• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hantering av byggfukt, med speciell fokus på produktion av golvkonstruktioner i betong / Management of construction moisture, with special focus on the production of concrete floor constructions

Björk de Farfalla, Carl-Martin, Robin, Johansson January 2016 (has links)
Byggfukt är förekommande under produktionen av byggnader. Studien ämnar undersöka hur byggbranschen hanterar fuktproblemtiken för nygjuten betong samtbekräfta eller dementera tillförlitligheten hos prognosverktygen Torka S och BI Dry. Genom kvalitativa intervjuer med byggbranschen konstateras det att branschen ärmedveten om problematiken och aktivt tillämpar metoder som ByggaF för attfuktsäkra. Den viktigaste styrparametern byggbranschen tillämpar för att minimera betonguttorkning är att öka mängden cement i betongen. Den kvantitativa undersökningen kan konstatera att prognosverktygen, Torka S ochBI Dry, saknar tillförlitlighet då de inte kan simulera tillsatsämnen som används i dagens cement.
2

Uttorkning på byggarbetsplatsen - klimat och uttorkningsprocesser

Lilliesköld, Mikael, Lindahl, Johan January 2003 (has links)
<p>NR 20140804</p>
3

Mätningar och simuleringar av fukt i tak / Measurements and simulaions of moisture in roof constructions

Rikner, Viktor, von Platen, Hampus January 2015 (has links)
På grund av att det hela tiden kommer nya sätt att bygga på uppstår nya problem varav många är fuktrelaterade. I rapporten undersöks en specifik parallelltakskonstruktion med hjälp av loggning. Mätningarna jämförs sedan med simuleringar i programmet Wufi® Pro 5.3 för att se om det föreligger risk för att fuktproblem skulle uppstå inne i konstruktionen.
4

Fukt i material under byggskedet / Moisture in construction material during the construction phase

Yousuf, Jabran, Rezaie, Hamed January 2017 (has links)
Detta arbete tar upp fuktproblemen vid materialförvaring samt vid leverans. Fokus i arbetet ligger på trämaterial, dock har även andra byggnadmaterial tagits upp. Fuktmätningar och intervjuer på byggarbetsplatser har gjorts för att få en bild på hur byggnadsmaterialet hanteras på byggarbetsplatser. Arbetet visar att beställaren kan ha en stor påverkan på hur byggnadsmaterialet hanteras på byggarbetsplatserna.
5

Byggfuktens inverkan på energiförbrukning : En studie i energiförluster på grund av byggfukt / Building moisture impact on energy consumption : A study in energy losses due to building moisture

Berggrén, Erik, Lunqe, Edward January 2015 (has links)
Energieffektivisering och energisnålare byggnader är idag viktiga faktorer inom byggbranschen. Det som ofta glöms bort, och där forskning saknas, är hur byggfukt påverkar energiförbrukningen. Examensarbetet avser att öka kunskaperna om byggfuktens konsekvenser genom att undersöka hur stort energibehovet är för uttorkning av byggfukt i betongkonstruktioner och undersöka om miljöcertifieringssystemen borde ta hänsyn till energiförbrukningen under produktionen då byggnader certifieras. Alla material och medium strävar efter att befinna sig i fuktmässig jämvikt med sin omgivning. För att byggmaterial ska torka ut till jämvikt krävs en förångning av byggfukt. Då ångbildning gör att materialet blir kallare ökar energibehovet för uppvärmning. I examensarbetet används fuktberäkningsprogrammen KFX03 och WUFI Pro 5.3 för att beräkna uttorkningsmängd och när den sker i betongkonstruktioner. För energiberäkningar programmerades en lathund i Excel för att snabbt och enkelt få fram energibehovet för uttorkning av en byggnad. Tre olika nyproducerade byggnader undersöktes för att uppskatta hur stor uppvärmd betongmängd nya byggnader har. Resultatet visar att energin från uttorkningen i byggnaderna gav en ökning på cirka 5 % relativt till värmeförsörjningen för 50 år, motsvarande drygt 2,5 års förbrukning. Arbetet tyder på att energiförbrukningen för uttorkning av byggfukt utgör en stor påverkan på en byggnads uppvärmningsbehov om också hänsyn tas till de olika uttorkningsförhållandena under produktion och förvaltning. Framförallt energiförluster under produktionen påverkar resultatet och kan förhöja det beräknade energibehovet. Miljö- och energicertifieringssystem borde därför i större utsträckning fokusera på energiförbrukningen under produktion än vad som görs idag. För att bättre kunna svara på i vilken utsträckning uttorkning av byggfukt påverkar energiförbrukningen bör jämförelser mellan olika vct-tal för betong genomföras samt energiberäkningar för att uppskatta energiförluster under produktion. Detta för att kunna svara på hur stor påverkan en byggnads produktionsskede har på miljön och därmed hur stor vikt skedet rimligen bör ha vid en miljöcertifiering. / Energy efficiency and low energy houses are today important factors within the building sector. What’s often forgotten, and with little or no research available, is how building moisture affect energy consumption.  The intention of the thesis is to increase the knowledge of building moistures consequence’s by investigating how large the energy is to dehydrate concrete structures and also to investigate if it should be taken in account by environmental certification when buildings are certified. All material and medium strives to be in moisture equilibrium with its environment. For building materials to dehydrate into equilibrium with its environment evaporation is required. Because evaporation makes the ambient temperature lower the energy consumption for heating increases. In the thesis the moisture calculation software’s KFX03 and WUFI Pro 5.3 are used to calculate the water quantity of dehydration and when it occurs in concrete structures. A fact sheet was programmed, in Excel, for fast and simple energy calculations of dehydration in a building. To estimate the quantity of heated concrete in new buildings three newly produced buildings where studied. The result shows that the energy for dehydrations increased a buildings heating by approximately 5 %, correspondent to roughly 2.5 years of consumption. The work indicates that building moisture has a relatively high impact on a buildings heating, when taking the different condition during construction and living in consideration. Therefore the current environment and energy certification systems should in greater regards focus on energy consumption during construction. To be able to better answer in which extent the drying of building moisture affects energy consumption comparisons should be done in concrete with different water-cement ratio and energy calculation to estimate energy losses during construction. Thus to answer how big effect a buildings construction phase has on the environment and thereby how big significance this phase should have on environment certifications.
6

Energikostnader vid uttorkning av byggfukt i betongbjälklag : En beräkningsnyckel för uttorkningsplaner / Energy costs in drying construction water in concrete floors : A calculation key for drying out plans

Fernström, Karin, Granath, Viktoria January 2014 (has links)
Fukthantering är idag, trots god kunskap inom ämnet, ett stort problem inom byggproduktion då tunga betongstommar ska torkas ut under pressade tidsplaner. Det finns en uppsjö av beräkningsmetoder och hjälpmedel, exempelvis ByggaF och Torka S. Däremot finns inget enkelt sätt att kombinera uttorkning, energiåtgång och kostnader som är användbart i produktionen. Miljön är kanske ett av det här århundradets största samhällsproblem. Lokala brister kan få globala konsekvenser och för att bygga ett hållbart samhälle måste detaljnivån studeras. Byggbranschen är en stor energibrukare där stor vikt på energibesparingar läggs i förvaltningsskedet, medan det försummas i produktionsskedet. Överkonsumtion av energi är kostsamt, vilket olyckligtvis betyder mer för många än dess miljöpåverkan. Genom att ta fram en metod som förenklar och påvisar möjligheterna till kostnadsbesparingar kan både miljövinster och ekonomin gynnas, såväl för företag som samhälle. Med Skanskas högt satta miljömål, bland annat gällande energianvändningen är det därför intressant att jämföra energin som åtgår för ett driftår under produktionen med ett driftår under förvaltningsskedet. Efter att ha tagit del av intern dokumentation gällande fuktdimensionering, mätningar och egna mätningar med värmekamera samt Testo-loggar har tolkningar av data resulterat i beräkningar av effekt- och energiförluster. Resultatet visar energiåtgången och kostnadsskillnader per kvadratmeter, vilket ligger till grund för bestämningen av parametrar till en beräkningsnyckel i Excel-format. Beräkningsnyckeln är en förenklad metod där hänsyn tas till dels projektspecifika parametrar och dels generella parametrar som berör fuktmekanik. Förhoppningen är att den ska vara tydlig och användarvänlig för att kunna appliceras i kommande projekt. / Moisture in building construction is today, despite adequate competence, a large problem within the building process, when massive concrete constructions need to be dried out of construction water during a short time. There are numerous calculation methods and tools, e.g. ByggaF and TorkaS. However at this time, there is no simple way to be used during the manufacturing process that combines the process of drying out water, its use of energy and costs. The environmental issue is perhaps one of the largest problems the society has yet to tackle during this century. Local shortcomings could have global effects, and in order to build a sustainable community, the key is in the details. The construction business is a huge consumer of energy, where large significance is put on energy savings after the production during maintenance, and sadly neglected during the production process. Excessive consumption of energy is costly, which unfortunately has more importance to some than its impact on the environment. By producing a method that simplifies and demonstrates the opportunities for cost-savings, environmental- and financial benefits can be proven, locally for the company, as well as globally. Skanska’s own high environmental goals, the use of energy among other things, are reason alone for the interest of comparing the amount of energy used during a year of production to a year of maintenance. After reviewing internal documentation regarding the handling of construction water and measured data as well as conducting complementary measurements with a thermo camera and Testo logger, the interpretations of data has resulted in calculations regarding power and energy requirements. The result shows the amount of used energy and cost differences per square meter and is the basis of determining parameters for a calculation key, programmed in Microsoft Office Excel. The key is a simplified method where consideration is taken to project specific parameters as well as general parameters regarding moisture mechanics. The expectation for the key is clarity and usability for easy application in future projects.
7

Torkklimat under byggproduktion : En kvantitativ studie baserad på klimatdata och litteraturstudier / Drying climate during construction condition : A quantitative study based on climate date and literature studies

Sidenqvist, Daniel, Ternstedt, Viktor January 2014 (has links)
En utmaning under produktionen är uttorkning av byggfukt i byggnadens betongbjälklag. Om uttorkningen försenas kan golvbeläggningar inte appliceras i rätt tid, men att arbetet forceras är inte ett alternativ, då risken finns att fuktskador uppkommer under driftsskedet. Avgörande för att uttorkningen skall fortskrida enligt plan är att torkklimatet i byggnaden är gynnsamt för uttorkningsprocessen. För att kontrollera torkklimatet genomför företaget ett omfattande arbete genom att mäta klimatet, där dataloggar på olika platser i byggnaden registrerar luftens temperatur och relativa fuktighet. Tillsammans med trendmätningar i betong är tanken att insamlad data skall ge en bild av hur uttorkningen fortskrider. Svårigheten med torkklimat är att ämnesområdet i många avseenden är abstrakt och teoretiskt, just därför att parametrarna som beskriver torkklimatet ständigt varierar. För att insamlad data skall addera värde för produktionen måste datamängderna analyseras och visualiseras på ett tydligt sätt, som medför att produktionsledningen kan agera utifrån informationen utan att nödvändigtvis besitta spetskompetens inom ämnesområdet. Examensarbetet syftar till att bistå företaget med ökade kunskaper om torkklimat under byggproduktion, kopplat till uttorkning av byggfukt. Under arbetet har förutsättningarna för en effektiv uttorkning studerats, med avseende på torkklimatets variation. Under arbetet har också en undersökning gjorts för att ta reda på när företaget i ett generellt fall bör komplettera torkklimatet med ökad ventilation och/eller avfuktning för att hålla ett jämnt torkklimat i byggnaden året om. Som bakgrund till ämnesområdet redovisas en beskrivning av de styrande faktorerna för torkklimatet, teoretiskt och projektspecifikt. Resultatet av studien visar att förutsättningarna för en effektiv uttorkning har funnits på de platser i byggnaden som studerats, i det avseendet att en majoritet av klimattrenderna följer uppsatta kriterier i projektets fuktsäkerhetsplan.  Studien visar också att en komplettering med ökad ventilation och/eller avfuktning bör starta under perioden mars till april och under oktober till november kan uttorkningsstrategin återgå till att enbart värma inomhusluften. / A challenge during construction is drying of construction moisture in the building's concrete slab. If the drying is delayed, the flooring can’t be applied at the right time, but forcing the process is not an option, because of the risk of moisture damage during the operating phase. Crucial to the planed drying is that the climate in the building is favorable for the drying process. In order to control the drying climate the company is conducting an extensive work by measuring, where data logs at different locations in the building records air temperature and relative humidity. Along with the trend measurements of moisture levels in the concrete slab, the idea is that the data series should provide a picture of how the drying progresses. The difficulty with drying climates is that the subject in many respects is abstract and theoretical, because the parameters that describe the drying climate are continuously changing. If the collected data should add value to the construction site, the amount of data needs to be analyzed and visualized in a clear way, which means that the company's construction management services can act based on the information without necessarily possessing expertise in the subject area. This bachelor degree project aims to assist the company with knowledge of drying climate during construction condition, linked to the drying of construction moisture. During the work, the conditions for effective drying of construction moisture have been studied with respect to variations in drying climate.  Another study also conducted, was to find out when the company in a general case may complement drying climate with increased ventilation and/or dehumidification to keep the drying climate at a steady level in the building year round. As background to the subject, a description of the factors controlling the drying climate is presented in the report, theoretical and specifically for the project. The results of the study show that the conditions for effective drying of construction moisture have been the case of the building sites that has been sampled, in the sense that a majority of climate trends follow the established criteria in the project's moisture safety plan. The study also shows that increased ventilation and/or dehumidification may be applied as a supplement in the period from March/April until October/November at which time the dehydration strategy can revert back to warming indoor air only.
8

Fuktrelaterade risker vid lågenergikonstruktion i lättbetong : En studie av ett nyproducerat passivhus / Moisture related risks with aerated concrete in low energy constructions : A study of a newly produced passive house

Jansson, Sebastian, Niklasson, Erik January 2014 (has links)
Trenden i byggbranschen är att efterfrågan på täta, energisnåla byggnader ökar. Passivhus och andra lågenergikonstruktioner blir vanligare och vanligare. Riskerna med att bygga in organiskt material som trä i dessa konstruktioner har fått branschen att börja titta på alternativa material. Lättbetong är ett material som både har bärande och isolerande egenskaper. Dessutom är det inte organiskt vilket gör det okänsligt för mikrobiell påväxt. Det som är intressant med lättbetong, ur fuktsynpunkt, är att materialet levereras från tillverkare med en stor mängd byggfukt. Våren 2014 färdigställde Bollnäs Bostäder passivhus- projektet Sundsbro i Bollnäs, där lättbetong ingår i utfackningsväggarna. Sett inifrån består väggen av ett tunt lager kc-puts, lättbetong, cellplast, mineralull, kc-baserad grovputs och ytputs. I detta arbete användes projektet i Bollnäs som referensobjekt och en risk- och känslighetsanalys av väggkonstruktionen utfördes. Arbetet utreder risken för fuktrelaterade problem med väggen vid de extra uttorkningsinsatser som vidtogs i referensobjektet och vid normala uttorkningsbetingelser. Vidare utreds vilka parametrar som är viktiga för väggens fuktfunktion och vad man behöver tänka på när man projekterar och bygger i lättbetong. Arbetet har genomförts i samarbete med AK-Konsult Indoor Air AB och deras senior konsult Anders Kumlin. Fuktberäkningsprogrammet WUFI Pro 5.3 har använts för simuleringar. Beräkningarna gjordes endimensionellt på väggkonstruktionen. Resultaten med den ökade uttorkning som utfördes i referensobjektet visar inget högre fuktinnehåll längst ut i väggen på grund av byggfukt från lättbetongen som vandrar utåt. Farhågan var att så skulle kunna ske och att det skulle kunna leda till mögelproblem. Däremot visar resultaten att bygg-fukt från putsen kan fukta upp mineralullen. Det finns dock inga kända skadefall av detta slag och därför dras ändå slutsatsen att konstruktionen är riskfri. Tack vare en förutseende fukt-projektering och väl utförd uttorkning eliminerades risken för mögel. Hade inte dessa åtgärder vidtagits så visar resultaten att en liten mängd byggfukt hade kunnat vandra utåt och kondensera i mineralullen under första vintern. Då hade det funnits risk för mikrobiell påväxt. Detta visar att det är av största vikt att utföra en noggrann fuktprojektering vid byggnation av välisolerade hus i allmänhet och i synnerhet när lättbetong används. Lyckligtvis gjordes detta på ett bra sätt i referensprojektet. Känslighetsanalysen visar att isoleringens diffusionstäthet är avgörande för hur stor del av bygg-fukten som kan vandra utåt och därmed hur stor risken för problem blir. Lägre täthet ger större risk och högre täthet reducerar risken. Resultaten visar också att det är viktigt att inte montera täta skikt på insidan för tidigt. Den allmänna rekommendationen från leverantör är att lättbetongen skall torkas till 15 % fuktkvot på 50 millimeters djup innan målning och tapetsering på insida vägg får ske. Studien visar att detta är ett för högt fukttillstånd om det skikt som appliceras på insida vägg är tätt. Lättbetongen bör torkas till 5 % på 50 millimeters djup innan helt täta skikt kan monteras utan mögelrisk. / The trend in the construction industry is that the demand for tight, energy-saving buildings is rising. Passive houses and low energy constructions are becoming more and more common. The risk with using organic material in this type of constructions has made the industry look at alternative materials. Aerated concrete is a material that has both load-bearing and insulating properties. In addition to that it is not organic, which makes it insensitive to microbial growth. What is interesting with aerated concrete, from a moisture point of view, is that the material is delivered from the producer with a large amount of construction moisture. In the spring of 2014, the passive-house project Sundsbro in Bollnäs with aerated concrete in the wall construction, was finished by Bollnäs Bostäder. In this study the project in Bollnäs was used as reference object and a risk- and sensitivity analysis was made. The study examines the risk of moisture related problems with the wall construction during normal dehydration conditions and after the increased dehydration efforts that were taken in the reference project. The study also examines which parameters are important for the moisture function of the wall construction and what you need to think about when you project and build with aerated concrete. The job has been done in cooperation with AK-Konsult Indoor Air AB and their senior consultant Anders Kumlin. The moisture calculation program WUFI Pro 5.3 has been used for simulations. The results with the increased dehydration that was used in the reference project show no increased moisture content in the outer parts of the construction due to construction moisture from the concrete that wanders outwards. The concern was that so could happen and that it would lead to mould problems. However the results show that construction moisture from the exterior plaster can moisten the mineral wool. There are no known damage cases of this sort and therefore the conclusion is that the construction is free of risk. Thanks to a foreseeing moisture projection and a well performed dehydration the risk of mould was eliminated. If these measures would not have been taken, the results show that a small amount of construction moisture could have wandered outwards and condensed inside the mineral wool during the first winter. Then there would have been a risk of microbial growth. This shows that it is very important to carry out a detailed moisture projection when constructing well insulated houses in general and when using aerated concrete in particular. Fortunately this was properly done in the reference project. The sensitivity analysis shows that the diffusion resistance of the insulation decides how much of the construction moisture that can wander outwards and consequently the size of the problem risk. Results also show that it is crucial not to apply sealing layers on the inside of the wall too early. The general recommendation from the supplier is that the aerated concrete should be dried to 15 % moisture ratio on 50 millimeter depth before painting and paper hanging on the interior surface of the wall can be done. The study shows that the concrete still is too damp at that stage if the layer applied on the inside of the wall is impermeable. The concrete should be dried down to 5 % moisture ratio before sealing layers can be applied without mould risk.

Page generated in 0.031 seconds