vem sendo amplamente tratada na literatura, entretanto observa-se uma escassez de trabalhos que consideram a otimização do portfólio de refino. Este trabalho tem por objetivo propor um modelo de formação de portfólio para empresas do setor de óleo e gás, que possuem atividades tanto no segmento de exploração e produção (upstream) quanto no segmento de refino (downstream), levando em conta a integração entre ambos. Assim como nos modelos tradicionais, os preços do barril de petróleo e a produtividade dos campos serão tratadas como incertezas. O modelo proposto utilizará técnicas de programação estocástica com aversão a risco, medido pelo CVaR (Conditional Value-at-Risk). A fim de validar a metodologia proposta, um estudo de caso baseado em uma empresa de óleo e gás será apresentado. A aplicação numérica indicou que o modelo que otimiza o portfólio conjunto de upstream e downstream apresenta resultado da função objetivo até 28 por cento superior ao modelo usualmente tratado na literatura que trata apenas do portfólio de upstream. / [en] The portfolio allocation of an Oil and Gas company involves complex decisions within an uncertain environment and is extremely important in defining the firm s economical and financial future behavior. Recently, the portfolio selection problem for oil exploration and production (E&P) projects has been widely treated in the literature, however, few studies consider the optimization of the combined upstream and downstream portfolio. The purpose of this work is to propose a portfolio selection model for oil and gas companies, which operates both in exploration and production (upstream) and in refining (downstream), considering the integration between them. Crude oil prices and fields performance are the main uncertainties of the problem. The proposed model makes use of risk aversion stochastic programming techniques, measured by CVaR (conditional value at risk). To validate the proposed methodology a case study based on an Oil Company will be presented. The numerical application indicates that the model considering both upstream and downstream portfolio presents objective function results 28 percent higher than the model usually used in the literature that only optimizes the upstream portfolio.
|
22 |
[pt] ESTIMANDO A CURVA FORWARD DE ENERGIA ELÉTRICA NO BRASIL COM UM MODELO DE DOIS AGENTES UTILIZANDO CONTRATOS POR DIFERENÇA E FUNÇÃO ECP-G / [en] OBTAINING THE FORWARD CURVE FOR THE BRAZILIAN POWER MARKET IN A DUAL AGENT MODEL WITH CONTRACTS FOR DIFFERENCE AND ECP-G FUNCTIONALFELIPE VAN DE SANDE ARAUJO 25 May 2020 (has links)
[pt] O desenvolvimento de métodos simples e efetivos para estimar o valor da curva forward de energia elétrica pode permitir que participantes do mercado precifiquem adequadamente suas posições especulativas ou defensivas. Uma ferramenta como esta poderia promover maior transparência para a definição dos preços futuros permitindo que os participantes do mercado futuro possam atuar com mais segurança e trazendo com isso um necessário aumento de liquidez. Neste trabalho apresento um modelo com dois agentes representativos que administram sua exposição ao risco através de um contrato por diferenças entre o preço futuro esperado da energia elétrica na região Sudeste no Brasil e um preço de referência. Demonstra-se que este mecanismo pode abranger todos os participantes do mercado, quer sejam especuladores ou agentes envolvidos na comercialização. A função de utilidade de cada participante é modelada utilizando uma versão Generalizada da Preferência CVaR Estendida (ECP-G) e o equilíbrio nesta transação é obtido através da minimização da diferença quadrática do equivalente certo destes agentes. Os resultados obtidos são comparados às previsões de mercado feitas por especialistas para o mesmo período e demonstram aderência dentro e fora da amostra. / [en] The development of simple and effective mechanisms to estimate the value of the forward curve of power could enable market participants to better price hedging or speculative positions. This could in turn provide transparency in future price definition to all market participants and lead to more safety and liquidity in the market for electricity futures and power derivatives. This work presents a model for two market participants, a buyer and a seller of a contract for difference on the future spot price of electricity in southwest Brazil. It is shown that this model is representative of all market participants that have exposure to the future price of power. Each participant s utility function is modelled using a Generalized Extended CVaR Preference (ECP-G) and the market equilibrium is obtained through the minimization of the quadratic difference between the certainty equivalent of both agents. The results are compared with prediction of the future spot price of power made by market specialists and found to yield reasonable results when using out of sample data.
|
23 |
[en] A NUCLEOLUS BASED QUOTA ALLOCATION MODEL FOR THE BITCOIN REFUNDED BLOCKCHAIN NETWORK / [pt] UM MODELO PARA ALOCAÇÃO DE QUOTAS BASEADO EM NUCELOLUS PARA A REDE BLOCKCHAIN REMUNERADA POR BITCOINEDUARDO MAURO BAPTISTA BOLONHEZ 25 September 2020 (has links)
[pt] Minerar bitcoins é uma atividade incerta, e para realizá-la, os participantes competem em um processo chamado Proof-Of-Work. Cada participante pode passar meses ou até anos sem fluxos positivos de caixa, enquanto os custos se mantém. Isto pode afastá-los da tecnologia e a saída de membros afeta a própria rede, que não sobrevive sem a presença de mineradores. Este trabalho propõe estudar o compartilhamento de recompensas em estruturas já existentes na rede: mineradores se juntando em pools de mineração
e dividindo receitas e custos, assim diminuindo a variabilidade e gerando fluxos positivos de caixa mais constantes. A receita e custos são modelados, e um modelo de programação estocástica é proposto para encontrar as alocações ótimas que garantem a permanência dos membros no pool. Este grupo de é caracterizado por uma coalizão, estudado através de Teoria dos Jogos. O comportamento dos jogadores também é de estudo neste trabalho, e uma medida monetária de risco, na forma de CVaR (Conditional Value at Risk) é usada para representar o perfil de risco do minerador e as consequências para as alocações ótimas. Embora não haja benefício estrito em fazer parte do pool para um único período de análise, há ganho financeiro quando se analisa em múltiplos períodos, e o tempo médio para se acertar
um hash diminui quando os participantes se juntam em um pool. Um ganho na probabilidade de mineração ao fazer parte de um pool aumentaria a receita média da coalizão, trazendo ganhos financeiros mesmo em
um único período de análise. Divisões intuitivas de recursos, como por poder computacional ou igualitária podem não garantir estabilidade do pool, principalmente considerando períodos longos de tempo. Tal estabilidade é possível em um futuro sem receitas fixas de mineração, se ocorrerem também
mudanças nas receitas variáveis e custos. Três funções objetivo diferentes representando três idéias de partilha de recompensa são comparadas e uma metodologia é proposta para uso conjunto de pelo menos duas destas, com objetivo de aumentar a justiça na divisão das recompensas. / [en] Mining Bitcoins is an uncertain activity, and to perform it, players must compete in a process known as Proof-Of-Work. A miner may spend months or even years without positive cash flows on this process, while
still incurring in the associated costs. This outcome has the possibility to drive them away from the technology, and the departure of members affects the network itself, as it cannot survive without the presence of miners. This work proposes to study the sharing of rewards in structures already
presented in the network: miners joining forces and taking place in mining pools, sharing revenues and costs, thus having positive cash flows more often, reducing variability in gains. The revenues and costs are modeled, and a stochastic optimization model is proposed to find the optimal allocations that guarantee that all members stay within the pool. This group of miners is characterized by a coalition, studied through Game Theory. The behavior of the players is also subject of this study, and a monetary risk measure,
by the form of CVaR (Conditional Value at Risk) is used to represent the miner s risk profile and consequences to the optimal allocations. While there is no strict benefit from being part of a pool for a single block, there is financial gain when looking at multi-period, and the average time to correctly guess a hash decreases when players join forces in a pool. A gain in mining probability by being in the pool would raise the average reward of the coalition and allow for financial benefit even in single period.We observe
that intuitive sharing allocations such as through computational power and equally dividing rewards may not guarantee the stability of the pool, mainly when longer periods of time are considered. Said stability is possible in the future without fixed incomes, but with changes to the variable rewards and the costs of mining. Lastly, three different objective functions representing three ideas to share the rewards within the nucleolus are compared and a method is proposed to collectively use at least two of them, aiming increased fairness in the sharing of rewards.
|
24 |
[pt] DESENHO PARQUE EÓLICO CONSIDERANDO WAKE EFFECTS E ESTRATÉGIAS DE CONTRATAÇÃO / [en] OPTIMAL WIND FARM LAYOUT DESIGN ACCOUNTING FOR WAKE EFFECTS AND CONTRACTING STRATEGIESCARLOS ALBERTO KEBUDI ORLANDO 06 December 2023 (has links)
[pt] À medida que o mundo enfrenta a urgente questão das mudanças
climáticas, a energia eólica se destaca como uma fonte crítica de energia limpa.
No entanto, realizar seu pleno potencial depende da otimização dos layouts
de parques eólicos, especialmente à luz do complexo efeito de esteira. Esta
dissertação adentra na Otimização de Layout de Parques Eólicos (WFLO,
na sigla em inglês) usando o Modelo de Efeito de Esteira de Bastankhah. O
escopo deste estudo vai além do design de layout; abrange a intrincada tarefa
de mitigar o impacto do efeito de esteira, juntamente com a busca por uma
estratégia de negociação com aversão ao risco e maximização de valor. Para
contabilizar a aversão ao risco, uma combinação entre o Valor Esperado e
os funcionais de medida de risco baseados no quantil esquerdo, a medida de
Valor em Risco Condicional (CVaR). Para apoiar esta pesquisa, um pacote
de código aberto OptimalLayout.jl foi desenvolvido. Este pacote co-otimiza
o posicionamento das turbinas eólicas para mitigar o impacto do efeito de
esteira e a estratégia de contratação de um agente/gerador avesso ao risco.
Através de uma série de estudos de casos práticos em diversos ambientes
dinâmicos, esta pesquisa ilustra a aplicabilidade do WFLO no mundo real.
Estas investigações examinam detalhadamente a sua influência na produção
de energia e na dinâmica das receitas, oferecendo informações valiosas sobre
soluções energéticas sustentáveis. / [en] As the world confronts the pressing issue of climate change, wind power stands out as a critical source of clean energy. However, realizing its full potential relies on the optimization of wind farm layouts, particularly in light of the complex wake effect. This dissertation delves into Wind Farm Layout Optimization (WFLO) using the Bastankhah Wake Model. The scope of this
study goes beyond layout design; it encompasses the intricate task of mitigating the wake effect s impact along with the seek for a risk-averse-value maximizing trading strategy. To account for risk-averseness, a combination between Expected Value and the left-side-quantile-based risk-measure functionals, the Conditional Value-at-Risk (CVaR) measure. To support this research, an opensource package OptimalLayout.jl was developed. This package co-optimizes the positioning of wind turbines to mitigate wake effect impact,and the contracting strategy of a Risk-Averse agent/generator. Through a series of practical case studies across diverse dynamic environments, this research illustrates the real-world applicability of WFLO. These investigations intricately examine its influence on power production and revenue dynamics, offering valuable insights into sustainable energy solutions.
|
25 |
Stochastic Optimization of Asset Management Project Portfolios: A Risk-Informed Approach / Stokastisk optimering av projektportföljer för tillgångsförvaltning: en riskinformerad metodPersson, Sebastian, Hansson, Niklas January 2023 (has links)
Asset management within the nuclear industry has become an increasingly relevant topic as safety requirements have tightened and energy security has become more important. Asset management ensures performance and reliability in a nuclear facility by balancing costs, opportunities, and risks to get the most out of assets. Asset management processes can often be modeled as capital budgeting problems, where investments are evaluated based on costs and benefits, which establishes a link to mathematical optimization. This study addresses asset management at the Swedish nuclear power plant, Forsmark, and aims to implement an optimization model to improve the project selection related to maintenance and replacement of assets at the plant. First, the most relevant areas of nuclear asset management are identified through a comprehensive literature review. The most relevant method, identified as a mix between risk-informed asset management and capital budgeting, is then implemented to fit the prerequisites at Forsmark. Several models of different complexity are developed and the resulting stochastic model incorporates uncertainty of input variables by assuming underlying distributions. Finally, a methodology to incorporate a quantitative risk measure in the optimization is suggested through the use of conditional value at risk. Results are generated based on simulated data and illustrate the potential of implementing the method at Forsmark. / Tillgångsförvaltning inom kärnkraftsindustrin har blivit alltmer aktuellt i takt med att säkerhetskraven har skärpts och tillförlitlighet i energiproduktionen blivit viktigare. Effektiv tillgångshantering säkerställer prestanda och reliabilitet i ett kärnkraftverk genom att hitta en balans mellan kostnader, möjligheter och risker för att maximera nyttan av tillgångar. Projekturval i tillgångsförvaltningen kan ofta modelleras som ett kapitalbudgeteringsproblem, där investeringar utvärderas utifrån kostnader och uppsida, vilket påvisar en koppling till matematisk optimering. Denna studie behandlar tillgångshantering vid det svenska kärnkraftverket Forsmark och syftar till att implementera en optimeringsmodell för att förbättra projekturvalet relaterat till underhåll av tillgångar vid anläggningen. Det första steget i studien bearbetar den befintliga litteraturen inom området för att få en uppfattning av relevanta metoder. Den mest relevanta metoden identifierades som en mix mellan riskinformerad tillgångsförvaltning och kapitalbudgetering. En metod baserad på de generella principerna för dessa områden utvecklades och anpassades för de specifika förutsättningarna på Forsmark. Flera modeller av olika komplexitet utvecklades och den slutgiltiga stokastiska modellen inkorporerar osäkerhet i de mest relevanta ingångsvariablerna genom att anta sannolikhetsfördelningar. Slutligen föreslås en metod för att implementera ett kvantitativt riskmått i optimeringen genom att använda CVaR. Resultaten genereras utifrån simulerade data och illustrerar potentialen i att implementera metoden på Forsmark.
|
26 |
Accuracy of Risk Measures For Black Swan Events / Precision av Riskmått För Black Swan-HändelserBarry, Viktor January 2021 (has links)
This project aims to analyze the risk measures Value-at-Risk and Conditional-Value-at-Risk for three stock portfolios with the purpose of evaluating each method's accuracy in modelling Black Swan events. This is achieved by utilizing a parametric approach in the form of a modified (C)VaR with a Cornish-Fisher expansion, a historic approach with a time series spanning ten years and a Markov Monte Carlo simulation modeled with a Brownian motion. From this, it is revealed that the parametric approach at the 99\%-level generates the most favorable results for a 30-day-(C)VaR estimation for each portfolio, followed by the historic approach and, lastly, the Markov Monte Carlo simulation. As such, it is concluded that the parametric approach may serve as a method of evaluating a portfolio's exposure to Black Swan events. / Denna rapport syftar till att analysera riskmåtten Value-at-Risk och Conditional-Value-at-Risk för tre aktieportföljer med målet att utvärdera respektive metods precision i att modellera Black Swan-händelser. Detta uppnås genom att utnyttja en parametrisk metod som tar formen av en modifierad (C)VaR med en Cornish-Fisher-utveckling, en historisk metod med en tidsserie som sträcker sig tio år, och en Markov Monte Carlo-simulering modellerat med en Brownian Motion. Från detta påvisas det att den parametriska metoden vid en 99\%-ig nivå genererar de mest rättvisande resultaten för en 30-dagars-(C)VaR-estimering för respektive portfölj, följt av den historiska metoden och, till sist, Monte Carlo-simulering. På så sätt dras slutsatsen att den parametriska metoden skulle kunna tjäna som en metod för att utvärdera en aktieportföljs exponering till Black Swan-händelser.
|
27 |
Zajištění Value at Risk a podmíněného Value at Risk portfolia pomocí kvantilových autoregresivních metod / Application of quantile autoregressive models in minimum Value at Risk and Conditional Value at Risk hedgingSvatoň, Michal January 2015 (has links)
Futures contracts represent a suitable instrument for hedging. One conse- quence of their standardized nature is the presence of basis risk. In order to mitigate it an agent might aim to minimize Value at Risk or Expected Shortfall. Among numerous approaches to their modelling, CAViaR models which build upon quantile regression are appealing due to the limited set of assumptions and decent empirical performance. We propose alternative specifications for CAViaR model - power and exponential CAViaR, and an alternative, flexible way of computing Expected Shortfall within CAViaR framework - Implied Expectile Level. Empirical analysis suggests that ex- ponential CAViaR yields competitive results both in Value at Risk and Ex- pected Shortfall modelling and in subsequent Value at Risk and Expected Shortfall hedging. 1
|
28 |
An empirical analysis of scenario generation methods for stochastic optimizationLöhndorf, Nils 17 May 2016 (has links) (PDF)
This work presents an empirical analysis of popular scenario generation methods for stochastic optimization, including quasi-Monte Carlo, moment matching, and methods based on probability metrics, as well as a new method referred to as Voronoi cell sampling. Solution quality is assessed by measuring the error that arises from using scenarios to solve a multi-dimensional newsvendor problem, for which analytical solutions are available. In addition to the expected value, the work also studies scenario quality when minimizing the expected shortfall using the conditional value-at-risk. To quickly solve problems with millions of random parameters, a reformulation of the risk-averse newsvendor problem is proposed which can be solved via Benders decomposition. The empirical analysis identifies Voronoi cell sampling as the method that provides the lowest errors, with particularly good results for heavy-tailed distributions. A controversial finding concerns evidence for the ineffectiveness of widely used methods based on minimizing probability metrics under high-dimensional randomness.
|
29 |
Generation capacity expansion in restructured energy marketsNanduri, Vishnuteja 01 June 2009 (has links)
With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion in the future will have to take place in market-based environments. However, since a majority of the literature on capacity expansion is focused on regulated market structures, there is a critical need for comprehensive capacity expansion models targeting restructured markets. In this research, we develop a two-level game-theoretic model, and a novel solution algorithm that incorporates risk due to volatilities in profit (via CVaR), to obtain multi-period, multi-player capacity expansion plans. To solve the matrix games that arise in the generation expansion planning (GEP) model, we first develop a novel value function approximation based reinforcement learning (RL) algorithm.
Currently there exist only mathematical programming based solution approaches for two player games and the N-player extensions in literature still have several unresolved computational issues. Therefore, there is a critical void in literature for finding solutions of N-player matrix games. The RL-based approach we develop in this research presents itself as a viable computational alternative. The solution approach for matrix games will also serve a much broader purpose of being able to solve a larger class of problems known as stochastic games. This RL-based algorithm is used in our two-tier game-theoretic approach for obtaining generation expansion strategies. Our unique contributions to the GEP literature include the explicit consideration of risk due to volatilities in profit and individual risk preference of generators. We also consider transmission constraints, multi-year planning horizon, and multiple generation technologies.
The applicability of the twotier model is demonstrated using a sample power network from PowerWorld software. A detailed analysis of the model is performed, which examines the results with respect to the nature of Nash equilibrium solutions obtained, nodal prices, factors affecting nodal prices, potential for market power, and variations in risk preferences of investors. Future research directions include the incorporation of comprehensive cap-and-trade and renewable portfolio standards components in the GEP model.
|
30 |
Risk Measure Approaches to Partial Hedging and ReinsuranceCong, Jianfa January 2013 (has links)
Hedging has been one of the most important topics in finance. How to effectively hedge the exposed risk draws significant interest from both academicians and practitioners.
In a complete financial market, every contingent claim can be hedged perfectly. In an incomplete market, the investor can eliminate his risk exposure by superhedging. However, both perfect hedging and superhedging usually call for a high cost. In some situations, the investor does not have enough capital or is not willing to spend that much to achieve a zero risk position. This brings us to the topic of partial hedging.
In this thesis, we establish the risk measure based partial hedging model and study the optimal partial hedging strategies under various criteria. First, we consider two of the most common risk measures known as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We derive the analytical forms of optimal partial hedging strategies under the criterion of minimizing VaR of the investor's total risk exposure. The knock-out call hedging strategy and the bull call spread hedging strategy are shown to be optimal among two admissible sets of hedging strategies. Since VaR risk measure has some undesired properties, we consider the CVaR risk measure and show that bull call spread hedging strategy is optimal under the criterion of minimizing CVaR of the investor's total risk exposure. The comparison between our proposed partial hedging strategies and some other partial hedging strategies, including the well-known quantile hedging strategy, is provided and the advantages of our proposed partial hedging strategies are highlighted. Then we apply the similar approaches in the context of reinsurance. The VaR-based optimal reinsurance strategies are derived under various constraints. Then we study the optimal partial hedging strategies under general risk measures. We provide the necessary and sufficient optimality conditions and use these conditions to study some specific hedging strategies. The robustness of our proposed CVaR-based optimal partial hedging strategy is also discussed in this part. Last but not least, we propose a new method, simulation-based approach, to formulate the optimal partial hedging models. By using the simulation-based approach, we can numerically obtain the optimal partial hedging strategy under various constraints and criteria. The numerical results in the examples in this part coincide with the theoretical results.
|
Page generated in 0.0972 seconds