• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 286
  • 45
  • 35
  • 32
  • 8
  • 7
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 518
  • 159
  • 115
  • 105
  • 91
  • 74
  • 66
  • 66
  • 65
  • 62
  • 59
  • 57
  • 52
  • 51
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

On the electronic structure of layered sodium cobalt oxides / Über die elektronische Struktur geschichteter Natrium Kobaltatoxide

Kroll, Thomas 03 July 2007 (has links) (PDF)
The discovery of an unexpectedly large thermopower accompanied by low resistivity and low thermal conductivity in NaxCoO2 raised significant research interest in these materials and let to a number of experimental and theoretical investigations. This interest has strongly been reinforced by the discovery of superconductivity in the hydrated compound Na0.35CoO2 •1.3H2O in 2003, and thus, NaxCoO2 experiences an again increasing attention. The similarity of the Na cobaltates to the high temperature superconductors (HTSC) - both are transition metal oxides and adopt a layered crystal structure with quasi-two-dimensional (Cu,Co)O2 layers - is an important aspect of the research activities. In contrast to the HTSC cuprates however, the CoO2 layers consist of edge sharing CoO6 octahedra which are distorted in such a way that the resulting local symmetry is trigonal. The trigonal coordination of the Co sites results in geometric frustration which favours unconventional electronic ground states. The geometrically frustrated CoO2 sublattice also exists in the nonhydrated parent compound NaxCoO2, which has been investigated in this work. The intercalation of water into the parent compound is expected to have little effect on the Fermi surface beside the increase in two dimensionality due to the effect of expansion. Upon lowering the symmetry from cubic to trigonal, the t2g states split into states with eg_and a1g symmetry. Measurements of polarisation and temperature dependent soft X-ray absorption have been performed on a wide doping range of NaxCoO2 single crystals. Beside the Co L_2,3-edges, the O K-edge and the Na K-edge have been measured. These measurements show strong polarisation dependencies especially for the excitations into the lower lying a1g energy level. In addition to that, also an unexpected polarisation dependence for higher energies has been observed, which should be absent in trigonal symmetry. These results point towards a deviation of the local trigonal symmetry of the CoO6 octahedra, which is temperature independent in a temperature range between 25 K and 372 K. This deviation was found to be different for Co3+ and Co4+ sites, which leads to a polaronic electron transport. Furthermore, a strong hybridisation between the Co and O ions has been found. In order to shed further light on the electronic structure of NaxCoO2, the electronic spectrum of a CoO6 cluster has been calculated including all interactions between 3d orbitals as well as hopping processes between Co and O and O and O ions. The ground state for two electronic occupations in the cluster (i.e. Co3+ and Co4+) that correspond nominally to all O in the O−2 oxidation state, and Co+3 or Co+4 has been obtained. Then, all excited states obtained by promotion of a Co 2p electron to a 3d electron, and the corresponding matrix elements are calculated. A fit of the observed experimental spectra is good and points out a large Co-O covalence and cubic crystal field effects, that result in low spin Co 3d configurations. The results indicate that the effective hopping between different Co atoms plays a major role in determining the symmetry of the ground state in the lattice. Remaining quantitative discrepancies with the XAS experiments are expected to come from composition effects of itineracy in the ground and excited states. Beside these points, results of photoemission spectroscopy, magnetisation measurements as well as resonant and non-resonant X-ray diffraction using high energy X-rays are shown and discussed. / Die Entdeckung unerwartet großer Thermokraft bei gleichzeitigem niedrigem Widerstand und niedriger thermischen Leitfähigkeit in NaxCoO2 führte zu einem großen wissenschaftlichem Interesse an diesen Materialien und zu einer großen Anzahl an experimentellen und theoretischen Arbeiten. Dieses Interesse steigerte sich noch einmal nach der Entdeckung von Supraleitung in der hydrierten Verbindung Na0.35CoO2 •1.3H2O im Jahre 2003. Die Ähnlichkeit der Na Kobaltate zu den Hochtemperatur-Supraleitern (HTSL) – beides sind Übergangsmetalloxide mit einer geschichteten Kristallstruktur in der quasi zwei dimensionale (Cu,Co)O2 Ebenen enthalten sind – ist ein wichtiger Aspekt moderner wissenschaftlicher Arbeiten. Im Gegensatz zu den HTSL Kupraten bestehen die CoO2 Ebenen aus CoO6 Oktaedern die über ihre Kanten verbunden sind und in der Art verzerrt sind, dass die resultierende Symmetrie trigonal ist. Die trigonale Anordnung der Co Plätze führt zu einer geometrischen Frustration und unkonventionellen elektronischen Grundzuständen. Diese geometrisch frustrierten CoO2 Untergitter existieren ebenfalls in den nicht hydrierten Mutterverbindungen NaxCoO2, welche in dieser Arbeit untersucht wurden. Interkalierung von Wasser in die Mutterverbindung hat nur einen kleinen Einfluss auf die Fermi Oberfläche und führt zu einem Anstieg des zwei dimensionalen Charakters durch den Effekt der Ausdehnung. Durch Verminderung der Symmetrie von kubisch zu trigonal splitten die vormals entarteten t2g Zustände auf in Zustände mit eg und a1g Symmetrie. Zur Bestimmung der elektronischen Struktur von NaxCoO2 wurden polarisations- und temperaturabhängige Messungen der Röntgenabsorption im weichen Röntgenbereich für einen großen Dotierungsbereich durchgeführt. Neben den Co L_2,3-Kanten wurden auch die O K-Kante und die Na K-Kante gemessen. Sie zeigen eine starke Polarisationsabhängigkeit speziell für Anregungen in die niederenergetischen a1g Level. Zusätzlich wurde eine unerwartete Polarisationsabhängigkeit bei höheren Energien gefunden, die für trigonalen Symmetrie so nicht auftauchen dürfte. Diese Ergebnisse weisen auf eine Abweichung von der lokalen trigonalen Symmetrie der CoO6 Oktaeder hin, welche Temperatur unabhängig ist in einem Temperaturbereich zwischen 25 und 372 Kelvin. Diese Abweichung ist unterschiedlich für Co3+ und Co4+ Ionen was wiederum auf einen polaronischen Transport hinweist. Zusätzlich wird deutlich, dass eine starke Co-O Hybridisierung existieren muss. Um weiteres Informationen über die elektronische Struktur von NaxCoO2 zu erhalten, wurde das elektronische Spektrum eines CoO6 Oktaeders berechnet in dem alle Wechselwirkungen zwischen 3d Orbitalen sowie Hüpfprozesse zwischen Co und O sowie O und O Ionen enthalten sind. Der Grundzustand für zwei elektronische Besetzungen in einem Cluster (d.h. Co3+ und Co4+) wurde bestimmt für O Ionen mit einer nominellen O-2 Oxidation sowie Co3+ und Co4+ Ionen. Im angeregten Zustand werden die entsprechenden Anregungen eines Co 2p Elektrons in einen unbesetzten 3d Zustand berücksichtigt und die entsprechenden Matrixelemente berechnet. Ein Fit an den experimentellen Daten ist gut und weist auf eine starke Co-O Kovalenz und auf einen starken Einfluss des kubischen Kristallfeldes hin, der zu einer Low-Spin Co 3d Konfiguration führt. Die Ergebnisse zeigen, dass ein effektives Hüpfen zwischen benachbarter Co Ionen eine große Rolle für die Symmetrie des Grundzustandes im Gitter spielt. Quantitative Unterschiede zwischen den experimentellen und theoretischen Daten kommen anscheinend von itineranten Effekten im Grund- und angeregten Zustand. Zusätzlich zu den oben kurz beschriebenen Ergebnissen werden in dieser Arbeit weitere Ergebnisse der Photoemissionsspektroskopie, der Magnetisierung sowie aus resonanter und nicht resonanter Röntgenbeugung mit harter Röntgenstrahlung gezeigt und diskutiert.
302

Electrical resistivity of YbRh2Si2 and EuT2Ge2 (T = Co, Cu) at extreme conditions of pressure and temperature

Dionicio, Gabriel Alejandro 31 January 2007 (has links) (PDF)
This investigation address the effect that pressure, p, and temperature, T, have on 4f-states of the rare-earth elements in the isostructural YbRh2Si2, EuCo2Ge2, and EuCu2Ge2 compounds. Upon applying pressure, the volume of the unit cell reduces, enforcing either the enhancement of the hybridization of the 4f-localized electrons with the ligand or a change in the valence state of the rare-earth ions. Here, we probe the effect of a pressure-induced lattice contraction on these system by means of electrical resistivity, from room temperature down to 100 mK. At ambient pressure, the electrical resistivity of YbRh2Si2 shows a broad peak at 130 K related to the incoherent scattering on the ground state and the excited crystalline electrical field (CEF) levels. At T_N = 70 mK, YbRh2Si2 undergoes a magnetic phase transition. Upon applying pressure up to p_1 = 4 GPa , T_N increases monotonously while the peak in the electrical resistivity is shifted to lower temperatures. For p < p_1 a different behavior is observed; namely, T_N depends weakly on the applied pressure and a decomposition of the single peak in the electrical resistivity into several shoulders and peaks occurs. Above p_2 = 9 GPa, the electrical resistivity is significantly reduced for T < 50 K and this process is accompanied by a sudden enhancement of T_N. Thus, our results confirm the unexpected behavior of the magnetization as function of pressure reported by Plessel et al. The small value of the magnetic ordering temperature for p < p_2 and the strength of the mechanism that leads to the peaks and shoulders in the electrical resistivity suggest that the f-electrons are still screened by the conduction electrons. Therefore, the observed behavior for pressures lower than p_2 might be a consequence of the competition of two different types of magnetic fluctuations (seemingly AFM and FM). Furthermore, the results suggest that a sudden change of the CEF scheme occurs at pressures higher than p_1, which would have an influence on the ground state. Additionally, a comparison of the pressure dependent features in the electrical resistivity of YbRh2Si2 with similar maxima in other isostructural YbT2X2 (T = transition metal; X = Si or Ge) compounds was performed. For the comparison, a simple relation that considers the Coqblin-Schrieffer model and the hypothesis of Lavagna et al. is proposed. A systematic behavior is observed depending on the transition metal; namely, it seems that the higher the atomic radii of the T-atom the smallest the pressure dependence of the maximum in the electrical resistivity, suggesting a weaker coupling of localized- and conduction-electrons. It is also observed that an increase in the density of conduction electrons reduces the pressure dependence of the characteristic Kondo temperature. The mechanism responsible for the sudden enhancement of T_N in YbRh2Si2 at about p_2 is still unknown. However two plausible scenarios are discussed. The Eu-ions in EuCo2Ge2 and EuCu2Ge2 have a divalent character in the range 100 mK < T < 300 K. Therefore, these systems order magnetically at T_N = 23 K and T_N = 12 K, respectively. The studies performed on EuCo2Ge2 and EuCu2Ge2 as a function of pressure suggest that a change to a non-magnetic trivalent state of the Eu-ions might occur at zero temperature for pressures higher than 3 GPa and 7 GPa, respectively. A common and characteristic feature on EuCo2Ge2 and EuCu2Ge2 is the absence of a clear first order transition from the divalent to the trivalent state of the Eu-ions at finite temperature for p > 3 GPa and for p > 7 GPa, respectively. In other isostructural Eu-based compounds, a discontinuous and abrupt change in the thermodynamic and transport properties associated to the valence transition of the Eu-ions is typically observed at finite temperatures. In contrast, the electrical resistivity of EuCo2Ge2 and EuCu2Ge2 changes smoothly as a function of pressure and temperature. The analysis of the the electrical resistivity of EuCo2Ge2 suggest that a classical critical point might be close to the AFM-ordered phase, being a hallmark of this compound. The overall temperature dependence of the the electrical resistivity of EuCo2Ge2 changes significantly at 3 GPa; therefore, it seems that the system suddenly enters to a T-dependent valence-fluctuating regime. Additionally, the pressure-dependent electrical-resistivity isotherms show a step-like behavior. Thus, it is concluded that discontinuous change of the ground state might occur at 3 GPa. The electrical resistivity of EuCu2Ge2 at high pressure is characterized by a negative logarithmic T-dependence in the pressure range 5 GPa < p < 7 GPa for T > T_N and by a broad peak in the pressure dependent residual resistivity, whose maximum is located at 7.3 GPa. The first behavior resembles the incoherent scattering process typical for an exchange coupling mechanism between the localized electrons and the ligand. This and the peak effect in the local 4f susceptibility observed in NMR measurements are consistent with such a coupling mechanism. Thus, it would be for the first time that a dense Eu-based compound like EuCu2Ge2 show such a behavior. Combining the results of the experiment performed at high pressures on EuCu2Ge2 with the studies performed in the EuCu2(Ge1-xSix)2 series, a crossover from an antiferromagnetically ordered state into a Fermi-liquid state for pressures higher than 7.3 GPa may be inferred from the analysis. Therefore, it may be possible that the sudden depopulation of 4f-level occur mediated by quantum fluctuation of the charge due to a strong Coulomb repulsion between the localized-electrons and the ligand. This phenomenon would explain the broad peak in the residual resistivity. To our knowledge, this would be the first Eu-based compound, isostructural to ThCr2Si2, that show such a transition as function of pressure at very low temperatures.
303

A note on correlated and non-monotone Anderson models

Tautenhahn, Martin, Veselic', Ivan 17 January 2008 (has links) (PDF)
We prove exponential decay for a fractional power of the Green's function for some correlated Anderson models using the fractional moment method.
304

Contributions aux propriétés de transport d'un système à N Corps / Contributions to the transport properties of many body systems

Silva, Fernanda Deus da 11 March 2015 (has links)
Nous étudions plusieurs problémes reliés aux propriétés de transport dans les systèmes corrélés. La thèse contient 3 parties distinctes, chacune d'entre elles décrivant un aspect particulier. Nous avons obtenu dans chacun des cas des résultats qui permettent une meilleure compréhension du transport. Nous étudions l'effet de la dissipation et d'une perturbation extérieure dépendant du temps sur le diagramme de phases d'un systèmes à N corps à température nulle et à température finie. En présence de perturbation dépendant du temps, la dissipation joue un rôle important dans l'évolution vers un état stable indépendant du temps. Nous utilisons le formalisme de Keldysh dans l'approximation adiabatique qui permet d'étudier le diagramme de phases du système en fonction de parameter et de la température. Dans la 2ième partie, nous étudions un concept important pour la physique des systèmes métalliques à plusieurs bandes, le concept d'hybridation, et la façon dont l'hybridation affecte la supraconductivité du métal. De façon générale, une hybridation dépendante ou non du vecteur d'onde k a tendance à détruire la supraconductivité. Nous montrons dans ce chapitre qu'une hybridation antisymétrique a l'effet inverse et renforce la supraconductivité. Nous montrons que si l'hybridation est antisymétrique, la supraconductivité a des propriétés non-triviales. Nous proposons que dans un tel système, il puisse exister des fermions de Majorana, même en l'absence de couplage spin-orbite. Le dernier chapitre de la thèse porte sur les effets du couplage spin-orbite sur le transport dans les nanostructures magnétiques. Dans les nanostructures, le couplage spin-orbite joue un rôle important en raison de la brisure de symmétrie à la surface ou aux interfaces. En particulier, nous étudions l'effet de l'interaction Dzyaloshinskii-Moriya (DM) sur le transport de spin dans un système tri-couche. Nous montrons qu'il existe une interaction DM entre les moments des couches et les électrons de conduction, et l'influence de cette interaction sur le transport est étudiée dans un modèle simplifié ou chaque couche est représentée par un point. / We study some important problems related to the transport properties of many body systems. It is divided in three parts, each one focusing in a specific topic. We obtain relevant results that improve our understanding of these systems. We investigate the effect of dissipation and time-dependent external sources, in the phase diagram of a many body system at zero and finite temperature. In the presence of time-dependent perturbations, dissipation is essential for the system to attain a steady, time independent state. In order to treat this time dependent problem, we use a Keldysh approach within an adiabatic approximation that allows us to study the phase diagram of this system as a function of the parameters of the system and temperature. We also discuss the nature of the quantum phase transitions of the system. Next, we study an important concept in the physics of metallic multi-band systems, that of hybridization, and how it affects the superconducting properties of a material. A constant or symmetric $k$-dependent hybridization in general act in detriment of superconductivity. We show here that when hybridization between orbitals in different sites assumes an anti-symmetric character having odd-parity it {it{enhances}} superconductivity. The antisymmetric hybridization in a problem study in this thesis (present in Chapter 3) allow us to propose a new system where it is possible to investigate Majorana fermions, even in absence of spin-orbit interactions. In the last part of this thesis we study the effect of spin-orbit coupling (SOC) on transport properties in magnetic nanostructures. In this system SOC plays an important role, because surfaces (or interfaces) introduce symmetry breaking which is a source of spin-orbit interaction. We study the role of Dzyaloshinshkii-Moriya (DM) interaction on spin-transport in a 3 layer system. We show that there is a DM interaction between magnetics ions in the layers and spin of conduction electrons. We study the influence of this DM interaction on transport within a simple model where each layer is represented by a point.
305

Studying Protein Organization in Cellular Membranes by High-Resolution Microscopy

Saka Kırlı, Sinem 29 October 2013 (has links)
No description available.
306

Multipoles in Correlated Electron Materials

Cricchio, Francesco January 2010 (has links)
Electronic structure calculations constitute a valuable tool to predict the properties of materials. In this study we propose an efficient scheme to study correlated electron systems with essentially only one free parameter, the screening length of the Coulomb potential. A general reformulation of the exchange energy of the correlated electron shell is combined with this method in order to analyze the calculations. The results are interpreted in terms of different polarization channels, due to different multipoles. The method is applied to various actinide compounds, in order to increase the understanding of the complicate behaviour of 5f electrons in these systems. We studied the non-magnetic phase of δ-Pu, where the spin polarization is taken over by a spin-orbit-like term that does not break the time reversal symmetry. We also find that a non-trivial high multipole of the magnetization density, the triakontadipole, constitutes the ordering parameter in the mysterious hidden order phase of the heavy-fermion superconductor URu2Si2. This type of multipolar ordering is also found to play an essential role in the hexagonal-based superconductors UPd2Al3,  UNi2Al3 and UPt3 and in the dioxide insulators UO2, NpO2 and PuO2. The triakontadipole moments are also present in all magnetic actinides we considered, except for Cm. These results led us to formulate a new set of rules for the ground state of a system, that are valid in presence of strong spin-orbit coupling interaction instead of those of Hund; the Katt's rules. Finally, we applied our method to a new class of high-Tc superconductors, the Fe-pnictides, where the Fe 3d electrons are moderately correlated. In these materials we obtain the stabilization of a low spin moment solution, in agreement with experiment, over a large moment solution, due to the gain in exchange energy in the formation of large multipoles of the spin magnetization density. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 705
307

Spectroscopie d'intrication et son application aux phases de l'effet Hall quantique fractionnaire

Regnault, Nicolas 27 May 2013 (has links) (PDF)
La spectroscopie d'intrication, initialement introduite par Li et Haldane dans le contexte de l'effet Hall quantique fractionnaire, a suscité un large éventail de travaux. Le spectre d'intrication est le spectre de la matrice de densité réduite, quand on partitionne le système en deux. Pour de nombreux systèmes quantiques, il révèle une caractéristique unique : calculé uniquement à partir de la fonction d'onde de l'état fondamental, le spectre d'intrication donne accès à la physique des excitations de bord. Dans ce manuscrit, nous donnons un apercu de la spectroscopie d'intrication. Nous introduisons les concepts de base dans le cas des chaînes de spins quantiques. Nous présentons une étude approfondie des spectres d'intrication appliqués aux phases de l'effet Hall quantique fractionnaire, montrant quel type d'information est encodé dans l'état fondamental et comment les différentes facons de partitionner le système permettent de sonder différents types d'excitation. Comme application pratique de cette technique, nous discutons de la manière dont cette technique peut aider à faire la distinction entre les différentes phases qui émergent dans les isolants de Chern en interaction forte.
308

Étude à Fort Champ Magnétique du Système à Fermions Lourds URu2Si2

Scheerer, Gernot 25 November 2013 (has links) (PDF)
Les composés à fermions lourds, qui sont à base de terres rares comme le cérium et l'ytterbium ou d'actinides comme l'uranium, sont connus pour leurs propriétés extraordinaires à basse température. Leur physique est gouvernée par l'hybridation des électrons f avec des électrons de conduction, ce qui mène à la formation de quasi-particules avec de très grandes masses effectives. URu2Si2 occupe une place particulière dans la famille des fermions lourds. Une transition de phase du second ordre à la température T0 = 17.5 K a été observée par de nombreuses techniques expérimentales. Malgré des propositions théoriques multiples, aucun consensus n'existe concernant le paramètre d'ordre de la phase - dite à ordre caché - qui se développe sous T0. Lorsqu'on le soumet à des champs magnétiques intenses, URu2Si2 a par ailleurs un comportement unique : une cascade de trois transitions du premier ordre entre 35 et 39 T mène le système de son état paramagnétique à un état polarisé paramagnétique à fort champ. Ce travail a consisté en l'investigation systématique des propriétés magnétiques et électroniques d'échantillons monocristallins de très haute qualité d' URu2Si2 dans des champs magnétiques intenses allant jusqu'à 80 T, et des températures descendant jusqu'à 100 mK. Des expériences d'aimantation et de magnétorésistivité ont été faites en champ magnétique pulsé non destructif au Laboratoire National des Champs Magnétiques Intenses de Toulouse (LNCMI-T). Le diagramme de phase champ magnétique-température de URu2Si2 a été étudié la première fois sur les gammes étendues de champs magnétiques H||c allant jusqu'à 60 T et de températures allant jusqu'à 80 K. Il indique que la domaine critique [35 T-39 T] est initié par la destabilisation d'un " crossover ", dont la température caractéristique atteint 40-50 K à champ nul. Il est démontré que ce crossover, qui résulte probablement des corrélations inter-site, est aussi un précurseur de la phase à ordre caché. Une étude de la magnétorésistivité pour différentes orientations du champ magnétique dans les plans (a,a) and (a,c) a permis d'établir la dépendance en angle du diagramme de phase. Des mesures de l'aimantation du composé dopé en rhodium U(Ru0.96Rh0.04)2Si2 révèlent un diagramme de phase " simplifié ", où la phase à ordre caché a disparu et le domaine critique a été remplace par une phase intermédiaire entre 26 et 37 T. La magnetoresistivité à très basse température se révèle être fortement dépendente de la qualité des échantillons et est la signature des propriétés orbitales d'URu2Si2. Une dépendance exceptionnellement intense de la magnétorésistivité en fonction de la température confirme que la surface de Fermi est reconstruite à T0. Des anomalies dans la magnetoresistivité à fort champ magnétique H||c suggèrent que la surface de Fermi est modifiée à l'intérieur de la phase à ordre caché. Des oscillations quantiques - effet Shubnikov-de Haas - sont observées dans la magnétorésistivité à très basse température pour une multitude d'orientations des échantillons dans le champ magnétique. Elles confirment qu'un champ magnétique H||c induit des reconstructions de la surface de Fermi dans la phase à ordre caché. Dans un champ magnétique H||a, des oscillations quantiques sont observées pour la première fois jusqu'à 80 T. Leur analyse a révélé une nouvelle branche de fréquence  avec une faible masse effective. La dépendance en angle des fréquences Shubnikov-de Haas a été étudiée dans un champ magnétique allant jusqu'à 60 T, pour des champs appliqués dans les plans (a,a) et (a,c). Ce travail expérimental indique que le couplage entre le magnétisme des électrons f et les propriétés de la surface de Fermi joue un rôle important pour la physique du système à ordre caché URu2Si2.
309

Interacting Photons in Waveguide-QED and Applications in Quantum Information Processing

Zheng, Huaixiu January 2013 (has links)
<p>Strong coupling between light and matter has been demonstrated both in classical</p><p>cavity quantum electrodynamics (QED) systems and in more recent circuit-QED</p><p>experiments. This enables the generation of strong nonlinear photon-photon interactions</p><p>at the single-photon level, which is of great interest for the observation</p><p>of quantum nonlinear optical phenomena, the control of light quanta in quantum</p><p>information protocols such as quantum networking, as well as the study of</p><p>strongly correlated quantum many-body systems using light. Recently, strong</p><p>coupling has also been realized in a variety of one-dimensional (1D) waveguide-</p><p>QED experimental systems, which in turn makes them promising candidates for</p><p>quantum information processing. Compared to cavity-QED systems, there are</p><p>two new features in waveguide-QED: the existence of a continuum of states and</p><p>the restricted 1D phase space, which together bring in new physical effects, such</p><p>as the bound-state effects. This thesis consists of two parts: 1) understanding the</p><p>fundamental interaction between local quantum objects, such as two-level systems</p><p>and four-level systems, and photons confined in the waveguide; 2) exploring</p><p>its implications in quantum information processing, in particular photonic</p><p>quantum computation and quantum key distribution.</p><p>First, we demonstrate that by coupling a two-level system (TLS) or three/fourlevel</p><p>system to a 1D continuum, strongly-correlated photons can be generated</p><p>inside the waveguide. Photon-photon bound states, which decay exponentially as a function of the relative coordinates of photons, appear in multiphoton scattering</p><p>processes. As a result, photon bunching and antibunching can be observed</p><p>in the photon-photon correlation function, and nonclassical light source can be</p><p>generated on demand. In the case of an N-type four-level system, we show</p><p>that the effective photon-photon interaction mediated by the four-level system,</p><p>gives rise to a variety of nonlinear optical phenomena, including photon blockade,</p><p>photon-induced tunneling, and creation of single-photon states and photon</p><p>pairs with a high degree of spectral entanglement, all in the absence of a cavity.</p><p>However, to enable greater quantum networking potential using waveguide-</p><p>QED, it is important to study systems having more than just one TLS/qubit.</p><p>We develop a numerical Green function method to study cooperative effects in</p><p>a system of two qubits coupled to a 1D waveguide. Quantum beats emerge in</p><p>photon-photon correlations, and persist to much longer time scales because of</p><p>non-Markovian processes. In addition, this system can be used to generate a</p><p>high-degree of long-distance entanglement when one of the two qubits is driven</p><p>by an on-resonance laser, further paving the way toward waveguide-QED-based</p><p>quantum networks.</p><p>Furthermore, based on our study of light-matter interactions in waveguide-</p><p>QED, we investigate its implications in quantum information processing. First,</p><p>we study quantum key distribution using the sub-Possonian single photon source</p><p>obtained by scattering a coherent state off a two-level system. The rate for key</p><p>generation is found to be twice as large as for other sources. Second, we propose</p><p>a new scheme for scalable quantum computation using flying qubits--propagating</p><p>photons in a one-dimensional waveguide--interacting with matter qubits. Photonphoton</p><p>interactions are mediated by the coupling to a three- or four-level system,</p><p>based on which photon-photon -phase gates (Controlled-NOT) can be implemented for universal quantum computation. We show that high gate fidelity is</p><p>possible given recent dramatic experimental progress in superconducting circuits</p><p>and photonic-crystal waveguides. The proposed system can be an important</p><p>building block for future on-chip quantum networks.</p> / Dissertation
310

Quantitative analysis of single particle tracking experiments: applying ecological methods in cellular biology

Rajani, Vishaal Unknown Date
No description available.

Page generated in 0.0846 seconds