51 |
Blandat byggavfall : Vägen mot en miljömässig hållbar avfallshantering / Mixed construction waste : The path to environmentally sustainable waste managementStenmark, Maja January 2022 (has links)
Construction of new buildings and restoration of existing buildings is causing waste. Often,the waste consists of a mixture of different materials, also called “mixed waste”. Waste fromconstruction sites stands for over 35 % of the entirely waste in amount Sweden and is aconsiderable contributing factor to the carbon dioxide emissions. It is very important that theamount of waste is reduced, and different materials are separated in order to achieve increasedsustainability. This report will examine the alternatives for building companies to minimisethe mixed waste fraction from their construction sites, using waste statistics from constructionprojects in the northern part of Sweden and a survey answered from the site managers at theconstruction company. The results show that mixed waste is one of the largest fractions ofwaste from construction projects, and it is also one of the most expensive fractions. Theenvironmental benefits and the economic gain a reduced mixed waste can contribute with, isan important step to reduce the climate impact from construction work. This paper willhopefully inspire some new ideas for minimising the mixed waste fraction at constructionproject, for example the displaying of containers for the different waste fractions. To separatethe different waste fractions efficiently and is beneficial regarding the environmental impactand the economy of the building companies.
|
52 |
Samverkan mellan entreprenör och underentreprenör : En studie ur underentreprenörens perspektiv i byggbranschen / Collaboration Between Contractor and Subcontractor : A Study From the Subcontractor's Perspective in the Construction IndustryFrom, Sebastian, Lindén, Lasse January 2019 (has links)
Byggindustrin har en stor påverkan på ett lands ekonomiska tillväxt. Av byggprojekts totala omsättning står underentreprenörerna för en stor del. I studien undersöks hur samverkan mellan entreprenör och underentreprenör kan främja problemlösning under produktionsfasen.För att besvara på frågeställningarna som skapats har åtta stycken platsansvariga underentreprenörer intervjuats. Intervjuerna har sedan jämförts och analyserats tillsammans med information från litteraturstudien av artiklar, rapporter och andra texter.Resultatet visar på att flertalet problemlösningsmetoder används för de vanliga problemen ute på byggprojekten, dock finns det möjlighet för standardisering och förbättring. Planering, informationsbrist och oförutsägbarhet är de ord som karakteriserar de vanligaste problemen. Entreprenören och underentreprenören bör fokusera på att skapa ett förtroende för varandra och skapa ett gemensamt tänk på att arbetet ska göras tillsammans. Entreprenörens platschef bör se till att det finns mötesstrukturer som hjälper både underentreprenörer och entreprenören med planering. Ersättningsformen löpande räkning får underentreprenörerna att fokusera mer på huvudprojektmålet och gemensamma lösningar. / The construction industry has a major impact on a country's economic growth. The subcontractors account for a large part of the total value for construction projects. The study examines how collaboration between contractor and subcontractor can promote problem solving during the production phase.To answer the questions created, eight subcontractors' site managers have been interviewed. The interviews have then been compared and analyzed together with information from the literature study of articles, reports and other texts.The result shows that problem-solving methods are used for the usual problems on the construction projects today, but there is the possibility of improvement. Planning, information sharing and unpredictability are the factors that characterize the most common problems. The contractor and subcontractor should focus on creating a good relationship with each other and have a mindset that the work should be done together. The contractor's site manager should ensure that there are structured meetings that help both subcontractors and the contractor with planning. The form of compensation on a current contract causes the subcontractors to focus more on the main project objective and create solutions together.
|
53 |
4D BIM ADOPTION : THE INCENTIVES FOR AND BARRIERS TO 4D BIM ADOPTION WITHIN SWEDISH CONSTRUCTION COMPANIESSediqi, Mujtaba January 2018 (has links)
Sweden is perceived to be one of the Building Information Modeling (BIM) leaders in the world. However, studies have shown that 4D BIM, which is a combination of a 3D model and an associated time schedule, is not widely deployed in construction planning practices among contractors. In Sweden many studies focused on BIM adoption in general, but since contractors are the main users of 4D BIM, there is a lack of studies exploring this specific dimension of BIM. This study considers 4D BIM as an innovation; the aim is to find the incentives for and barriers to adopt 4D BIM within the Swedish construction industry. A literature review was conducted and the most common variables were derived; in addition to this, an online questionnaire and a series of interviews targeting Swedish construction companies were conducted. The findings were that 4D BIM is a new start within the Swedish construction industry, where a series of both technical (software, standards, complexity) and non-technical barrier (organizational, lack of client demand, unclear benefits, investment) has an impact on the adoption process. Large companies are the early adopters and use it to maintain their strategic position in the industry, whereas smaller contractors are prone to more barriers and mostly rely on clients´ demand.
|
54 |
BIM Integrated and Reference Process-based Simulation Method for Construction Project PlanningIsmail, Ali 12 July 2022 (has links)
Die Verwendung von Simulationen zur Unterstützung traditioneller Planungsverfahren für Bauprojekte hat viele Vorteile, die in verschiedenen akademischen Forschungen vorgestellt wurden. Viele Anwendungen haben erfolgreich das Potenzial der Simulationsmethode zur Verbesserung der Qualität der Projektplanung demonstriert. Doch eine breite Anwendung der Simulationsmethoden zur Unterstützung der Planung von Bauprojekten konnte sich in der Praxis bis zum jetzigen Zeitpunkt nicht durchsetzen. Aufgrund einiger großer Hindernisse und Herausforderungen ist der Einsatz im Vergleich zu anderen Branchen noch sehr begrenzt.
Die Komplexität sowie die dynamischen Wechselprozesse der unterschiedlichen Bauvorhaben stellen die erste Herausforderung dar.Die Anforderungen machen es sehr schwierig die verschieden Situationen realistisch zu modellieren und das Verhalten von Bauprozessen und die Interaktion mit den zugehörigen Ressourcen für reale Bauvorhaben darzustellen. Das ist einer der Gründe für den Mangel an speziellen Simulationswerkzeugen in der Bauprojektplanung. Die zweite Herausforderung besteht in der großen Menge an Projektinformationen, die in das Simulationsmodell integriert und während des gesamten Lebenszyklus des Projekts angepasst werden müssen. Die Erstellung von Simulationsmodellen, Simulationsszenarien sowie die Analyse und Verifizierung der Simulationsergebnisse ist langwierig. Ad-hoc Simulation sind daher nicht möglich. Zur Erstellung zuverlässiger Simulationsmodelle sind daher umfangreiche Ressourcen und Mitarbeiter mit speziellen Fachwissen erforderlich. Die vorgestellten Herausforderungen verhindern die breite Anwendung der Simulationsmethode zur Unterstützung der Bauprojektplanung und das Einsetzen der Software als wesentlicher Bestandteil des Arbeitsablaufes für die Bauplanung in der Praxis.
Die Forschungsarbeit in dieser Arbeit befasst sich mit diesen Herausforderungen durch die Entwicklung eines Ansatzes sowie einer Plattform für die schnelle Aufstellung von Simulationsmodellen für Bauprojekte. Das Hauptziel dieser Forschung ist die Entwicklung eines integrierten und referenzmodellbasierten BIM Simulationsansatz zur Unterstützung der Planung von Bauprojekten und die Möglichkeit der Zusammenarbeit aller am Planungs- und Simulationsprozess beteiligten Akteure.
Die erste Herausforderung wird durch die Einführung eines RPM-Konzepts (Reference Process Model) durch die Modellierung von Konstruktionsprozessen unter Verwendung von Business Process Modeling and Notation (BPMN) angegangen. Der Vorteil der RPM Modelle ist das sie bearbeitet und modifiziert können und dass sie automatisch als einsatzbereite Module in Simulationsmodelle umgewandelt werden können. Die RPM-Modelle enthalten auch Informationen zu Ressourcenanforderungen und andere verwandte Informationen für verschiedene Baubereiche mit unterschiedlichen Detaillierungsgraden. Die Verwendung von BPMN hat den Vorteil, dass die Simulationsmodellierung für das Projektteam, einschließlich derjenigen, die sich nicht mit der Simulation auskennen, flexibler, interoperabler und verständlicher ist. Bei diesem Ansatz ist die Modellierung von Referenzprozessmodellen vollständig von den Simulationskernkomponenten getrennt, um das Simulations-Toolkit generisch und erweiterbar für verschiedenste Konstruktionsbereiche wie Gebäude und Brücken. Der vorgestellte Forschungsansatz unterstützt die kontinuierliche Anwendung von Simulationsmodellen während des gesamten Projektlebenszyklus. Die Simulationsmodelle, die zur Unterstützung der Planung in der frühen Entwurfsphase erstellt werden, können von Simulationsexperten während der gesamten Planungs- und Bauphase weiter ausgebaut und aktualisiert werden.
Die zweite Herausforderung wird durch die direkte Integration der Building Information Modeling (BIM) -Methode in die Simulationsmodellierung auf der Grundlage des Industry Foundation Classes-IFC (ISO 16739) , dem am häufigsten verwendeten BIM-Austauschformat, angegangen. Da die BIM-Modelle einen wichtigen Teil der Eingabeinformationen von Simulationsmodellen enthalten, können sie als Grundlage für die Visualisierung von Ergebnissen in Form von 4D-BIM-Modellen verwendet werden. Diese Integration ermöglicht die schnelle und automatische Filterung und Extraktion sowie die Umwandlung notwendiger Informationen aus BIM Entwurf-Modellen. Um die Erstellung detaillierter Projektmodelle zu beschleunigen, wurde eine spezielle Methode für die halbautomatische Top-Down-Detaillierung von Projektstammmodelle entwickelt, die notwendige Eingangsdaten für die Simulationsmodelle sind. Diese Methode bietet den Vorteil, dass Konstruktionsalternativen mit minimalen Änderungen am Simulationsmodell untersucht werden können.
Der entwickelte Ansatz wurde als Software- Prototyp in Form eines modularen Construction Simulation Toolkit (CST) basierend auf der Discrete Event Simulation (DES)- Methode und eines Collaboration- Webportals (ProSIM) zum Verwalten von Simulationsmodellen implementiert.
Die so eingebettete Simulation ermöglicht mit minimalen Änderungen die Bewertung von Entwurfsalternativen und Konstruktionsmethoden auf den Bauablauf. Produktions- und Logistiksvorgänge können gleichzeitig in einer einheitlichen Umgebung simuliert werden und berücksichtigen die gemeinsam genutzten Ressourcen und die Interaktion zwischen Produktions- und Logistikaktivitäten. Es berücksichtigt auch die Änderungen im Baustellenlayout während der Konstruktionsphase. Die Verifizierung und Validierung des vorgeschlagenen Ansatzes wird durch verschiedene hypothetische und reale Bauprojekten durchgeführt.:1 Introduction: motivation, problem statement and objectives
1.1 Motivation
1.2 Problem statement
1.3 Objectives
1.4 Thesis Structure
2 Definitions, Related work and background information
2.1 Simulation definition
2.2 Simulation system definition
2.3 Discrete Event Simulation
2.5 How simulation works
2.6 Workflow of simulation study
2.7 Related work
2.8 Traditional construction planning methods
2.8.1 Gantt chart
2.8.2 Critical Path Method (CPM)
2.8.3 Linear scheduling method/Location-based scheduling
2.9 Business Process Model and Notation
2.10Workflow patterns
2.10.1 Supported Control Flow Patterns
3 Reference Process-based Simulation Approach
3.1 Reference Process-based simulation approach
3.2 Reference Process Models
3.3 Reference process model for single task
3.4 Reference process models for complex activities
3.5 Process Pool
3.6 Top-down automatic detailing of project schedules
3.7 Simulation model formalism
3.8 Fundamental design concepts and application scope
4 Data Integration between simulation and construction Project models
4.1 Data integration between BIM models and simulation models
4.1.1 Transformation of IFC models to Graph models
4.1.2 Checking BIM model quality
4.1.3 Filtering of BIM models
4.1.4 Semantic enrichment of BIM models
4.1.5 Reference process models and BIM models
4.2 Reference Process Models and resources models
4.3 Process models and productivity factors
5 Construction Simulation Toolkit
5.1 System architecture and implementation
5.2 Basic steps to create a CST simulation model
5.3 CST Simulation components
5.3.1 Input components
5.3.2 Process components
5.3.3 Output components
5.3.4 Logistic components
5.3.5 Collaboration platform ProSIM
6 Case Studies and Validation
6.1 Verification and Validation of Simulation Models
6.2 Verification and validation techniques for simulation models
6.3 Case study 1: generic planning model
6.4 Case study 2: high rise building
6.4.1 Scenario I: effect of changing number of workers on structural work duration
6.4.2 Scenario II: simulation of structural work on operation level
6.4.3 Scenario III: automatic generation of detailed project schedule
6.5 Case study 3: airport terminal building
6.5.1 Multimodel Container
6.5.2 Scenario I: automatic generation of detailed project schedule
6.5.3 Scenario II: Find the minimal project duration
6.5.4 Scenario III: construction work for a single floor
7 Conclusions and Future Research
7.1 Conclusions
7.2 Outlook of the possible future research topics
7.2.1 Integration with real data collecting
7.2.2 Multi-criteria optimisation
7.2.3 Extend the control-flow and resource patterns
7.2.4 Consideration of further structure domains
7.2.5 Considering of space allocation and space conflicts
8 Appendix - Scripts
9 Appendix B - Reference Process Models
9.1 Reference Process Models for structural work
9.1.1 Wall
9.1.2 Roof
9.1.3 Foundations
9.1.4 Concrete work
9.1.5 Top-Down RPMs for structural work in a work section
10 Appendix E
10.1 Basic elements of simulation models in Plant Simulation
10.2 Material Flow Objects
11 References / Using simulation to support construction project planning has many advantages, which have been presented in various academic researches. Many applications have successfully demonstrated the potential of using simulation to improve the quality of construction project planning. However, the wide adoption of simulation has not been achieved in practice yet. It still has very limited use compared with other industries due to some major obstacles and challenges.
The first challenge is the complexity of construction processes and projects planning methods, which make it very difficult to develop realistic simulation models of construction processes and represent their dynamic behavior and the interaction with project resources. This led to lack of special simulation tools for construction project planning. The second challenge is the huge amount of project information that has to be integrated into the simulation model and to be maintained throughout the design, planning and construction phases. The preparation of ad-hoc simulation models and setting up different scenarios and verification of simulation results usually takes a long time. Therefore, creating reliable simulation models requires extensive resources with advanced skills.
The presented challenges prevent the wide application of simulation techniques to support and improve construction project planning and adopt it as an essential part of the construction planning workflow in practice.
The research work in this thesis addresses these challenges by developing an approach and platform for rapid development of simulation models for construction projects. The main objective of this research is to develop a BIM integrated and reference process-based simulation approach to support planning of construction projects and to enable collaboration among all actors involved in the planning and simulation process.
The first challenge has been addressed through the development of a construction simulation toolkit and the Reference Process Model (RPM) method for modelling construction processes for production and logistics using Business Process Modelling and Notation (BPMN). The RPM models are easy to understood also by non-experts and they can be transformed automatically into simulation models as ready-to-use modules. They describe the workflow and logic of construction processes and include information about duration, resource requirements and other related information for different construction domains with different levels of details. The use of BPMN has many advantages. It enables the understanding of how simulation models work by project teams, including those who are not experts in simulation.
In this approach, the modelling of Reference Process Models is totally separated from the simulation core components. In this way, the simulation toolkit is generic and extendable for various construction types such as buildings, bridges and different construction domains such as structural work and indoor operations.
The presented approach supports continuous adoption of simulation models throughout the whole project life cycle. The simulation model which supports project planning in the early design phase can be continuously extended with more detailed RPMs and updated information through the planning and construction phases.
The second challenge has been addressed by supporting direct integration of Building Information Modelling (BIM) method with the simulation modelling based on the Industry Foundation Classes IFC (ISO 16739) standard, which is the most common and only ISO standard used for exchanging BIM models. As the BIM models contain the biggest part of the input information of simulation models and they can be used for effective visualization of results in the form of animated 4D BIM models. The integration between BIM and simulation enables fast and semi-automatic filtering, extraction and transformation of the necessary information from BIM models for both design and construction site models. In addition, a special top-down semi-automatic detailing method was developed in order to accelerate the process of preparing detailed project schedules, which are essential input data for the simulation models and hence reduce the time and efforts needed to create simulation models.
The developed approach has been implemented as a software prototype in the form of a modular Construction Simulation Toolkit (CST) based on the Discrete Event Simulation (DES) method and an online collaboration web portal 'ProSIM' for managing simulation models.
The collaboration portal helps to overcome the problem of huge information and make simulation models accessible for non simulation experts.
Simulation models created by CST toolkit facilitate the evaluation of design alternatives and construction methods with minimal changes in the simulation model. Both production and logistic operations can be simulated at the same time in a unified environment and take into account the shared resources and the interaction between production and logistic activities. It also takes into account the dynamic nature of construction projects and hence the changes in the construction site layout during the construction phase. The verification and validation of the proposed approach is carried out through various academic and real construction project case studies.:1 Introduction: motivation, problem statement and objectives
1.1 Motivation
1.2 Problem statement
1.3 Objectives
1.4 Thesis Structure
2 Definitions, Related work and background information
2.1 Simulation definition
2.2 Simulation system definition
2.3 Discrete Event Simulation
2.5 How simulation works
2.6 Workflow of simulation study
2.7 Related work
2.8 Traditional construction planning methods
2.8.1 Gantt chart
2.8.2 Critical Path Method (CPM)
2.8.3 Linear scheduling method/Location-based scheduling
2.9 Business Process Model and Notation
2.10Workflow patterns
2.10.1 Supported Control Flow Patterns
3 Reference Process-based Simulation Approach
3.1 Reference Process-based simulation approach
3.2 Reference Process Models
3.3 Reference process model for single task
3.4 Reference process models for complex activities
3.5 Process Pool
3.6 Top-down automatic detailing of project schedules
3.7 Simulation model formalism
3.8 Fundamental design concepts and application scope
4 Data Integration between simulation and construction Project models
4.1 Data integration between BIM models and simulation models
4.1.1 Transformation of IFC models to Graph models
4.1.2 Checking BIM model quality
4.1.3 Filtering of BIM models
4.1.4 Semantic enrichment of BIM models
4.1.5 Reference process models and BIM models
4.2 Reference Process Models and resources models
4.3 Process models and productivity factors
5 Construction Simulation Toolkit
5.1 System architecture and implementation
5.2 Basic steps to create a CST simulation model
5.3 CST Simulation components
5.3.1 Input components
5.3.2 Process components
5.3.3 Output components
5.3.4 Logistic components
5.3.5 Collaboration platform ProSIM
6 Case Studies and Validation
6.1 Verification and Validation of Simulation Models
6.2 Verification and validation techniques for simulation models
6.3 Case study 1: generic planning model
6.4 Case study 2: high rise building
6.4.1 Scenario I: effect of changing number of workers on structural work duration
6.4.2 Scenario II: simulation of structural work on operation level
6.4.3 Scenario III: automatic generation of detailed project schedule
6.5 Case study 3: airport terminal building
6.5.1 Multimodel Container
6.5.2 Scenario I: automatic generation of detailed project schedule
6.5.3 Scenario II: Find the minimal project duration
6.5.4 Scenario III: construction work for a single floor
7 Conclusions and Future Research
7.1 Conclusions
7.2 Outlook of the possible future research topics
7.2.1 Integration with real data collecting
7.2.2 Multi-criteria optimisation
7.2.3 Extend the control-flow and resource patterns
7.2.4 Consideration of further structure domains
7.2.5 Considering of space allocation and space conflicts
8 Appendix - Scripts
9 Appendix B - Reference Process Models
9.1 Reference Process Models for structural work
9.1.1 Wall
9.1.2 Roof
9.1.3 Foundations
9.1.4 Concrete work
9.1.5 Top-Down RPMs for structural work in a work section
10 Appendix E
10.1 Basic elements of simulation models in Plant Simulation
10.2 Material Flow Objects
11 References
|
55 |
Řízení stavebních projektů / Management of Construction ProjectsSolnický, Marek January 2014 (has links)
The subject of the diploma thesis "Management of Construction Projects" is a description of the management process and its' application to a model case. The first part deals with the theoretical structure of project management, construction management and construction project delivery methods. The second part applies the theoretical knowledge to a concrete construction project. Primarily, the benefit analysis is performed for the chosen project delivery methods. Subsequently, the personal proposal for the management process is developed, which incorporates organizational, time, cost, quality and risk components of the project. Finally, the model construction project. is summarized and assessed.
|
56 |
Propuesta de mejora del proceso de planificación de proyectos en una empresa de construcción con sistema drywallRosario Mabel, Andía Cabrera 10 December 2018 (has links)
La presente tesis es una “Propuesta de mejora del proceso de planificación de proyectos en una empresa de construcción con sistema drywall” desarrollada en una PYME del rubro construcción. La propuesta está basada en herramientas de ingeniería para contrarrestar el problema identificado en la empresa en estudio que es la demora en la entrega de proyectos de construcción. Para ello, en la presente tesis está estructurada en 6 capítulos.
En el capítulo 1 se presenta el Marco teórico, en el cual se define el sistema constructivo drywall, metodologías y herramientas de mejora aplicables al proceso de planificación de proyectos de construcción y a la reducción y/o eliminación de demora en la entrega al cliente. En el capítulo 2 se presenta el diagnóstico, en el cual se describe la empresa, las condiciones en las que opera, el problema, los procesos involucrados con el problema, causas raíces, impacto económico y las herramientas aplicables a la reducción y/o eliminación del problema. En el capítulo 3 se desarrolla la evaluación de alternativas de solución, en el cual se describe el plan de implementación de las herramientas 5S y Last Planner System. En el capítulo 4 se muestra la validación de la propuesta de mejora compuesta por juicio experto y la validación económica. En el capítulo 5, se muestra el impacto de la mejora en los stakeholders mediante una matriz Leopold. Finalmente, en el capítulo 6 se muestran las conclusiones y recomendaciones de la presente tesis. / This thesis is a "Proposal for improvement of the project planning process in a construction company with gypsum panel system" developed in an SME of the construction sector. The proposal is based on engineering tools to counteract the problem in the company in the study that is the delay in the delivery of construction projects. For this, in this thesis is structured in 6 chapters.
Chapter 1 presents the theoretical framework, which defines the construction system of drywall, methodologies and tools to improve the planning process of construction projects and the reduction and / or elimination of the delay in delivery to the client. In chapter 2 the diagnosis is presented, in which the company is described, the conditions in which it operates, the problem, the processes related to the problem, the root causes, the economic impact and the tools applicable to the reduction and / or the elimination of the problem. Chapter 3 describes the evaluation of solution alternatives, and describes the implementation plan of the 5S and Last Planner System tools. Chapter 4 shows the validation of the improvement proposal composed of expert judgment and economic validation. In Chapter 5, the impact of the improvement on stakeholders is shown through a Leopold matrix. Finally, chapter 6 shows the conclusions and recommendations of this thesis. / Tesis
|
57 |
BIM Building Information Model : Hinder & DrivkraftGovan, Ivan, Berisha, Burim January 2012 (has links)
The construction industry is a costly business such in respect of capital for most construction defects which then require rework, tear down and rebuild again. This study is meaningful awareness of tools that can reduce this best through communication and information sharing between the parties. The construction industry is known as temporary projects organizations, where the construction project consists of several actors who have to communicate and share information between them to avoid mistakes later in the build time. These actors are bounded together thus for the duration of the project, then broken when the project has reached its end. The challenge here is for these actors to apply a tool that can help and simplify communications, information sharing, and perhaps the most important aspect is to create a routine for the association and the shattering of these actors. To implement such behavior using a tool such as BIM in the industry whose size perhaps is indescribable may be a very hard task. BIM (Building Information Model) could be seen as the solution to this problem because it acts as a portal where the actors involved must sign in and communicate, share information, and eventually create a behavior, a routine for this association and division of the actors following the end of the project. The technology could help the involved from the beginning of the project, already in the model stage, break down and prevent any construction barriers when the building has been placed in the works. In the current situation used paper models, 2D models and three-dimensional models, 3D, where the last one is a part of the BIM. BIM makes it also possible to implement 4D, price calculation for the construction from beginning to end and 5D ie construction details such as what kind of wood the door is made of, what kind of concrete it is, and even the amount of cable for the construction for example. BIM is seen as a information technology used primarily in construction, where to encounter several obstacles during the implementation and use of such technology is expensive to implement in a small operation, but it creates many drivers, many agents that have implemented BIM, which ultimately pays according to those who can afford and in the current situation using it
|
58 |
Enhancing Environmental Performance by Green Procurement : A study of environmental procurement preferences in the construction industryVarnäs, Annika January 2008 (has links)
<p>In recent years, the general awareness of the environmental impacts that industrial production gives rise to has radically increased throughout the world. Finding ways to minimise these impacts has become a major concern of the authorities in many countries. In order to promote a more sustainable industrial production, different incentives can be used. Among these incentives, the consideration of environmental issues in public procurement is increasingly being emphasised.</p><p>While much attention regarding sustainable procurement has centred on the purchase of products, this thesis focuses on green procurement of construction contracts. The construction industry is a major contributor to environmental pollution. It consumes about half of all resources humans take from nature and accounts for about 25 – 40 per cent of all energy used and about 30 – 50 per cent of all waste generated in OECD countries.</p><p>In the procurement of products, the environmental impacts of the available products can be estimated and compared, for example by using tools such as life cycle assessments. When construction contracts are procured, assessing the suppliers’ environmental capabilities can be more challenging, as the contract to be procured has not yet been performed. However, at the same time, there are considerably more opportunities to steer the construction towards more environmentally friendly alternatives.</p><p>In the thesis, it is suggested that the environmental requirements and the environmental criteria for tender evaluation should be used in combination, in order to safeguard environmental performance in the construction project and at the same time stimulate a green development within the industrial sector. In addition, the role of the client in ensuring that the environmental requirements are fulfilled during construction work is emphasised.</p>
|
59 |
Radioaktive Stoffe bei BaumaßnahmenHerrmann, Ralf, Ohlendorf, Frank 02 October 2013 (has links) (PDF)
Die Rückstände des Uranbergbaus in Sachsen wurden in der Vergangenheit bewusst oder unbewusst als Baumaterial im Straßen- und Wegebau, zum Planumsausgleich für Flächen und beim Hausbau verwendet. Die Broschüre richtet sich an Planungsbüros, Antragsteller sowie Ausführende im Bau- und Straßenbau und liefert umfassende Informationen für eine strahlenschutzgerechte, sichere und kostengünstige Verwertung oder Beseitigung dieser Stoffe. Enthalten sind Hinweise zu Planung, Antragstellung, Voruntersuchung, strahlen-schutzfachlicher Baubegleitung und Dokumentation von Baumaßnahmen, bei denen mit radioaktiven Stoffen zu rechnen ist.
|
60 |
Information behaviour of construction project actorsDzokoto, Frank K. January 2016 (has links)
Construction is one of the largest industry sectors in terms of size and output in the United Kingdom (UK). The sector contributes about 10% directly to the UK's Gross Domestic Product (GDP) and drives historical GDP growth. However, Construction projects and Organisations continue to underperform at significant levels which is underpinned by actors' Information Behaviours (IBs).
|
Page generated in 0.1519 seconds