• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Elucidating mechanisms that lead to persistent anxiety-like behavior in rats following repeated activation of corticotropin-releasing factor receptors in the basolateral amygdala

Gaskins, Denise 16 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Anxiety disorders are estimated to impact 1 in 4 individuals within their lifetime. For some individuals, repeated episodes of the stress response leads to pathological anxiety and depression. The stress response is linked to increased levels of corticotropin-releasing factor (CRF) in the basolateral nucleus of the amygdala (BLA), a putative site for regulating anxiety and associative processes related to aversive emotional memories, and activation of CRF receptors in the BLA of rats produces anxiety-like behavior. Mimicking repeated episodes of the stress response, sub-anxiogenic doses of urocortin 1 (Ucn1), a CRF receptor agonist, are microinjected into the BLA of rats for five consecutive days, a procedure called priming. This results in 1) behavioral sensitization, such that a previously non-efficacious dose of Ucn1 will elicit anxiety-like response after the 3rd injection and 2) the development of a persistent anxiety-like phenotype that lasts at least five weeks after the last injection without any further treatment. Therefore, the purpose of this thesis was to identify mechanisms involved in the Ucn1-priming-induced anxiogenesis. The first a set of experiments revealed that the anxiety-like behavior was not due to aversive conditioning to the context or partner cues of the testing environment. Next, Ucn1-priming-induced gene expression changes in the BLA were identified: mRNA expression for Sst2, Sst4, Chrna4, Chrma4, and Gabrr1 was significantly reduced in Ucn1-primed compared to Vehicle-primed rats. Of these, Sst2 emerged as the primary receptor of interest. Subsequent studies found that antagonizing the Sstr2 resulted in anxiety-like behavior and activation of Sstr2 blocked acute Ucn1-induced anxiety-like responses. Furthermore, pretreatment with a Sstr2 agonist delayed the behavioral sensitization observed in Ucn1-induced priming but did not stop the development of persistent anxiety-like behavior or the Ucn1-priming-induced decrease in the Sstr2 mRNA. These results suggest that the decrease in Sstr2 mRNA is associated with the expression of persistent anxiety-like behavior but dissociated from the mechanisms causing the behavioral sensitization. Pharmacological studies confirmed that a reduced Sstr2 mediated effect in the BLA is likely to play a role in persistent anxiety and should be investigated further.
22

The Role of Corticotropin-Releasing Factor in the Behavior and Proinflammatory Activity of Separated Guinea Pig Pups

Alexander, Vincent Rasahd 17 September 2012 (has links)
No description available.
23

Modulation of Hypothalamic-pituitary-Adrenal Axis Parameters by Teneurin C-terminal Associated Peptide (TCAP)-1

De Almeida, Reuben Ricardo Joaquim 21 November 2012 (has links)
Teneurin C-terminal associated peptides (TCAP) are a family of bioactive peptides found on the terminal exon of the four teneurin genes. TCAP-1 is found within brain regions that modulate the activity of corticotropin-releasing factor (CRF), which is the principal neuropeptide regulator of the hypothalamic-pituitary-adrenal (HPA) axis. TCAP-1 has suppressive effects on CRF-induced anxiety behaviours in rats. However, previous studies determined that TCAP-1 does not act directly on the CRF receptors (CRFR). Thus, I postulate that TCAP-1 may act centrally to modify elements of the HPA axis. Using an immortalized mouse hippocampal cell line, I tested the hypothesis that TCAP acts either downstream of CRFR activation, or on the regulation of the glucocorticoid receptors (GCR), which modulate CRF actions. These studies indicate that TCAP-1 represents a novel peptide in the regulation of stress related systems, which acts independently of either CRF-, or glucocorticoid- mediated signal transduction and transcription.
24

Modulation of Hypothalamic-pituitary-Adrenal Axis Parameters by Teneurin C-terminal Associated Peptide (TCAP)-1

De Almeida, Reuben Ricardo Joaquim 21 November 2012 (has links)
Teneurin C-terminal associated peptides (TCAP) are a family of bioactive peptides found on the terminal exon of the four teneurin genes. TCAP-1 is found within brain regions that modulate the activity of corticotropin-releasing factor (CRF), which is the principal neuropeptide regulator of the hypothalamic-pituitary-adrenal (HPA) axis. TCAP-1 has suppressive effects on CRF-induced anxiety behaviours in rats. However, previous studies determined that TCAP-1 does not act directly on the CRF receptors (CRFR). Thus, I postulate that TCAP-1 may act centrally to modify elements of the HPA axis. Using an immortalized mouse hippocampal cell line, I tested the hypothesis that TCAP acts either downstream of CRFR activation, or on the regulation of the glucocorticoid receptors (GCR), which modulate CRF actions. These studies indicate that TCAP-1 represents a novel peptide in the regulation of stress related systems, which acts independently of either CRF-, or glucocorticoid- mediated signal transduction and transcription.
25

Papel dos mecanismos mediados pelo fator de liberação de corticotrofina e pelo complexo receptor N-Metil-D-Aspartato-Óxido Nítrico nas reações associadas a estímulos aversivos

Miguel, Tarciso Tadeu [UNESP] 28 August 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-08-28Bitstream added on 2014-06-13T19:43:50Z : No. of bitstreams: 1 miguel_tt_dr_arafo.pdf: 1534577 bytes, checksum: a92938fef6b90d6df76ee4d3b3896a21 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Os confrontos dos animais com situações que induzem medo e ansiedade resultam em uma série de respostas comportamentais defensivas (ex. luta, fuga, imobilidade, vocalização, etc.), ativação neurovegetativa (ex. taquicardia, hipertensão, defecação, etc.), antinocicepção, além de influenciar o comportamento agressivo e aumentar a vulnerabilidade à dependência e recaída ao uso de drogas. Com base no potencial efeito ansiogênico dos neurotransmissores glutamato (via ativação do complexo receptor NMDA-óxido nítrico) e fator liberador de corticotrofina (via receptores CRF1 e CRF2), este estudo investigou o papel desses mediadores, através de injeções sistêmicas, na matéria cinzenta periaquedutal (MCP) ou no núcleo dorsal da rafe (NDR), nas respostas apontadas acima. Os seguintes modelos foram utilizados: labirinto em cruz elevado (LCE, ansiedade), injeção de formalina a 2,5% (nocicepção), conflito intruso-residente (agressão) e estresse de derrota social (dependência à cocaína). Os resultados indicaram: a) o efeito ansiogênico do agonista de receptores NMDA (N-metil-D-aspartato; NMDA) na MCP foi antagonizado pela inibição da enzima de síntese de NO, b) os efeitos ansiogênico e antinociceptivo do CRF na MCP foram via ativação de receptores CRF1 (mas não CRF2) e independentes de NO, c) os efeitos aversivo e antinociceptivo do NO (via administração de um doador de NO) na MCP mostraram-se sensíveis ao bloqueio de receptores CRF1, d) a ativação de receptores CRF2 intra-NDR reduziu o comportamento agressivo induzido pelo conflito intruso-residente, e) o tratamento sistêmico com antagonista CRF1 bloqueou a sensibilização comportamental à cocaína e atenuou o aumento do consumo da mesma induzidos pelo estresse da derrota social / Animal confrontation against fear/anxiety-induced situations results in a repertory of behavioral defensive responses (e.g., fight, flight, immobility, vocalization), neurovegetative activation (e.g., tachycardia, hypertension, defecation), antinociception, as well as affects aggressive behavior and increases animals vulnerability to addiction and relapse to drug take. Based on the potential anxiogenic effect elicited by glutamate (via activation of NMDA-nitric oxide receptor complex) and corticotropin releasing factor (via CRF1 and CRF2 receptors), this study investigated the effect of systemic, intra-periaqueductal gray (PAG) or intradorsal raphe nucleus (DRN) injections of these mediators on the above described responses. The following animal models were used: elevated plus maze (EPM, anxiety test), formalin 2.5% injection (nociceptive test), resident-intruder conflict (aggression test) and social defeat stress (to induce cocaine addiction). Results indicated that: a) the anxiogenic effect elicited by intra-PAG injection of glutamate NMDA (N-methyl-D-aspartate; NMDA) receptor agonist was antagonized by prior local infusion an NO synthase inhibitor, b) the anxiogenic and antinociceptive effects elicited by intra-PAG CRF were mediated by CRF1 (but not CRF2) receptor activation and did not depend on NO synthesis, c) the aversive and antinociceptive effects of NO production (induced by intra-PAG injection of a NO donor) were sensitive to CRF1 blockade, d) activation of the CRF2 receptor within the DRN attenuated aggressive behavior elicited by resident-intruder conflict, e) systemic treatment with CRF1 receptor antagonist inhibited cocaine behavioral sensitization and social-defeat stress-induced cocaine consumption
26

The Role of Mesointerpeduncular Circuitry in Anxiety

Degroot, Steven R. 14 May 2019 (has links)
Anxiety is an affective state defined by heightened arousal and unease in the absence of a clear and present fear-inducing stimulus. Chronic and inappropriate anxiety leads to anxiety disorders, the most common class of human mental disorder. Recent work suggests projections to the ventral tegmental area (VTA), are critical for anxiety behavior expression. However, the relationship between efferent VTA projections and anxiety is unclear. This thesis resolves anxiety circuitry connecting the dopaminergic (DAergic) VTA to the interpeduncular nucleus (IPN), coined the mesointerpeduncular circuit. I hypothesize the mesointerpeduncular circuit affects anxiety through the release of anxiogenic corticotropin releasing factor (CRF) during nicotine withdrawal and anxiolytic dopamine (DA) during drug naïve behavior. Electrophysiological and pharmacological data suggest CRF release from the DAergic VTA during nicotine withdrawal activates CRF receptor 1 (CRFR1) potentiating the glutamatergic activation of “Type 2” neurons and anxiety-like behavior in mice. However, in nicotine naïve conditions CRF production is negligible. Instead, in vivo DA release is anticorrelated with anxiety-like behaviors. Optogenetic stimulation and inhibition drives decreased and increased anxiety-like behaviors, respectively. Electrophysiological experiments reveal a complex interpeduncular microcircuit where D1-like DA receptor expressing “Type C” neurons in the caudal IPN (cIPN) regulate glutamatergic release in the ventral IPN (vIPN) through presynaptic GABA receptors. The result is propagation of the signal to excite “Type A” and inhibit “Type B” vIPN neurons. Finally, pharmacological activation or inhibition of interpeduncular D1-like DA receptors is sufficient to decrease and increase anxiety-like behaviors respectively. Thus, this circuit is important for modulating anxiety-like behavior.
27

The Involvement of Ventral Tegmental Area Dopamine and CRF Activity in Mediating the Opponent Motivational Effects of Acute and Chronic Nicotine

Grieder, Taryn Elizabeth 12 December 2012 (has links)
A fundamental question in the neurobiological study of drug addiction concerns the mechanisms mediating the motivational effects of chronic drug withdrawal. According to one theory, drugs of abuse activate opposing motivational processes after both acute and chronic drug use. The negative experience of withdrawal is the opponent process of chronic drug use that drives relapse to drug-seeking and -taking, making the identification of the neurobiological substrates mediating withdrawal an issue of central importance in addiction research. In this thesis, I identify the involvement of the neurotransmitters dopamine (DA) and corticotropin-releasing factor (CRF) in the opponent motivational a- and b-processes occurring after acute and chronic nicotine administration. I report that acute nicotine stimulates an initial aversive a-process followed by a rewarding opponent b-process, and chronic nicotine stimulates a rewarding a-process followed by an aversive opponent b-process (withdrawal). These responses can be modeled using a place conditioning paradigm. I demonstrate that the acute nicotine a-process is mediated by phasic dopaminergic activity and the DA receptor subtype-1 (D1R) but not by tonic dopaminergic activity and the DA receptor subtype-2 (D2R) or CRF activity, and the opponent b-process is neither DA- nor CRF-mediated. I also demonstrate that the chronic nicotine a-process is DA- but not CRF-mediated, and that withdrawal from chronic nicotine (the b-process) decreases tonic but not phasic DA activity in the ventral tegmental area (VTA), an effect that is D2R- but not D1R-mediated. I show that a specific pattern of signaling at D1Rs and D2Rs mediates the motivational responses to acute nicotine and chronic nicotine withdrawal, respectively, by demonstrating that both increasing or decreasing signaling at these receptors prevents the expression of the conditioned motivational response. Furthermore, I report that the induction of nicotine dependence increases CRF mRNA in VTA DA neurons, and that blocking either the upregulation of CRF mRNA or the activation of VTA CRF receptors prevents the anxiogenic and aversive motivational responses to withdrawal from chronic nicotine. The results described in this thesis provide novel evidence of a VTA DA/CRF system, and demonstrate that both CRF and a specific pattern of tonic DA activity in the VTA are necessary for the aversive motivational experience of nicotine withdrawal.
28

The Involvement of Ventral Tegmental Area Dopamine and CRF Activity in Mediating the Opponent Motivational Effects of Acute and Chronic Nicotine

Grieder, Taryn Elizabeth 12 December 2012 (has links)
A fundamental question in the neurobiological study of drug addiction concerns the mechanisms mediating the motivational effects of chronic drug withdrawal. According to one theory, drugs of abuse activate opposing motivational processes after both acute and chronic drug use. The negative experience of withdrawal is the opponent process of chronic drug use that drives relapse to drug-seeking and -taking, making the identification of the neurobiological substrates mediating withdrawal an issue of central importance in addiction research. In this thesis, I identify the involvement of the neurotransmitters dopamine (DA) and corticotropin-releasing factor (CRF) in the opponent motivational a- and b-processes occurring after acute and chronic nicotine administration. I report that acute nicotine stimulates an initial aversive a-process followed by a rewarding opponent b-process, and chronic nicotine stimulates a rewarding a-process followed by an aversive opponent b-process (withdrawal). These responses can be modeled using a place conditioning paradigm. I demonstrate that the acute nicotine a-process is mediated by phasic dopaminergic activity and the DA receptor subtype-1 (D1R) but not by tonic dopaminergic activity and the DA receptor subtype-2 (D2R) or CRF activity, and the opponent b-process is neither DA- nor CRF-mediated. I also demonstrate that the chronic nicotine a-process is DA- but not CRF-mediated, and that withdrawal from chronic nicotine (the b-process) decreases tonic but not phasic DA activity in the ventral tegmental area (VTA), an effect that is D2R- but not D1R-mediated. I show that a specific pattern of signaling at D1Rs and D2Rs mediates the motivational responses to acute nicotine and chronic nicotine withdrawal, respectively, by demonstrating that both increasing or decreasing signaling at these receptors prevents the expression of the conditioned motivational response. Furthermore, I report that the induction of nicotine dependence increases CRF mRNA in VTA DA neurons, and that blocking either the upregulation of CRF mRNA or the activation of VTA CRF receptors prevents the anxiogenic and aversive motivational responses to withdrawal from chronic nicotine. The results described in this thesis provide novel evidence of a VTA DA/CRF system, and demonstrate that both CRF and a specific pattern of tonic DA activity in the VTA are necessary for the aversive motivational experience of nicotine withdrawal.
29

Plasticity in the intermediolateral cell column of the spinal cord following injury to sympathetic postganglionic axons

Gannon, Sean Michael 11 August 2014 (has links)
No description available.
30

Female-Specific Role of Ciliary Neurotrophic Factor in the Medial Amygdala in Promoting Stress Responses

Jia, Cuihong, Gill, Wesley D., Lovins, Chiharu, Brown, Russell W., Hagg, Theo 01 March 2022 (has links)
Ciliary neurotrophic factor (CNTF) is produced by astrocytes which have been implicated in regulating stress responses. We found that CNTF in the medial amygdala (MeA) promotes despair or passive coping, i.e., immobility in an acute forced swim stress, in female mice, while having no effect in males. Neutralizing CNTF antibody injected into the MeA of wildtype females reduced activation of downstream STAT3 (Y705) 24 and 48 h later. In concert, the antibody reduced immobility in the swim test in females and only after MeA injection, but not when injected in the central or basolateral amygdala. Antibody injected into the male MeA did not affect immobility. These data reveal a unique role of CNTF in female MeA in promoting despair or passive coping behavior. Moreover, 4 weeks of chronic unpredictable stress (CUS) increased immobility in the swim test and reduced sucrose preference in wildtype CNTF+/+, but not CNTF-/- littermate, females. Following CUS, 10 min of restraint stress increased plasma corticosterone levels only in CNTF+/+ females. In males, the CUS effects were present in both genotypes. Further, CUS increased CNTF expression in the MeA of female, but not male, mice. CUS did not alter CNTF in the female hippocampus, hypothalamus and bed nucleus of stria terminalis. This suggests that MeA CNTF has a female-specific role in promoting CUS-induced despair or passive coping, behavioral anhedonia and neuroendocrine responses. Compared to CNTF+/+ mice, CNTF-/- mice did not show differences in CUS-induced anxiety-like behavior and sensorimotor gating function as measured by elevated T-Maze, open field and pre-pulse inhibition of the acoustic startle response. Together, this study reveals a novel CNTF-mediated female-specific mechanism in stress responses and points to opportunities for developing treatments for stress-related disorders in women.

Page generated in 0.1329 seconds