• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Torkklimat under byggproduktion : En kvantitativ studie baserad på klimatdata och litteraturstudier / Drying climate during construction condition : A quantitative study based on climate date and literature studies

Sidenqvist, Daniel, Ternstedt, Viktor January 2014 (has links)
En utmaning under produktionen är uttorkning av byggfukt i byggnadens betongbjälklag. Om uttorkningen försenas kan golvbeläggningar inte appliceras i rätt tid, men att arbetet forceras är inte ett alternativ, då risken finns att fuktskador uppkommer under driftsskedet. Avgörande för att uttorkningen skall fortskrida enligt plan är att torkklimatet i byggnaden är gynnsamt för uttorkningsprocessen. För att kontrollera torkklimatet genomför företaget ett omfattande arbete genom att mäta klimatet, där dataloggar på olika platser i byggnaden registrerar luftens temperatur och relativa fuktighet. Tillsammans med trendmätningar i betong är tanken att insamlad data skall ge en bild av hur uttorkningen fortskrider. Svårigheten med torkklimat är att ämnesområdet i många avseenden är abstrakt och teoretiskt, just därför att parametrarna som beskriver torkklimatet ständigt varierar. För att insamlad data skall addera värde för produktionen måste datamängderna analyseras och visualiseras på ett tydligt sätt, som medför att produktionsledningen kan agera utifrån informationen utan att nödvändigtvis besitta spetskompetens inom ämnesområdet. Examensarbetet syftar till att bistå företaget med ökade kunskaper om torkklimat under byggproduktion, kopplat till uttorkning av byggfukt. Under arbetet har förutsättningarna för en effektiv uttorkning studerats, med avseende på torkklimatets variation. Under arbetet har också en undersökning gjorts för att ta reda på när företaget i ett generellt fall bör komplettera torkklimatet med ökad ventilation och/eller avfuktning för att hålla ett jämnt torkklimat i byggnaden året om. Som bakgrund till ämnesområdet redovisas en beskrivning av de styrande faktorerna för torkklimatet, teoretiskt och projektspecifikt. Resultatet av studien visar att förutsättningarna för en effektiv uttorkning har funnits på de platser i byggnaden som studerats, i det avseendet att en majoritet av klimattrenderna följer uppsatta kriterier i projektets fuktsäkerhetsplan.  Studien visar också att en komplettering med ökad ventilation och/eller avfuktning bör starta under perioden mars till april och under oktober till november kan uttorkningsstrategin återgå till att enbart värma inomhusluften. / A challenge during construction is drying of construction moisture in the building's concrete slab. If the drying is delayed, the flooring can’t be applied at the right time, but forcing the process is not an option, because of the risk of moisture damage during the operating phase. Crucial to the planed drying is that the climate in the building is favorable for the drying process. In order to control the drying climate the company is conducting an extensive work by measuring, where data logs at different locations in the building records air temperature and relative humidity. Along with the trend measurements of moisture levels in the concrete slab, the idea is that the data series should provide a picture of how the drying progresses. The difficulty with drying climates is that the subject in many respects is abstract and theoretical, because the parameters that describe the drying climate are continuously changing. If the collected data should add value to the construction site, the amount of data needs to be analyzed and visualized in a clear way, which means that the company's construction management services can act based on the information without necessarily possessing expertise in the subject area. This bachelor degree project aims to assist the company with knowledge of drying climate during construction condition, linked to the drying of construction moisture. During the work, the conditions for effective drying of construction moisture have been studied with respect to variations in drying climate.  Another study also conducted, was to find out when the company in a general case may complement drying climate with increased ventilation and/or dehumidification to keep the drying climate at a steady level in the building year round. As background to the subject, a description of the factors controlling the drying climate is presented in the report, theoretical and specifically for the project. The results of the study show that the conditions for effective drying of construction moisture have been the case of the building sites that has been sampled, in the sense that a majority of climate trends follow the established criteria in the project's moisture safety plan. The study also shows that increased ventilation and/or dehumidification may be applied as a supplement in the period from March/April until October/November at which time the dehydration strategy can revert back to warming indoor air only.
2

Fuktrelaterade risker vid lågenergikonstruktion i lättbetong : En studie av ett nyproducerat passivhus / Moisture related risks with aerated concrete in low energy constructions : A study of a newly produced passive house

Jansson, Sebastian, Niklasson, Erik January 2014 (has links)
Trenden i byggbranschen är att efterfrågan på täta, energisnåla byggnader ökar. Passivhus och andra lågenergikonstruktioner blir vanligare och vanligare. Riskerna med att bygga in organiskt material som trä i dessa konstruktioner har fått branschen att börja titta på alternativa material. Lättbetong är ett material som både har bärande och isolerande egenskaper. Dessutom är det inte organiskt vilket gör det okänsligt för mikrobiell påväxt. Det som är intressant med lättbetong, ur fuktsynpunkt, är att materialet levereras från tillverkare med en stor mängd byggfukt. Våren 2014 färdigställde Bollnäs Bostäder passivhus- projektet Sundsbro i Bollnäs, där lättbetong ingår i utfackningsväggarna. Sett inifrån består väggen av ett tunt lager kc-puts, lättbetong, cellplast, mineralull, kc-baserad grovputs och ytputs. I detta arbete användes projektet i Bollnäs som referensobjekt och en risk- och känslighetsanalys av väggkonstruktionen utfördes. Arbetet utreder risken för fuktrelaterade problem med väggen vid de extra uttorkningsinsatser som vidtogs i referensobjektet och vid normala uttorkningsbetingelser. Vidare utreds vilka parametrar som är viktiga för väggens fuktfunktion och vad man behöver tänka på när man projekterar och bygger i lättbetong. Arbetet har genomförts i samarbete med AK-Konsult Indoor Air AB och deras senior konsult Anders Kumlin. Fuktberäkningsprogrammet WUFI Pro 5.3 har använts för simuleringar. Beräkningarna gjordes endimensionellt på väggkonstruktionen. Resultaten med den ökade uttorkning som utfördes i referensobjektet visar inget högre fuktinnehåll längst ut i väggen på grund av byggfukt från lättbetongen som vandrar utåt. Farhågan var att så skulle kunna ske och att det skulle kunna leda till mögelproblem. Däremot visar resultaten att bygg-fukt från putsen kan fukta upp mineralullen. Det finns dock inga kända skadefall av detta slag och därför dras ändå slutsatsen att konstruktionen är riskfri. Tack vare en förutseende fukt-projektering och väl utförd uttorkning eliminerades risken för mögel. Hade inte dessa åtgärder vidtagits så visar resultaten att en liten mängd byggfukt hade kunnat vandra utåt och kondensera i mineralullen under första vintern. Då hade det funnits risk för mikrobiell påväxt. Detta visar att det är av största vikt att utföra en noggrann fuktprojektering vid byggnation av välisolerade hus i allmänhet och i synnerhet när lättbetong används. Lyckligtvis gjordes detta på ett bra sätt i referensprojektet. Känslighetsanalysen visar att isoleringens diffusionstäthet är avgörande för hur stor del av bygg-fukten som kan vandra utåt och därmed hur stor risken för problem blir. Lägre täthet ger större risk och högre täthet reducerar risken. Resultaten visar också att det är viktigt att inte montera täta skikt på insidan för tidigt. Den allmänna rekommendationen från leverantör är att lättbetongen skall torkas till 15 % fuktkvot på 50 millimeters djup innan målning och tapetsering på insida vägg får ske. Studien visar att detta är ett för högt fukttillstånd om det skikt som appliceras på insida vägg är tätt. Lättbetongen bör torkas till 5 % på 50 millimeters djup innan helt täta skikt kan monteras utan mögelrisk. / The trend in the construction industry is that the demand for tight, energy-saving buildings is rising. Passive houses and low energy constructions are becoming more and more common. The risk with using organic material in this type of constructions has made the industry look at alternative materials. Aerated concrete is a material that has both load-bearing and insulating properties. In addition to that it is not organic, which makes it insensitive to microbial growth. What is interesting with aerated concrete, from a moisture point of view, is that the material is delivered from the producer with a large amount of construction moisture. In the spring of 2014, the passive-house project Sundsbro in Bollnäs with aerated concrete in the wall construction, was finished by Bollnäs Bostäder. In this study the project in Bollnäs was used as reference object and a risk- and sensitivity analysis was made. The study examines the risk of moisture related problems with the wall construction during normal dehydration conditions and after the increased dehydration efforts that were taken in the reference project. The study also examines which parameters are important for the moisture function of the wall construction and what you need to think about when you project and build with aerated concrete. The job has been done in cooperation with AK-Konsult Indoor Air AB and their senior consultant Anders Kumlin. The moisture calculation program WUFI Pro 5.3 has been used for simulations. The results with the increased dehydration that was used in the reference project show no increased moisture content in the outer parts of the construction due to construction moisture from the concrete that wanders outwards. The concern was that so could happen and that it would lead to mould problems. However the results show that construction moisture from the exterior plaster can moisten the mineral wool. There are no known damage cases of this sort and therefore the conclusion is that the construction is free of risk. Thanks to a foreseeing moisture projection and a well performed dehydration the risk of mould was eliminated. If these measures would not have been taken, the results show that a small amount of construction moisture could have wandered outwards and condensed inside the mineral wool during the first winter. Then there would have been a risk of microbial growth. This shows that it is very important to carry out a detailed moisture projection when constructing well insulated houses in general and when using aerated concrete in particular. Fortunately this was properly done in the reference project. The sensitivity analysis shows that the diffusion resistance of the insulation decides how much of the construction moisture that can wander outwards and consequently the size of the problem risk. Results also show that it is crucial not to apply sealing layers on the inside of the wall too early. The general recommendation from the supplier is that the aerated concrete should be dried to 15 % moisture ratio on 50 millimeter depth before painting and paper hanging on the interior surface of the wall can be done. The study shows that the concrete still is too damp at that stage if the layer applied on the inside of the wall is impermeable. The concrete should be dried down to 5 % moisture ratio before sealing layers can be applied without mould risk.
3

UTREDNING OCH UTFORMNING AV BALKONG I KL-TRÄ .Som är fuktsäker och går att utföra praktiskt.

Eriksson, Emil, Moberg, Mattias January 2022 (has links)
L-trä har på kort tid blivit en vanligare byggmetod. Detta har medfört att det underlag som finns för projektering inom området inte är lika väl utvecklade som andra stomsystem. De lösningar som finns inom KL-trä, är idag ofta projektbaserade och är inte är helt genomtänkta ur alla aspekter. Från hur en prefabricerad betongstomme projekteras fram kan vissa principer tillämpas till KL-trä, men då detta är en annan typ av stomme blir vissa lösningar mer specifika mot KL-trä.  Syftet med vår studie är att ta fram en balkonglösning som är fuktsäker och utveckla en standardiserad lösning som går att tillämpa praktiskt. Den ska även uppfylla de krav som regelverken ställer för en balkong. I rapporten används kvalitativa metoder som metodik. Litteraturstudier har använts för att ge en analys av det arbete som finns inom området idag. Datainsamling utfördes med Tom Noremo, som ligger till grund för intervjuer. Intervjuer utfördes med 11 sakkunniga med olika erfarenheter inom byggbranschen. Studien avgränsas till utanpåliggande balkonger infästa med dragstag. Även fasadsystemen avgränsas till Rockwools REDair alternativt PAROC:s ZERO. Den detalj som tas fram är enbart för bostadshus och ska klara av de tillgänglighetskrav som en balkong ska uppfylla. Inga beräkningar för bärförmåga har utförts och redovisad lösning utgår ifrån en befintlig lösning.  Från litteraturstudierna och intervjuerna har en detalj för en balkong i KL-trä projekterats fram. Lösningen har liknande infästning som den detalj rapporten utgår ifrån. Resultatet blev att stålramen med UPE-profil som ligger runt om KL-skivan ska bytas ut mot en L-profil och infästning av dragstag ska sitta i sidorna. Balkonger i KL-trä ska ha hålkäl likt de som en prefabricerad betongbalkong har och ska dras hela vägen till framkant. Balkongerna ska utföras med en tralluppbyggnad som gör det enkelt att klara av tillgänglighetskraven och ger en mer fuktsäker konstruktion. Det tätskikt som monteras måste klara av den mekaniska åverkan som kommer från trallen, närmast dörrtröskel ska brädor bytas ut mot gallerdurk. För de balkonger som är extra utsatta för nederbörd kan en sockeluppbyggnad utföras. Slutsatsen blev att det krävs omfattande åtgärder för att en balkong i KL-trä ska bli lika hållbar som en betongbalkong. Materialval och arbetsutförande har en stor inverkan på slutresultatet. Studien har resulterat i ett gediget projekteringsunderlag för utformning av balkonger. / CLT is becoming a more popular building method. Therefore, the design documentation for CLT is not as developed as other frame systems. The solutions that exist today are only project-based and not always as well thought out as compared to how prefabricated concrete systems is designed. Some principles can be applied to CLT but since this is a different type of material the solutions need to become more specific to CLT.  The purpose with our study is to develop a standardized balcony detail in CLT which is moisture-proof and can be applied in practice. It must also meet the requirements and regulations for a balcony set by the authorities.  The report uses qualitative methods as a methodology to analyse the work that exist today for a balcony in CLT. We used literature studies and conducted 11 interviews with experts obtained from Kåver & Mellin. The study is limited to wall-mounted balconies attached with tension rods. The facade systems are limited to Rockwool´s RED air or PAROC zero. The detail in the report is only for apartment buildings and will meet the requirements set for a balcony. No calculations for load bearing capacity have been conducted where the solution is based on an existing solution.  As a result, from the literature studies and interviews, a balcony detail in CLT has been projected. The detail uses similar attachments as the detail the report is based on. The result from the methodology was that the steel frame that is applied around the CLT-panel must be replaced with a L shaped steel frame. The attachments for the tension rods must be placed on the sides of the balcony. Balconies in CLT must have the same triangle formed element as prefabricated concrete balconies has and be drawn all the way to the front edge of the CLT-panel. The balconies need to be made with duckboard which makes it easier to meet the requirements of accessibility and provides a more moisture-proof construction. The waterproof layer needs to be able to withstand the load bearing coming from duckboard. The boards closest to the threshold can be replaced with a floor grate. The balconies that is extra exposed to bad weather can have an extra outer wall construction. The conclusion is that a balcony in CLT need extensive measures for it to become as durable as concrete balconies. Material selection and the work performance have the biggest impact on the result. The study has resulted in a solid design documentation for a balcony in CLT and an alternative solution has been produced which is moisture-proof and can be applied in practice.

Page generated in 0.1366 seconds