• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 2
  • 2
  • Tagged with
  • 82
  • 53
  • 31
  • 29
  • 28
  • 28
  • 28
  • 26
  • 24
  • 22
  • 22
  • 22
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Estudo paleomagnético do Complexo Máfico-ultramáfico Rincón del Tigre - sudeste da Bolívia, Cráton Amazônico / Paleomagnetic Study of the Rincón del Tigre Mafic- ultramafic Complex Southeastern Bolivian, Amazonian Craton

Patroni, Oscar Andres Lazcano 25 September 2015 (has links)
Modelos de reconstruções paleogeográficas envolvendo o Cráton Amazônico para 1100 Ma são motivos de controvérsia devido à carência de dados paleomagnéticos de qualidade para esta unidade geotectônica. Com intuito de contribuir para o esclarecimento da participação do Cráton Amazônico na evolução do ciclo continental, este trabalho apresenta o estudo paleomagnético realizado para o Complexo Máfico- ultramáfico Rincón del Tigre localizado na região sudeste da Bolívia, sudoeste do Cráton Amazônico. Uma recente datação U-Pb em badeleítas forneceu idade de 1110,4 ± 1,8 Ma para esta unidade. Para o estudo paleomagnético, 101 amostras cilíndricas orientadas foram coletadas de 15 sítios de composição litológica variada, compreendendo ultramáficas, ortopiroxenitos adcumuláticos, gabro noritos e serpentinitos. Um total de 359 espécimes cilíndricos de rocha de 2.2 cm de altura por 2.5 cm de diâmetro foi preparado para os tratamentos por campos magnéticos alternados (AF) e térmicos, assim como, para medidas de anisotropia de susceptibilidade magnética (ASM). As mesmas amostras foram preparadas para os experimentos de mineralogia magnética: curvas termomagnéticas, curvas de histerese e curvas de magnetização remanente isotérmica (MRI). Os resultados obtidos a partir da análise de anisotropias de suscetibilidade magnética (ASM) indicam, para boa parte das amostras analisadas, trama magnética aproximadamente horizontal coerente com a colocação de sills e lineação magnética para NW/SE, a qual indica que estas rochas sofreram influência da tectônica de deformação de direção NE-SW que as afetou durante a orogênese Sunsás. O estudo da mineralogia magnética indica magnetita como principal portador magnético presente nas rochas analisadas. Os tratamentos por campos alternados e térmico foram eficientes para separar as componentes de magnetização através da análise vetorial, sendo que direções coerentes foram obtidas para boa parte dos espécimes analisados para cada sítio. Todavia, a mesma coerência não é observada para as direções médias por sítio. Assim, correções tectônicas foram efetuadas e para um grupo de sítios obteve-se um teste de dobra positivo, com direção média Dm=327,9°, Im=53,5° (95=13,1°, K=22,6, N=7), a qual forneceu o polo paleomagnético situado em 271,7°E, 28,6°N (A95=17,6°). Supondo uma trama magnética horizontal (k3=90°) para os sills acamadados que constituem o Complexo Rincón del Tigre, a direção média (declinação e inclinação) do eixo k3 para cada sítio foi utilizada para corrigir as direções de magnetização para a situação de trama horizontal. Após a correção de ASM, outro grupo de sítios apresentou direções consistentes, cuja direção média Dm=118,6°, Im=20,7° (95=16,5°, K=12,2, N=8) forneceu o polo paleomagnético situado em 28,5°E, 30,0°S (A95=12,8). Os parâmetros estatísticos foram também significativamente melhorados após a correção de ASM. Com base nos dois polos determinados para o Complexo Rincón del Tigre e polos selecionados para o Cráton Amazônico e Laurentia são propostas paleogeografias para 1265 Ma, 1200 Ma, 1150 Ma, 1100 Ma e 1000 Ma que apoiam o modelo que propõe a ruptura do supercontinente Columbia, por volta de 1270 Ma atrás, e o posterior movimento de rotação horária do Cráton Amazônico/Oeste-África e da Báltica até estes blocos cratônicos colidirem novamente há 1000 Ma atrás com a Laurentia, ao longo do cinturão Grenville, para formar o supercontinente Rodínia. / Paleogeographic reconstructions at 1100 Ma involving the Amazonian Craton are controversial due to the absence of key paleomagnetic poles for this geotectonic unit. Trying to elucidate the participation of the Amazonian Craton in the continental cycle, this work present a paleomagnetic study of the Rincón del Tigre mafic-ultramafic complex from southeast Bolivia, southwestern Amazonian Craton. A recent U-Pb dating on baddeleyites of a rock from this complex yielded an age of 1110.4 ± 1.8 Ma for this unit. For the paleomagnetic study, 101 cylindrical cores were sampled from 15 sites with variable lithologies, comprising ultramafics, adacumulatic orthopyroxenites, gabbro norites and serpentinites. A total of 359 cylindrical specimens (2.5 cm diameter x 2.2 cm height) were prepared for the AF and thermal treatments, and for the anisotropy of magnetic susceptibility (AMS) measurements. The same samples were prepared for magnetic experiments: thermomagnetic curves, hysteresis curves and isothermal remanent magnetization (IRM) curves. The ASM results indicate nearly horizontal magnetic fabric for many of the analyzed sites, which agrees with that originated by sills emplacement, and a NW/SE magnetic lineation, which suggests that these rocks were tectonically affected by the Sunsás orogen. The magnetic mineralogy studies indicate magnetite as the main magnetic carrier in the rocks. The AF and thermal treatments were effective in isolating magnetic components through vector analysis, and coherent magnetic directions were disclosed for much of the specimens from each site. However, the same consistency was not observed for the between-site directions. Tectonic corrections were applied for the site mean directions, which yielded a positive fold test for a group of sites: mean direction Dm=327.9°, Im=53.5° (95=13.1°, K=22.6, N=7), which yielded the paleomagnetic pole at 271.7°E, 28.6°N (A95=17.6°). Supposing an horizontal magnetic fabric (k3=90°) for the layered sills that originally formed the Rincón del Tigre Complex, the mean direction (declination and inclination) of the k3 axis calculated for each site, was used to correct site mean magnetization directions for the situation of horizontal magnetic fabric. After ASM correction, another group of sites yielded consistent directions, whose mean direction Dm=118.6°, Im=20.7° (95=16.5°, K=12.2, N=8) yielded the paleomagnetic pole at 28.5°E, 30.0°S (A95=12.8). Statistical parameters were also greatly improved after ASM corrections. Paleogeographies at 1265 Ma, 1200 Ma, 1150 Ma, 1100 Ma and 1000 Ma were constructed based on the Rincón del Tigre poles and other selected poles from the Amazonian Craton and Laurentia, which support the model where soon after Columbia rupture at around 1270 Ma, the Amazonian Craton/West Africa and Baltica executed clockwise rotations until they collide again at 1000 Ma with Laurentia, along the Grenvillian belt, forming Rodinia supercontinent.
52

Petrografia, geoquímica e suscetibilidade magnética do granito Gradaús, Província Carajás, SE do Pará

CARVALHO, Thiago Andrade de 31 October 2017 (has links)
Submitted by Socorro Albuquerque (sbarbosa@ufpa.br) on 2018-02-07T18:20:55Z No. of bitstreams: 1 Dissertacao_PetrografiaGeoquimicaSuscetibilidade.pdf: 4124597 bytes, checksum: f2cb68fabd466c9c1543c5c9953d72a7 (MD5) / Approved for entry into archive by Socorro Albuquerque (sbarbosa@ufpa.br) on 2018-02-07T18:24:14Z (GMT) No. of bitstreams: 1 Dissertacao_PetrografiaGeoquimicaSuscetibilidade.pdf: 4124597 bytes, checksum: f2cb68fabd466c9c1543c5c9953d72a7 (MD5) / Made available in DSpace on 2018-02-07T18:24:14Z (GMT). No. of bitstreams: 1 Dissertacao_PetrografiaGeoquimicaSuscetibilidade.pdf: 4124597 bytes, checksum: f2cb68fabd466c9c1543c5c9953d72a7 (MD5) Previous issue date: 2017-10-31 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / O Granito Gradaús (1882±9 Ma), localizado no Estado do Pará, a oeste da cidade de Bannach e a norte de Cumaru do Norte, porção sudeste do Cráton Amazônico, é um batólito anorogênico com formato subcircular e cerca de 800 km² de área aflorante, integrante do intenso magmatismo granítico que ocorreu durante o Paleoproterozoico na Província Carajás. É intrusivo em metassedimentos do Grupo Rio Fresco, os quais recobrem unidades arqueanas pertencentes ao Domínio Rio Maria. É constituído por dois conjuntos petrográficos distintas: rochas monzograníticas, compostas basicamente por biotita-monzogranitos e biotitamonzogranitos-porfiríticos, e por rochas sienograníticas formadas por biotita-anfibóliosienogranitos, biotita-sienogranitos e biotita-sienogranitos-porfiríticos. Os dados de suscetibilidade magnética (SM) permitiram identificar três populações com diferentes características magnéticas; seus valores de SM moderados a baixos (< 3,53 x10-3 SIv) permitem classificá-lo como um granito moderadamente reduzido. O Granito Gradaús apresenta conteúdos de SiO2 >75%, MgO <0,2%, CaO <1%, FeOt entre 1-2% e Al2O3 entre 11,3 e 12,9%, caráter metaluminoso a peraluminoso, razões FeOt/(FeOt+MgO) entre 0,94 e 0,97, K2O/Na2O entre 1 e 2 e conteúdos de ETRL mais elevados que os ETRP. Os ETRL mostram padrão de fracionamento moderado ((La/Sm)n=4,61) e os ETRP sub-horizontalizado ((Gd/Yb)n=1,40). As anomalias negativas de Eu são moderadas a acentuadas nas rochas monzograníticas e sienograníticas (Eu/Eu* 0,43-0,02) e levemente mais pronunciadas nas rochas porfiríticas (Eu/Eu* 0,25-0,03). Mostra afinidades geoquímicas com granitos do tipo A intraplaca, do subtipo A2 e granitos ferrosos. Apresenta semelhanças petrográficas, geoquímicas, geocronológicas e de SM com os granitos São João e Seringa, ainda não enquadrados em nenhuma das três suítes graníticas da Província Carajás. O estudo comparativo entre esses granitos com aqueles que compõem as suítes Jamon, Velho Guilherme e Serra dos Carajás mostra que eles apresentam maiores semelhanças com os granitos que integram a Suíte Serra dos Carajás. / The Gradaús Granite (1882±9 M.y.), located in Pará State, to the West of Bannach city and to the North of Cumaru do Norte, southeastern portion of Amazonian Craton, it is an anorogenic batholith with an area approximately 800 km², it is part of an intense granitic magmatism event that occurred during the Paleoproterzoic in the Carajás Province. It outcrops metasedimentary rocks of Rio Fresco Group, which lays on archean units of Rio Maria Domain. It compreends two distinct petrographic group: monzogranitics, composed by biotite-monzogranite and porfiritic-biotite-monzogranite, and syenogranitics, composed by biotite-anfibolesyenogranite, biotite-syenogranite and porfiritic-biotite-syenogranite. The magnetic suscetibility (MS) data allowed to identify three populations with differents magnetic characteristics, moderate to low MS values (< 3.53 x10-3 SIv) classify it as a moderately reduced granite. The Gradaús Granite shows contents of SiO2 >75%, MgO <0,2%, CaO <1%, FeOt between 1-2% and Al2O3 between 11,3 e 12,9%, metaluminous to peraluminous nature, 0.94 to 0.97 FeOt/(FeOt+MgO) ratios, K2O/Na2O ratios between 1 and 2 and higher LREE contents than HREE ((La/Yb)n=9.40). The LREE shows a moderate fractionation pattern ((La/Sm)n=4.61), while the HREE shows a subhorizontalized pattern ((Gd/Yb)n=1.40). The Eu anomalies are moderate to accentuated in the monzogranitic and syenogranitic rocks (Eu/Eu* 0.43-0.02), and slightly accentuated in the porfiritic ones (Eu/Eu* 0.25-0.03). It shows geochemical affinity to intraplate A-type granites, A2 subtype and ferroan granites. It shows petrografic, geochemical, geochronological and MS similarities to São João and Seringa granites, not yet placed in none of the three granitic suites of Carajás Province. The comparative study between these three granites to those which compreends the Jamon, Velho Guilherme and Serra dos Carajás granitic suites shows that these granites presente greater similarities to the granites that integrate the Serra dos Carajás Suite.
53

Soleiras e enxames de diques máficos do Sul-Sudoeste do Cráton Amazônico

LIMA, Gabrielle Aparecida de 19 August 2016 (has links)
Submitted by Cássio da Cruz Nogueira (cassionogueirakk@gmail.com) on 2017-08-31T16:37:17Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_SoleirasEnxamesDiques.pdf: 17913579 bytes, checksum: 8ead052846cd118c9492868d7611f9f8 (MD5) / Approved for entry into archive by Irvana Coutinho (irvana@ufpa.br) on 2017-09-11T16:23:41Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_SoleirasEnxamesDiques.pdf: 17913579 bytes, checksum: 8ead052846cd118c9492868d7611f9f8 (MD5) / Made available in DSpace on 2017-09-11T16:23:41Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_SoleirasEnxamesDiques.pdf: 17913579 bytes, checksum: 8ead052846cd118c9492868d7611f9f8 (MD5) Previous issue date: 2016-08-19 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / FAPEMAT - Fundação de Amparo à Pesquisa do Estado de Mato Grosso / FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo / GEOCIAM - Instituto Nacional de Ciência e Tecnologia de Geociências da Amazônia / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Soleiras e enxames de diques máficos constituem importante ferramenta para o entendimento dos processos geodinâmicos, especialmente por marcarem o início de grandes eventos tectônicos extensionais, além de serem indicadores importantes da natureza e evolução das fontes mantélicas no tempo geológico. Na porção S-SW do Cráton Amazônico, ocorrências de soleiras e enxames de diques proterozoicos são relatadas no oriente boliviano, em Mato Grosso e Mato Grosso do Sul. Como exemplos têm-se os enxames de diques das suítes intrusivas Huanchaca, Rancho de Prata e Rio Perdido, bem como as soleiras máficas Huanchaca, Salto do Céu e Rincón del Tigre. O objetivo desta pesquisa é caracterizar natureza, evolução petrológica e tectônica do episódio magmático máfico, relacionado a eventos tafrogênicos responsáveis pela ruptura ou tentativa de ruptura da crosta continental. Para tal propósito foi feita uma abordagem multidisciplinar, envolvendo o mapeamento geológico, a realização de análises petrográfica, litoquímica e geocronológica (U-Pb ID-TIMS e Ar-Ar). As unidades estudadas estão localizadas nos municípios de Vila Bela da Santíssima Trindade, Nova Lacerda, Conquista D‟Oeste e Salto do Céu, em Mato Grosso, Porto Murtinho e Caracol, no Mato Grosso do Sul. As rochas da Suíte Salto do Céu ocorrem na região dos municípios de Salto do Céu e Rio Branco (MT) e afloram como soleiras e derrames. As soleiras encontram-se alojadas em rochas pelíticas, até então inseridas como parte do Grupo Aguapeí, com baixos valores de mergulho, quase sempre para WSW. Os derrames recobrem a mesma unidade sedimentar e apresentam estruturas verticais internas e de topo, típicas de fluxos basálticos de pequena espessura. Vesículas e amígdalas, além de feições como dobras de fluxo e brechas são comumente observadas. Petrograficamente, essas rochas são mesocráticas a melanocráticas, cinza-esverdeadas a pretas, equigranulares variando, em geral, de muito finas até médias. As soleiras são compostas por diabásios e gabros maciços que ao microscópio apresentam texturas ofítica, subofítica, intergranular e coronítica. Constituem-se, essencialmente, por plagioclásio e piroxênio, tendo como minerais acessórios: opacos, cristais aciculares de apatita e subédricos de titanita. Os derrames constituem-se de basaltos e diabásios com texturas ofítica, subofítica, hialofítica, porfirítica ou amigdaloidal em matriz pseudo-traquítica e, em alguns exemplares, vitrofírica. Os componentes principais correspondem a cristais de plagioclásio e piroxênio, além de vidro reliquiar. As amígdalas são arredondadas a elipsoidais, preenchidas por material fibroso a fibro-radiado, composto por zeólitas, clorita, fluorita e opacos. As soleiras e derrames têm afinidade toleítica, sendo classificadas como basaltos gerados em ambiente intraplaca continental. Essa unidade apresenta idade U-Pb (ID-TIMS), obtida em badeleíta, de 1439 ± 4 Ma. Dados geocronológicos Ar-Ar em plagioclásio e anfibólio, forneceram idades plateau de 1021 ± 5 Ma e integrada de 1385 ± 9 Ma, respectivamente. Os diques máficos da Suíte Intrusiva Rancho de Prata foram identificados em diversos sítios nas regiões de Nova Lacerda e Conquista D‟Oeste (MT), ao longo de uma faixa com direção NNW, de aproximadamente 30 km de largura e 150 km de extensão, se apresentando como enxame de intrusões paralelas, orientadas segundo a direção N30°–40°W com mergulhos íngremes. Exibem-se isentos de deformação e metamorfismo e mantêm contato intrusivo com as rochas gnáissicas, graníticas e metavulcanossedimentares do embasamento. As rochas dessa unidade caracterizam-se como gabros, diabásios e basaltos, faneríticos, afaníticos a porfiríticos, de granulação muito fina a média. Apresentam-se melanocráticas de cor cinza-escuro a preta, exibindo estrutura maciça, por vezes com foliação discreta paralela às paredes do dique. Microscopicamente, essas rochas são holo a hipocristalinas, e apresentam textura porfirítica, intergranular, sub-ofítica a ofítica, sendo constituídas, dominantemente, por plagioclásio, clino e ortopiroxênio, olivina e anfibólio. Nos basaltos encontra-se esporadicamente vidro intergranular de cor marromescuro. Litoquimicamente classificam-se como basaltos e andesi-basaltos. O magmatismo é do tipo subalcalino e toleítico que, pelas características químicas, se assemelham a basaltos continentais. Os padrões de distribuição dos elementos terras raras (ETR) estão em dois grupos: um fortemente fracionado e enriquecido em ETR leves e outro com pouco fracionamento, com razões médias La/Yb, respectivamente, iguais a 3,22 e 1,26. Idade U-Pb (ID-TIMS), em badeleíta, de 1387 ± 17 Ma foi obtida para este enxame. Dados Ar-Ar em plagioclásio apresentam idades plateaus de 967 ± 5 Ma e 980 ± 7 Ma. Já os dados em anfibólio são heterogêneos, com idades integradas de 1495 ± 8 Ma e 1509 ± 7 Ma. As soleiras e os diques máficos da Suíte Intrusiva Huanchaca estão inseridos no contexto geológico do Terreno Paraguá, em sua porção não afetada pelos efeitos da Orogenia Sunsás (1,1 a 0,9 Ga). Os diques têm como encaixantes rochas do embasamento do Grupo Aguapeí, representadas pelos granitos mesoproterozoicos do Complexo Granitoide Pensamiento, e ortognaisses paleoproterozoicos Shangri-lá e Turvo, do Complexo Metamórfico Chiquitania; enquanto as soleiras encontram-se alojadas nos pelitos e arenitos da Formação Vale da Promissão, Grupo Aguapeí. As soleiras afloram como blocos e lajedos com contatos sempre abruptos e paralelos ao acamamento das rochas sedimentares. Os diques afloram em pequenas e descontínuas cristas orientadas segundo a direção ENE ou como blocos arredondados a angulosos, isolados no terreno granítico-gnáissico, cuja direção preferencial varia entre N70°-90°E. As soleiras, caracterizadas por gabros e diabásios, exibem cor cinza-esverdeado a preta e granulação fina a média. Opticamente, são rochas holocristalinas de textura sub-ofítica a ofítica e, mais raramente, intergranular. Rochas cumuláticas, de ocorrência restrita, foram identificadas com paragênese e texturas semelhantes diferenciando-se pela presença de olivina e grande quantidade de minerais máficos. As rochas das soleiras consistem, essencialmente, de plagioclásio, piroxênio, anfibólio, opacos, e em algumas delas, feldspato alcalino e quartzo com intercrescimento gráfico. Os diques apresentam cor cinza-escuro a cinza-esverdeado, granulação variando da margem para a porção central do corpo de muito fina ou vítrea a média, respectivamente. Classificam-se como diabásios e basaltos, respectivamente holo e hipocristalinos, constituídos essencialmente por plagioclásios, piroxênios e olivina. Ao exame óptico, os diabásios apresentam texturas inequigranular, sub-ofítica e subordinadamente ofítica, granulação fina a média, enquanto nos basaltos domina textura porfirítica, glomeroporfirítica, vitrofírica e, mais raramente, intersertal e hialofítica. Litoquimicamente, os diques e soleiras classificam-se como basaltos andesíticos de magmatismo subalcalino do tipo toleítico, de ambiente intraplaca continental. Os ETR mostram que as rochas das soleiras são mais enriquecidas em ETRtotais do que as dos diques e apresentam uma considerável variação vertical ao envelope, no entanto a ele paralelizada. Idades plateaus Ar-Ar foram obtidas para as soleiras, tanto para o plagioclásio (948 ± 5 Ma) como para o anfibólio (1113 ± 11 Ma). Ainda para as soleiras, foi conseguida uma idade U-Pb (ID-TIMS), em badeleíta, de 1111,5 ± 1,9 Ma. O enxame de diques da Suíte Intrusiva Rio Perdido ocorre encaixado em rochas paleoproterozoicas, ao longo do Terreno Rio Apa (SW do MS) e no Paraguai. Os diques são tabulares a lenticulares, com espessura entre 1 e 30 m, são preferencialmente paralelos segundo as direções N70°-90°E e N70º-90ºW, exibem contatos abruptos e discordantes ao trend geral NS. São compostos por diabásios de granulação muito fina a fina e microgabros finos a médios, isotrópicos, sem quaisquer vestígios de deformação dúctil e metamorfismo. Ao microscópio, classificam-se como holocristalinos, com textura ofítica a subofítica, intergranular, por vezes porfirítica, e localmente quenching, com morfologia do tipo “cauda de andorinha”. Constituem-se essencialmente por plagioclásio, piroxênios e olivina. Apresentam trend toleítico, com enriquecimento em FeOt em relação ao MgO para valores de álcalis relativamente constantes. Classificam-se como basaltos e basaltos andesíticos e quanto à ambiência tectônica, se assemelham à basaltos intraplaca fanerozoicos. O comportamento dos ETR, mostra forte fracionamento de ETR pesados em relação aos ETR leves, com razões La/Yb entre 2,8 e 6,2, com anomalia pouco expressiva ou inexistente de Eu. Dados recentes U-Pb (ID-TIMS), em badeleíta, forneceram idade de 1110 Ma. O Complexo Ígneo Rincón del Tigre corresponde a uma intrusão acamadada, espessa, alojada em rochas do Grupo Sunsás (abaixo) e Grupo Vibosi (acima). Foi denominado na região de Rincón del Tigre (Bolívia), e caracterizado como um registro ígneo relacionado à Orogenia Sunsás. As rochas que compõem esse complexo foram litoestratigraficamente divididas em três unidades: Ultramáfica (basal), Máfica (intermediária) e Félsica (superior). A Unidade Ultramáfica constitui-se por dunito serpentinizado, harzburgito, olivina bronzitito, bronzita picrito e melanorito, enquanto a Unidade Máfica por norito e gabro. A Unidade Félsica está representada por granófiro. Idade U-Pb (ID-TIMS), em badeleíta, de 1110,4 ± 1,8 Ma, obtida a partir de amostra coletada da Unidade Félsica, demonstram similaridade cronológica com rochas de suítes graníticas sin e pós-orogênicas que ocorrem na província Sunsás-Aguapeí, na Bolívia e no Brasil. Com base em dados K-Ar com valores entre 875 e 1006 Ma, todas as unidades acima descritas eram agrupadas a um evento magmático e interpretadas como uma LIP associada à tentativa de ruptura do supercontinente Rodínia. Com base nos novos dados geocronológicos de precisão (U-Pb TIMS em badeleíta e Ar-Ar em anfibólio e plagioclásio) e informações de campo e petrológicas, essa hipótese não se confirma. Existem dois episódios de magmatismo fissural anteriores a aglutinação desse supercontinente: o mais antigo entre 1387 e 1439 Ma e o mais jovem em torno de 1110 Ma. Considerando a evolução do sudoeste do Cráton Amazônico, o episódio mais velho, marcado pelo enxame de diques Rancho de Prata e derrames e soleiras Salto do Céu, provavelmente esteja associado aos estágios pósorogênicos do Arco Magmático Santa Helena do Terreno Jauru; o evento mais jovem, restrito aos Terrenos Paraguá e Rio Apa, representado pelas suítes Huanchaca, Rio Perdido e pelo Complexo Rincón del Tigre, integra uma LIP esteniana na porção sul-sudoeste do Cráton Amazônico, evoluída durante uma tentativa de ruptura continental responsável pelo desenvolvimento do Aulacógeno Aguapeí. As Faixas Sunsás e Aguapeí, marcam o período de aglutinação do supercontinente Rodínia e afetam metamórfica e deformacionalmente parte desta LIP esteniana. / Sills and mafic dyke swarms are an important tool for understanding geodynamic processes once they mark the beginning of large extensional tectonic events, but also they are fundamental indicators of nature and evolution of mantle sources through geological time. In the S-SW Amazon Craton, Proterozoic sills and dyke swarms are reported in Eastern Bolivia, and in the Brazilian states of Mato Grosso and Mato Grosso do Sul. There are examples, such as the dyke swarms of the Huanchaca, Rancho de Prata, and Rio Perdido intrusive suites as well as mafic sills of the Huanchaca, and Salto do Céu suites, and Rincón del Tigre Complex. This work aims to characterize the nature, petrological evolution and tectonics of the mafic magmatic event related to tafrogenetic events that are responsible for the break-up or attempted break-up of continental crust. Several tools were used in order to clarify this issue, such as geological mapping, petrographic, lithogeochemical and geochronological (U-Pb IDTIMS and Ar-Ar) analysis. The studied units are sited in the municipalities of Vila Bela da Santíssima Trindade, Nova Lacerda, Conquista D‟Oeste, and Salto do Céu in Mato Grosso, and in Porto Murtinho and Caracol in Mato Grosso do Sul. Rocks of the Salto do Céu suite occur in the municipalities of Salto do Céu and Rio Branco (MT), and outcrop as sills and lava flows. Sills are emplaced into pelitic rocks of the Aguapeí Group usually with shallow dips towards WSW. Lava flows overly the same sedimentary unit and show internal vertical structures and flow-top structures that are typical of thin basaltic flows. Vesicles and amygdales are commonly observed along with flow-folds and breccias. Petrographically, these rocks are mesocratic to melanocratic, greenish-gray to black, and equigranular varying from very fine- to medium-grained. Sills consist of diabases and massif gabbros that under the microscope show ophitic, sub-ophitic, intergranular, and coronitic textures. They are essentially composed of plagioclase and pyroxene having its accessory assemblage represented by opaques, acicular apatite and subhedral sphene. Lava flows, in turn, consist of basalts and diabases that commonly displays ophitic, sub-ophitic, hyalophitic, porphyritic or amygdaloidal textures in a pseudo-trachytic groundmass; some samples exhibit vitrophyric texture. The main components are plagioclase, pyroxene, and relict glass. Amygdales are rounded to ellipsoidal filled with fibrous to fibro-radiated material which is composed of zeolites, chlorite, fluorite, and opaques. Sills and lava flows have tholeiitic affinity, and are classified as intraplate basalts. This suite shows a U-Pb (ID-TIMS) baddeleyite age of 1439 ± 4 Ma. 40Ar-39Ar analysis of plagioclase and amphibole provided a plateau age of 1021 ± 5 Ma, and an integrated age of 1385 ± 9 Ma, respectively. Numerous mafic dykes of the Rancho de Prata Intrusive Suite occur in the surroundings of Nova Lacerda and Conquista D‟Oeste (MT) along an array about 30 km-wide and 150 km-long trending NNW. They occurs as parallel dyke swarms striking N30°–40°W with steep dips. There are no records of deformation or metamorphism on these rocks which occur in intrusive contact with gneissic, granitic and metavulcanossedimentary rocks of the basement. These mafic dykes consist of gabbros, diabases, and basalts, very fine to medium-grained, which exhibits phaneritic, aphanitic to porphyritic textures. They are melanocratic dark-gray to black, with massif structure, in places with discrete foliation parallel to the dyke walls. Microscopically, these rocks are holo- to hypocrystalline, and show porphyritic, intergranular, and subophitic to ophitic textures, and are essentially composed of plagioclase, clinopyroxene and orthopyroxene, olivine and amphibole. Dark-brown intergranular glass is seldom observed in basalts. Lithogeochemical studies allow us to classify these rocks as basalts and andesiticbasalts. The magmatism is sub-alkaline to tholeiitic whose chemical affinity is compatible with continental basalts. Two groups are observed in rare earth elements distribution patterns: one strongly fractionated and enriched in light ETR, and another one weakly fractionated with medium La/Yb ratios, respectively, 3.22 and 1.26. A U-Pb (ID-TIMS) baddeleyite age of 1387 ± 17 Ma was obtained for the dyke swarms. 40Ar-39Ar analysis of plagioclase provided plateau ages of 967 ± 5 Ma and 980 ± 7 Ma. However, 40Ar-39Ar age-spectrum data for amphibole is heterogeneous, therefore provide integrated ages of 1495 ± 8 Ma and 1509 ± 7 Ma. Sills and mafic dykes of the Huanchaca Intrusive Suite are sited in the portion of the Paraguá Terrane which is not affected by the Sunsás Orogeny (1.1 to 0.9). Dykes occur emplaced into the basement rocks underlying the Aguapeí Group that are represented by the Mesoproterozoic granites Guaporeí and Passagem that form part of the Pensamiento Granitoid Complex, as well as by the Paleoproterozoic orthogneisses Shangri-lá and Turvo that occur within the Chiquitania Metamorphic Complex; sills, in turn, are emplaced into the pelites and sandstones of the Vale da Promissão Formation (Aguapeí Group). Sills outcrop as blocks and low-lying outcrops in abrupt and parallel contacts to the layering of sedimentary rocks. On the other hand, dykes outcrop as small and discontinuous trending-ENE crests, or as single, rounded and angular blocks in the granitic-gnaissic terrane whose main orientation varies between N70°-90°E. Sills consist of gabbros and diabases, are greenish-gray to black in colour, and fine- to medium-grained. Optically, these are holocrystalline with sub-ophitic to ophitic texture, and rare intergranular texture. Cumulate rocks of restricted occurrence were identified with paragenesis and textures similar to each other whose difference is the presence of olivine and high content of mafic minerals. These rocks are essentially composed of plagioclase, pyroxene, amphibole, opaques, and in a few of them, alkali-feldspar and quartz displaying graphic intergrowth are also observed. Dykes are dark-gray to greenish-gray with grain size decreasing from the rock wall towards the center of the body from very fine-grained or glassy to medium-grained, respectively. They are classified as diabases and basalts, respectively, holo to hypocrystalline, and have an essential composition of plagioclase, pyroxene and olivine. Under the microscope, diabases show inequigranular, sub-ophitic, and subordinate ophitic textures, and are fine- to medium-grained, while basalts display porphyritic, glomeroporphyritic, and textures vitrophyric, and rarely intersertal to hyalophitic textures. Chemically, dykes and sills are classified into sub-alkaline andesitic basalts (tholeiitic) formed in intraplate settings. REE patterns show that sills are richer in total REE relative to the dykes, as well as show significant vertical variation with respect to the REE pattern envelope, yet parallel to it. Ar-Ar plateau ages were obtained for the sills both from plagioclase (948 ± 5 Ma), and amphibole (1113 ± 11 Ma). A U-Pb (ID-TIMS) baddeleyite age of 1111.5 ± 1.9 Ma was also obtained for sills. The dyke swarms that form part of the Rio Perdido Intrusive Suite occur emplaced into Paleoproterozoic rocks sited in the Rio Apa Terrane (SW of Mato Grosso do Sul), and Paraguay. Dykes are tabular to lenticular, 1 to 30 m thick, generally striking N70°-90°E and N70º-90ºW. They exhibit abrupt and discordant contact with respect to the general NS trend. Dykes consist of very fine- to fine-grained diabases, and fine- to medium-grained microgabbros, both with no evidence of ductile deformation and metamorphism. Under the microscope, they are holocrystalline with ophitic to sub-ophitic, intergranular, and, in places, porphyritic textures, as well as quench textures in which they display swallow-tail shape. They contain essential plagioclase, pyroxenes and olivine, and show a tholeiitic trend with FeOt enrichment relative to MgO for relatively constant alkali contents. They are classified as basalts and andesitic basalts that are similar to Phanerozoic intraplate basalts. REE patterns show strong fractionation of light REE relative to the heavy, with La/Yb ratios varying between 2.8 and 6.2 and Eu anomalies subtly negative or absent. Recent U-Pb (ID-TIMS) data on baddeleyite provided an age of 1110 Ma. The Rincón del Tigre Igneous Complex is a thick layered intrusion that intrudes into the Sunsás Group (below), and into the Vibosi Group (above). Its name is due to the region of Rincón del Tigre in Bolivia, and is characterized as an igneous event related to the Sunsás Orogeny. It is divided into three units: Ultramafic (basal), Mafic (intermediate), and Felsic (superior). The Ultramafic Unit is composed of serpentinized dunite, harzburgite, olivine bronzite, bronzite picrite, and melanorite, while the Mafic Unit is composed of norite and gabbro. The Felsic Unit is represented by granophyres. A U-Pb (ID-TIMS) baddeleyite age of 1110.4 ± 1.8 Ma was obtained from the Felsic Unit, and show chronological similarity to the syn- and postorogenic granitic suites that occur in the Sunsás-Aguapeí province sited in Bolivia, and Brazil. Based on K-Ar ages varying between 1006 and 875 Ma, the units above were attributed to a single magmatic event and interpreted as a LIP that formed during an attempted breakup of Rodinia. Now, based on new precise geochronologic data (U-Pb TIMS on baddeleyite, and Ar-Ar on amphibole and plagioclase), and field and petrological data, this hypothesis is not supported anymore. There were two fissural magmatic events prior to the agglutination of this supercontinent: the older one with ages of 1439 and 1387 Ma, and the younger one around 1110 Ma old. By taking into account the evolution of the Amazon Craton, the older episode is marked by dyke swarms of the Rancho de Prata suite as well as lava flows and sills of the Salto do Céu suite, likely associated with post-orogenic stages of the Santa Helena Magmatic Arc in the Jauru Terrane; the younger event, which have occurrence restricted to the Paraguá and Rio Apa Terranes, is represented by the Huanchaca, and Rio Perdido suites and Rincón del Tigre Complex, and form part of a Stenian LIP sited in the south-southwestern Amazon Craton. This LIP evolved from an attempted break-up of continental crust that resulted in the formation of the Aguapeí Aulacogen. The Sunsás and Aguapeí Belts mark the period of agglutination of Rodinia, and are responsible for the metamorphism and deformation observed in part of this Stenian LIP.
54

A capa carbonática do sudoeste do cráton amazônico, estado de Rondônia: nova ocorrência e extensão dos eventos pós-glaciação marinoana (635 Ma)

GAIA, Valber do Carmo de Souza 27 November 2014 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-01-28T17:34:27Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_CapaCarbonaticaSudoeste.pdf: 4758047 bytes, checksum: 44e6490f5e043c591b1845fe1c625d35 (MD5) / Approved for entry into archive by Albirene Aires (albireneufpa@gmail.com) on 2015-01-28T17:38:47Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_CapaCarbonaticaSudoeste.pdf: 4758047 bytes, checksum: 44e6490f5e043c591b1845fe1c625d35 (MD5) / Made available in DSpace on 2015-01-28T17:38:47Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_CapaCarbonaticaSudoeste.pdf: 4758047 bytes, checksum: 44e6490f5e043c591b1845fe1c625d35 (MD5) Previous issue date: 2014 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / INCT/GEOCIAM - Instituto Nacional de Ciência e Tecnologia de Geociências da Amazônia / Na porção oeste da Bacia dos Parecis, Estado de Rondônia, inserida no sudoeste do Cráton Amazônico, rochas carbonáticas expostas nas bordas dos grábens Pimenta Bueno e Colorado têm sido consideradas como parte do preenchimento eopaleozoico da bacia. A avaliação das fácies/microfácies e quimioestratigrafia dessas rochas nas regiões de Chupinguaia e Pimenta Bueno, confirmou a ocorrência de dolomitos rosados que sobrepõem, em contato direto, diamictitos glaciais previamente interpretados como depósitos de leques aluviais. Trabalhos prévios reportaram excursão negativa de δ13C, também confirmados neste trabalho, com variações entre -4.6 e -3,8‰VPDB em Chupinguaia e média de - 3,15‰VPDB em Pimenta Bueno. Esse padrão, de sedimentação e quimioestratigráfico, ausente nas rochas paleozoicas, é comumente encontrado nos depósitos carbonáticos anômalos do Neoproterozoico. No sul do Cráton Amazônico, Estado do Mato Grosso, rochas com essas mesmas características são descritas como capas carbonáticas relacionadas à glaciação marinoana (635 Ma). Neste trabalho, consideramos que os dolomitos rosados sobre diamictitos, em Rondônia, fazem parte do mesmo contexto das capas carbonáticas encontradas no Mato Grosso. Adicionalmente, destaca-se o contato brusco e deformado do dolomito sobre o diamictito, presente em ambas as ocorrências, configurando-se uma das feições típicas das capas carbonáticas do Cráton Amazônico. Essa relação paradoxal, entre diamictito e dolomito, tem sido interpretada como produto da mudança rápida das condições atmosféricas de icehouse para greenhouse, e a deformação da base foi gerada pelo rebound isostático. A capa carbonática de Rondônia compreende duas associações de fácies (AF2 e AF3) que recobrem depósitos glacio-marinhos compostos por paraconglomerados polimíticos (Pp), e arenito seixoso laminado (Asl), da AF1. A AF2 consiste em dolomudstone/dolopackstone peloidal com laminação plana a quasi-planar e com truncamentos de baixo-ângulo (fácies Dp), megamarcas onduladas (fácies Dm) e laminações truncadas por ondas (fácies Dt), interpretada como depósitos de plataforma rasa influenciada por ondas. Esta sucessão costeira é sucedida pela AF3, que compreende as fácies: dolomudstone/dolopackstone e dolomudstone/dolograinstone com partição de folhelho (Df) e siltito laminado (Sl). A fácies Df compreende um pacote de 6 metros de dolomito com partição de folhelho, apresentando lâminas de calcita fibrosa (pseudomorfos de evaporito) e dolomitos com laminações onduladas de corrente. Sobrejacente à fácies Df, ocorre a fácies Sl, apresentando 5 metros de siltito argiloso com laminação plana. Esta associação é interpretada como depósitos de plataforma rasa influenciada por maré, sendo sobreposta discordantemente, em contato angular, por depósitos glaciais do Eopaleozoico. Os valores isotópicos de C e O são negativos e refletem o sinal primário do C. No entanto, pode-se considerar uma leve influência da diagênese meteórica no sinal. As principais quebras nos sinais negativos podem estar associadas à influência meteórica, expressa pela substituição e preenchimento de poros por calcita e pela proximidade de superfícies estratigráficas, os quais refletem alguns padrões de alteração diagenética, representados nos sinais mais negativos. Diferentemente da capa carbonática do Mato Grosso, a capa de Rondônia possui níveis de pseudomorfos de evaporito e dolomitos com partição de folhelho (ritmito), em sucessão de fácies marinha rasa, onde os dolomitos de plataforma rasa influenciada por ondas passam para ritmitos e siltitos de plataforma rasa influenciada por maré (zona de inframaré), configurando uma sucessão retrogradante. Esta nova ocorrência de capa carbonática modifica a estratigrafia da base da Bacia dos Parecis, ao passo que exclui essas rochas carbonáticas da sequência eopaleozoica. Além disso, fornece informações que permitem reconstruir melhor a paleogeografia costeira da bacia neoproterozoica que acumulou os depósitos da plataforma carbonática do Grupo Araras, bem como estende os eventos pós-marinoanos ligados à hipótese do Snowball/Slushball Earth para o sudoeste do Cráton Amazônico, exposto no Estado de Rondônia. / In the Western Amazon Craton, specifically in Western Parecis Basin, Rondônia State, carbonate rocks exposed on border of Pimenta Bueno and Colorado Grábens are considered to be part of the eopaleozoic basin fill. The facies and microfacies analysis together with chemostratigraphy of theses rocks in Chupinguaia and Pimenta Bueno Region, confirmed the occurrence of pinkish dolostone that overlie glaciogenic diamictite, previously interpreted as alluvial fan. Previous works reported δ13C negative excursions, confirmed in this work as well, ranging from -4.6 e -3,8‰VPDB in Chupinguaia, and average of -3,15‰VPDB in Pimenta Bueno. This sedimentation and chemostratigraphic pattern, uncommon in paleozoic rocks, is widely found in the anomalous neoproterozoic carbonates. In the Southern Amazon Craton, Mato Grosso State, rocks with the same features were described as cap carbonates related to the Marinoan Glaciation (635 Ma). Therefore this work considers this dolostones at the same context of the cap carbonate in Mato Grosso. Additionally we stand out the sharp and loaded contact between dolostone and diamictite, which happens in both occurrences, and is seemingly a typical feature of cap carbonates in the Amazon Craton. This paradoxal relationship has been interpreted as rapid change from icehouse to greenhouse conditions, and the loaded contact is attributed to isostatic rebound. The Rondônia cap carbonate presents two facies associations (FA2 and FA3) that overlie glaciomarine deposits (FA1) subdivided in two facies: Polymitic paraconglomerates (Pp) and laminated pebbly sandstone (Asl). The FA2 consists into: peloidal dolomudstone/dolopackstone with planar to quasi-planar laminations and low-angle truncations (Dp), megarriple bedding (Dm) and wave truncated laminations. This association is interpreted as shallow platform deposits wave influenced. This coastal succession is overlaid by FA3, which comprises the facies: dolomudstone/dolopackstone and dolomudstone/ dolograinstone with shale partition (Df) and laminated shaly siltstone (Sl). Df comprises 6m-thick of dolomite with parting shale, showing laterally continuous laminations of fibrous calcite (pseudomorph of gypsum) and dolomite with current wavy lamination. The Sl comprises 5m-thick of planar-laminated shaly siltstone. This association is interpreted as shallow platform deposits tide influenced. Finally, this inner platform succession is overlaid unconformably, in angular contact, by eopaleozoic glaciogenic diamictite. The isotopic values of C and O are negative and reflect the primary signal of C, however it can be considered a slight influence of meteoric diagenesis in the signal. The main shifts in negative signals are associated with meteoric influences, expressed by replacement and pores filling by calcite, and also by its proximity of stratigraphic surfaces, which reflect some patterns of diagenetic alteration, represented by the most negative signals. Differently from Mato Grosso cap carbonate, the Rondônia occurrence presents levels of pseudomorph of evaporites and dolomite with parting shale (rhythmites), order in succession of shallow marine facies, where the dolomites of wavy influenced shallow platform pass up-section to rhythmites and shaly siltstone of tide influenced shallow platform, setting up a retrogradational succession. This new occurrence of cap carbonate has strong implications to the stratigraphy of the base of Parecis Basin, since it excludes these carbonate rocks from the eopaleozoic sequence. Moreover, it provides information that allows reconstruct the coastal paleogeography of neoproterozoic basin that accumulated deposits of Araras Platform, as well extends the postmarinoan events of the Snowball/Slushball Earth hypothesis to the southwesternmost Amazon Craton, exposed in the Rondônia State.
55

Geologia, petrografia e geoquímica da associação tonalitotrondhjemito-granodiorito (TTG) do extremo leste do subdomínio de transição, Província Carajás

SANTOS, Patrick Araujo dos 31 July 2013 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-02-25T20:39:13Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_GeologiaPetrografiaGeoquimica.pdf: 9291928 bytes, checksum: bf465ad7da671242b950110ac4d1452b (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-02-27T13:21:11Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_GeologiaPetrografiaGeoquimica.pdf: 9291928 bytes, checksum: bf465ad7da671242b950110ac4d1452b (MD5) / Made available in DSpace on 2015-02-27T13:21:11Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_GeologiaPetrografiaGeoquimica.pdf: 9291928 bytes, checksum: bf465ad7da671242b950110ac4d1452b (MD5) Previous issue date: 2013 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / INCT/GEOCIAM - Instituto Nacional de Ciência e Tecnologia de Geociências da Amazônia / Os estudos geológicos realizados no extremo leste do Subdomínio de Transição da Província Carajás demonstraram que a área estudada é composta dominantemente por associações tonalito-trondhjemito-granodiorito (TTG). De modo subordinado, ocorrem rochas monzograníticas deformadas, associadas aos granitos tipo Planalto, e gabros inseridos na associação máfico-enderbítica. Granitos isotrópicos e diversos diques máficos desprovidos de deformação expressiva seccionam os litotipos arqueanos mapeados. A associação TTG aflora na forma de blocos ou lajedos, geralmente em áreas de relevo arrasado. São rochas de cor cinza e granulação média, mostrando bandamento composicional ou, por vezes, aspecto homogêneo, frequentemente englobando enclaves quartzo-dioríticos. Apresentam-se intensamente deformadas, com foliação dominante segundo E-W e mergulhos fortemente inclinados a subverticais. Localmente apresentam estruturas NE-SW, transpostas por cisalhamentos E-W. Em algumas ocorrências, exibem feições miloníticas a protomiloníticas, registradas nas formas ovaladas dos porfiroblastos de plagioclásio ou de veios leucograníticos boudinados. São reconhecidas duas variedades petrográficas para esta associação: Biotitatrondjhemito e, subordinados, biotita-granodioritos, ambos com conteúdos modais variáveis de muscovita e epidoto. Essas variedades possuem aspectos texturais similares e mostram trama ígnea pouco preservada, mascarada por intensa recristalização, acompanhada do desenvolvimento de foliação milonítica incipiente a marcante. Análises por EDS efetuadas em microscópio eletrônico de varredura revelaram que o plagioclásio possui composição de oligoclásio cálcico (An27-19), com teores de Or variando de 0,6 a 2,3%. As biotitas são ferromagnesianas, com ligeira dominância de Fe sobre Mg (Fe/[Fe+Mg] variando de 0,54 a 0,59) e os epidotos analisados apresentam teores de pistacita que variam de 23 a 27,6%, situados em sua maioria no intervalo de epidotos magmáticos. Estudos litogeoquimicos identificaram duas composições distintas: uma de afinidade trondhjemitica (dominante) e outra granodiorítica e cálcico-alcalina. A primeira apresenta características típicas das suítes TTG arqueanas. A última apresenta enriquecimento em LILE, especificamente K2O, Rb e Ba, quando comparada com os trondhjemitos dominantes, mas ainda preserva alguns aspectos afins das associações TTG arqueanas. Diferentes mecanismos são propostos para explicar a origem e evolução desses dois litotipos. Os dados geoquímicos são inconsistentes com as hipóteses de diferenciação desses dois grupos de rochas por meio de processos de cristalização fracionada a partir de magma tonalítico/trondhjemítico ou derivação dos granodioritos por anatexia das rochas TTG dominantes. Os tonalitos e trondhjemitos exibem afinidade com os grupos de TTG de alta razão La/Yb e Sr/Y da Província Carajás, sugerindo que foram derivados de fontes à base de granada anfibolitos em altas pressões (ca. 1,5 GPa), ou no mínimo apresentam uma evolução magmática controlada pelo fracionamento de granada, fato normalmente admitido para os TTG arqueanos. O estudo comparativo apontou maiores similaridades entre os TTG estudados e o Tonalito Mariazinha e o Trondhjemito Mogno, do Domínio Rio Maria, e com o Trondhjemito Colorado e, em menor grau, Trondhjemito Rio Verde, do Domínio Carajás. As características geoquímicas particulares das rochas granodioríticas podem ser devidas à contaminação de magmas ou rochas TTG a partir de metassomatismo litosférico ou à assimilação de sedimentos oriundos da crosta oceânica em subducção durante a gênese do liquido trondhjemítico. Em ambas as hipóteses, haveria a preservação de parte das características de associações TTG. As associações arqueanas identificadas neste trabalho implicam existência expressiva de rochas TTG no Subdomínio de Transição. Esse fato tende a fortalecer a hipótese de que o Subdomínio de Transição representa uma extensão do Domínio Rio Maria, mas afetado por eventos de retrabalhamento crustal durante o Neoarqueano. Na porção leste da área ocorrem pequenos corpos monzograníticos alongados segundo E-W, claramente condicionados por cisalhamentos. Suas rochas apresentam texturas miloníticas, caracterizadas por porfiroclastos de feldspatos com formas amendoadas, contornados principalmente por micas e quartzo recristalizados. Apresentam assinaturas geoquímicas de granitos tipo-A reduzidos e são similares aos granitos da Suíte Planalto, da área de Canaã dos Carajás. Rochas máficas afloram restritamente na porção centro-norte da área na forma de blocos. São rochas com textura dominantemente granoblástica, com arranjos em mosaico, constituídas basicamente por anfibólio e plagioclásio, com quartzo e biotita subordinados. Na porção norte da área mapeada foi identificado um corpo de granito isotrópico, sem deformação expressiva, com texturas rapakivi localizadas. Apresenta relevo de colinas suaves, com padrão morfológico distinto dos granitóides arqueanos. Este corpo granítico foi correlacionado aos granitos tipo-A paleoproterozoicos, representados no Domínio Carajás pela Suíte Serra dos Carajás e pelo Granito Rio Branco. Esses granitos não são objeto desta pesquisa e, portanto, não foram estudados em maior detalhe. / The eastern border of the Transition Subdomain of the Carajás Province is constituteddominantly of Archean tonalite-trondhjemite-granodiorite (TTG). Deformed monzogranites, similar to the Planalto granite suite, and metagabbros inserted in association mafic-enderbitic also occur. Paleoproterozoic isotropic granites and mafic dykes devoid of significant deformation crosscut the Archean lithologies. The TTGs are exposed as blocks or as flat outcrops in areas of low relief and commonly include quartz-diorite enclaves. The TTG rocks display gray colour and are generally medium-grained, showing compositional banding or, sometimes, homogeneous aspect. They show commonly a NW-SW to E-W trending foliation with vertical to subvertical dips and were submitted to NE-SW stress. Locally, it was identified a NE-SW foliation transposed to E-W along shear zones. In some instances, they exhibit mylonitic to protomilonitics features, registered in the oval form of plagioclase porphyroclasts or boudinated leucogranitics veins. Two petrographic varieties are recognized for this association: biotite-trondjhemite and subordinate biotite-granodiorites, both have similar mineralogical and textural aspects and are characterized by a poorly preserved igneous texture, partially overwritten by an intense recrystallization. EDS analyses revealed that the plagioclase is a calcic oligoclase (An27-19), with Or ranging from 0.6 - 2.3%. The biotites are ferromagnesian, with dominance of Fe over Mg (Fe / [Fe + Mg] ranging from 0.54 to 0.59) and the analyzed epidote presents pistacite contents ranging from 23 to 27.6 % and plot mostly in the range of magmatic epidotes. The trondhjemite shows all typical characteristics of Archean TTG suites. They have high La/Yb and Sr/Y ratios, suggesting they were derived from the partial melting of garnet amphibolite sources at high pressures (ca. 1.5 GPa) or, at least, that their magmatic evolution was controlled by the fractionation of garnet and possibly amphibole, without significant influence of plagioclase. The studied TTGs show similarities with Mariazinha tonalite and Mogno trondjemite, of the Rio Maria Domain, Colorado trondhjemite and, in at a lesser degree, to the Rio Verde trondhjemite, of the Carajás Domain. The granodiorites display a calc-alkaline signature and shows LILE enrichment, specifically K²O, Rb and Ba, when compared to the trondhjemites, but still preserving some geochemical features of the TTG. The geochemical data indicate that the trondhjemite and granodiorite are not related by fractional crystallization. An origin of the granodiorite by partial melting of the TTG rocks is also discarded. The granodiorite could, however, result of contamination of TTG magmas by lithosphere metasomatism or assimilation of sediments from subducted oceanic crust along trondhjemite liquid genesis. In the eastern portion of the mapped area, it was identified a small, E-W trending granite stock clearly controlled by shear zones. The rocks have mylonitic textures, characterized by ovoid-shaped feldspar porphyroclasts, wrapped by recrystallized quartz and mica. These granitic rocks have geochemical signatures of reduced A-type granites and are similar to the Planalto granite suite. Boulders of mafic rocks crop out locally in the northern portion of the area. These rocks show a dominant granoblastic texture, and are mainly composed of amphibole and plagioclase, with subordinate biotite and quartz. In the northern part of the mapped area, it was identified a body of isotropic granite without significant deformation and showing locally rapakivi textures. This granitic pluton was correlated to the Paleoproterozoic A-type granites, represented in the Carajás Domain by the Serra dos Carajás suite and Rio Branco Granite. These granites were not studied in detail. The geological and geochemical aspects shown by the Archean granitoids identified in the eastern part of the Transition Subdomain implies in the existence of significant TTG rocks in the Transition Subdomain. This reinforces the hypothesis that the Transition Subdomain could represent an extension of the Rio Maria Domain, but affected by crustal reworking events in the Neoarchean.
56

Estudos de inclusões fluidas e de isótopos estáveis no depósito Moreira Gomes do campo mineralizado do Cuiú-Cuiú, Província Aurífera do Tapajós, Estado do Pará

ASSUNÇÃO, Rose de Fátima Santos 29 August 2013 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-02-26T17:01:47Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosInclusoesFluidas.pdf: 3761378 bytes, checksum: d5c01cb5bad707e8d73d79e69f149711 (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-02-27T15:24:10Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosInclusoesFluidas.pdf: 3761378 bytes, checksum: d5c01cb5bad707e8d73d79e69f149711 (MD5) / Made available in DSpace on 2015-02-27T15:24:10Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosInclusoesFluidas.pdf: 3761378 bytes, checksum: d5c01cb5bad707e8d73d79e69f149711 (MD5) Previous issue date: 2013 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Moreira Gomes é um dos depósitos do campo mineralizado do Cuiú-Cuiú, província Aurífera do Tapajós, com recursos de 21,7 t de ouro. A zona mineralizada, com 1200 metros de comprimento, 30-50 metros de largura e, pelo menos, 400 metros de profundidade é controlada por uma estrutura subvertical de orientação E-W, associada a um sistema de falhas transcorrentes sinistrais. As rochas hospedeiras nesse depósito são predominantemente tonalitos de 1997 ± 2 Ma (Suite Intrusiva Creporizão). O estilo da alteração hidrotermal relacionado à mineralização é predominantemente fissural e localmente pervasivo. Os tipos de alteração hidrotermal são sericitização, carbonatação, cloritização, sulfetação, silicificação e epidotização, além da formação de veios de quartzo de espessuras variadas. Pirita é principal sulfeto e contém inclusões de galena, esfalerita, calcopirita e, em menor quantidade, de hessita e bismutinita. O ouro ocorre mais comumente como inclusão em cristais de pirita e, secundariamente, na forma livre em veios de quartzo. Ag, Pb e Bi foram detectados por análise semi-quantitativa como componentes das partículas de ouro. Estudo de inclusões fluidas identificou fluidos compostos por CO2 (Tipo 1), H2O-CO2-sal (Tipo 2) e H2O-sal (Tipo 3). O volátil CO2 é predominante na fase carbônica. O fluido do Tipo 2 apresenta densidade baixa a moderada, salinidade entre 1,6 e 11,8 % em peso equivalente de NaCl e foi aprisionado principalmente entre 280° e 350°C. No fluido do Tipo 3 o sistema químico pode conter a Cl2 e, talvez, MgCl2, e a salinidade varia de zero a 10,1% em peso equivalente de NaCl. Apenas localmente a salinidade atingiu 25% em peso equivalente de NaCl. Esse fluido foi aprisionado principalmente entre 120° e 220°C e foi interpretado como resultado de mistura de fluido aquoso mais quente e levemente mais salino, com fluido mais frio e diluído. Globalmente, o estudo das inclusões fluidas indica estado heterogêneo durante o aprisionamento e ocorrência de separação de fases, mistura, flutuação de pressão e reequilíbrio das inclusões durante aprisionamento. A composição isotópica do fluido em equilíbrio com minerais hidrotermais (quartzo, clorita e calcita e pirita) e de inclusões fluidas apresenta valores de δ 18 O e δD entre +0,5 e +9,8 ‰, e -49 a -8 ‰, respectivamente. Os valores de 34 S de pirita (-0,29 ‰ a 3,95 ‰) são provavelmente indicativos da presença de enxofre magmático. Pares minerais forneceram temperaturas de equilíbrio isotópico em geral concordante com as temperaturas de homogeneização de inclusões fluidas e compatíveis com as relações texturais. Os resultados isotópicos, combinados com os dados mineralógicos e de inclusões fluidas são interpretados como produto da evolução de um sistema magmático hidrotermal em três estágios. (1) Exsolução de fluido magmático aquoso e portador de CO2 entre 400°C e 320-350°C, seguido de separação de fases e precipitação principal da assembleia clorita-sericita-pirita-quartzo-ouro sob pressões menores que 2,1 kb e a 6-7 km de profundidade. (2) Resfriamento e continuação da exsolução do CO2 do fluido magmático geraram fluido aquoso, mais pobre a desprovido de CO2 e levemente mais salino, com aprisionamento dominantemente a 250°-280°C. A assembleia hidrotermal principal ainda precipitou, mas epidoto foi a principal fase nesse estágio. (3) Mistura do fluido aquoso do estágio 2, mais quente e mais salino, com um fluido aquoso mais frio e menos salino, de origem meteórica. Carbonatação está associada com esse estágio. A assembleia hidrotermal e os valores isotópicos indicam que fluido foi neutro a levemente alcalino e relativamente reduzido, que H2S (ou HS-) pode ter sido a espécie de enxofre predominante, e que Au(HS) -2 deve ter sido o complexo transportador de ouro. A deposição do ouro em Moreira Gomes ocorreu em resposta a diversos mecanismos, envolvendo a separação de fases, mistura e reações fluido-rocha. O depósito Moreira Gomes é interpretado como o produto de um sistema magmático-hidrotermal, mas não possui feições clássicas de depósitos relacionados a intrusões graníticas, tanto oxidadas como reduzidas. A idade de deposição do minério (1,86 Ga) sugere que o sistema magmático-hidrotermal pode estar relacionado com a fase final do extenso magmatismo cálcio-alcalino da Suíte Intrusiva Parauari, embora o magmatismo transicional a alcalino da Suíte Intrusiva Maloquinha não possa ser descartado. / Moreira Gomes is a recently discovered deposit (preliminary resources of 21.7 t Au) of the Cuiú-Cuiú goldfield, an importante and historical mining área of the Tapajós Gold Province, Amazonian Craton. The mineralized zone is about 1200 m long, 30-50 m wide, and is followed to at least 400 m in depth. The zone is controlled by a subvertical, east-west-trending structure that is related to a left-handed strike-slip fault system. The host rocks in the deposit are predominantly tonalites dated at 1997 ± 2 Ma that are attributed to the magmatic arc or post-collision Creporizão Intrusive Suite. Hydrothermal alteration and mineralization are predominantly of the fissure-filling type and locally pervasive. Sericitization, chloritization, sulfidation, silicification, carbonatization and epidotization are the observed alteration types. Pyrite is by far the predominant sulfide mineral and bears inclusions of chalcopyrite, galena, sphalerite and minor hesite and bismuthinite. Gold occurs predominantly as inclusions in pyrite and subordinately in the free-milling state in quartz veins. Ag, Pb and Bi have been detected by semi-quantitatiive analysis. Three types of fluid inclusions, hosted in quartz veins and veinlets, have been identified. (1) Type 1: one- and two-phase CO2 inclusions; (2) Type 2: two- and three-phase H2O-CO2-salt inclusions, and (3) Type 3: two-phase H2O-salt inclusions. CO2 is largely the predominat volatile phase in the CO2-bearing inclusions. The CO2-bearing types 1 and 2 are interpreted as the product of phase separation of an immiscible fluid. This fluid presentes low to moderate density, low to moderate salinity (1.6 to 11,8 wt.% NaCl equivalent) and was trapped chiefly at 280° to 350°C. In Type 3 fluid, the chemical system may contain CaCl2 and/or MgCl2, salinitye varies from zero to 10.1 wt.% NaCl equivalent. Only locally salinities up to 25% have been recorded. This fluid was trapped mainly between 120° and 220°C and is interpreted as resulting from mixing of a hotter and more saline aqueous fluid (in part derived from phase separation of the H2O-CO2 fluid) with a cooler and dilute aqueous fluid. As a whole, the fluid inclusions indicate phase separation, pressure fluctuations, mixing, and reequilibration during trapping. The isotopic composition of inclusion fluids and of the fluid in equilibrium with hydrothermal minerals (quartz, chlorite, and calcite) show δ18O and δD values that range from +0.5 to +9.8‰, and from -49 to -8‰, respectively. The δ34S values of pyrite (-0.29‰ to 3.95‰) are probably related to magmatic sulfur. Mineral pairs show equilibrium isotopic temperatures that are compatible with the fluid inclusion homogenization temperatures and with textural relationships of the hydrothermal minerals. Isotopic results combined with mineralogical and fluid inclusion data are interpreted to reflect a magmatic-hydrothermal system that evolved in at least three stages. (1) Exsolution of a CO2-bearing magmatic fluid between 400°C and 320-350°C and up to 2.1 kbars (6-7 km in depth) followed by phase separation and main precipitation of the hydrothermal assemblage composed of chlorite-sericite-pyrite-quartz-gold. (2) Cooling and continuous exolution of CO2 producing a CO2-depleted and slightly more saline aqueous fluid that was trapped mainly at 250°-280°C. The predominant hydrothermal assemblage of stage 1 continued to form, but epidote is the main phase at this stage. (3) Mixing of the stage 2 aqueous fluid with a cooler and dilute aqueous fluid of meteoric origin, whis was responsible for the main carbonatization phase. The composition of the hydrothermal assemblage and the fluid and isotopic composition indicate that the mineralizing fluid was neutral to slightly alkaline, relatively reduced (only locally, more oxidezed conditions have been attained, resulting in the precipitation of barite). H2S (and/or HS-) might have been the main súlfur species in the fluid and Au(HS)-2 was probably the gold transporting complex. Gold deposition occurred as a consequence of a combination of mechanisms, such as phase separation, mixing and fluid-rock interaction. The Moreira Gomes is a granite-hosted gold deposit that interpreted to be a product of a magmatic-hydrothermal gold system. The age of ore formation (~1.86 Ga) is consistent with the final stages of evolution of the widespread high-K, calc-alkaline Parauari Intrusive Suite, although the ttransitional to predominantly alkaline Maloquinha Intrusive Suite cannot be ruled out. Notwithstanding, the deposit does not show the classic features of (oxidized or reduced) intrusion-related gold deposits of Phanerozoic magmatic arcs.
57

Estudos isotópicos e de inclusões fluidas no depósito central do campo mineralizado do Cuiú-Cuiú, província aurífera do Tapajós, estado do Pará

ARAÚJO, Ana Claudia Sodré 09 January 2014 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-02-27T18:02:40Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosInclusoes.pdf: 5400718 bytes, checksum: 8eae84db6a618036eae606d7b618a71f (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-03-02T12:44:19Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosInclusoes.pdf: 5400718 bytes, checksum: 8eae84db6a618036eae606d7b618a71f (MD5) / Made available in DSpace on 2015-03-02T12:44:19Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosInclusoes.pdf: 5400718 bytes, checksum: 8eae84db6a618036eae606d7b618a71f (MD5) Previous issue date: 2014 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Central é um depósito aurífero do campo mineralizado do Cuiú-Cuiú, Província Aurífera do Tapajós, Cráton Amazônico. A zona mineralizada está hospedada em falha e compreende 800m de comprimento na direção NW-SE, seguindo o trend regional da província Tapajós, com largura entre 50 e 70m e profundidade vertical de pelo menos 450m. A mineralização está hospedada em monzogranito datado em 1984±3 Ma e atribuído à Suíte Intrusiva Parauari. Os recursos auríferos preliminarmente definidos são de 18,6t de ouro. A alteração hidrotermal é predominantemente fissural. Sericitização, cloritização, silicificação, carbonatação e sulfetação foram os tipos de alteração identificados. Pirita é o sulfeto principal e os demais sulfetos (calcopirita, esfalerita e galena) estão em fraturas ou nas bordas da pirita. O ouro preenche fraturas da pirita e análises semi-quantitativas detectaram Ag associada ao ouro. Foram identificados três tipos de inclusões fluidas hospedados em veios e vênulas de quartzo. O tipo 1 é o menos abundante e consiste em inclusões fluidas compostas por uma (CO2vapor) ou duas fases (CO2liq-CO2vapor), o tipo 2 tem abundância intermediária e é formado por inclusões fluidas compostas por duas (H2Oliq-CO2liq) ou três fases (H2Oliq-CO2liq-CO2vapor) e o tipo 3 é o mais abundante e consiste em inclusões fluidas compostas por duas fases (H2Oliq- H2Ovapor). O CO2 representa o volátil nas inclusões com CO2 e essas (tipo 1 e 2) foram geradas pelo processo de separação de fases oriundo de um fluido aquo-carbônico. A densidade global (0,33 - 0,80 g/cm³) e a salinidade (11,15 - 2,42 % em peso equivalente de NaCl) desse fluido são baixas a moderadas e a temperatura de homogeneização mostra um máximo em 340ºC. Quanto ao tipo 3, o NaCl é o principal sal, a densidade global está no intervalo de 0,65 a 1,11 g/cm³, a salinidade compreendida entre 1,16 e 13,3 % em peso equivalente de NaCl e a temperatura de homogeneização é bimodal, com picos em 120-140ºC e 180ºC. A composição isotópica das inclusões fluidas presentes no quartzo e do quartzo, calcita e clorita mostram valores de δ18O e δD de +7,8 a +13,6 ‰ e -15 a -35 ‰, respectivamente. Os valores de δ34S na pirita são de +0,5 a +4,0 ‰ e δ13C na calcita e CO2 de inclusões fluidas de -18 a -3,7 ‰. Os valores de δ18OH2O e de δDH2O no quartzo e inclusões fluidas, respectivamente, plotam no campo das águas metamórficas, com um desvio em direção à linha da água meteórica. Considerando a inexistência de evento metamórfico na região do Tapajós à época da mineralização, o sistema hidrotermal responsável pela mineralização no Central, inicialmente, deu-se a partir de fluidos aquo-carbônicos magmático-hidrotermais, exsolvidos por magma félsico relacionado com a fase mais tardia de evolução da Suíte Intrusiva Parauari. As inclusões aquo-carbônicas e carbônicas formaram-se nessa etapa, predominantemente em torno de 340°C. A contínua exsolução de fluido pelo magma levou ao empobrecimento em CO2 nas fases mais tardias e, com o resfriamento do fluido, as inclusões aquosas passaram a predominar. A partir daí o sistema pode ter interagido com água meteórica, responsável pelo aprisionamento da maior parte das inclusões aquosas de mais baixa temperatura. É possível que parte das inclusões aquosas (as de maior temperatura) represente a mistura local dos fluidos de origens distintas. Essas observações e interpretações permitem classificar Central como um depósito de ouro magmático-hidrotermal relacionado à fase final da formação da Suíte Intrusiva Parauari. / Central is a gold deposit of the Cuiú-Cuiú goldfield, located in the Tapajós Gold Province, Amazonian Craton. The deposit is hosted in a NW-SE-trending structure and the mineralized zone is followed by 800 m along the strike and 450 m along the dip, and is 50-70 m thick. The ore bodies are hosted in a monzogranite dated at 1984±3 Ma and ascribed to the Parauari Intrusive Suite. Resources are estimated in 18.6 t Au. The hydrothermal alteration is predominantly of the fissure-filling type and sericitization, chloritization, silicification, carbonatization and sulfidation are the main alteration types. Pyrite is the predominant sulfide mineral, whereas chalcopyrite, sphalerite and galena are subordinated phases occurring in fractures and rims of pyrite. Gold particles occur in fractures of pyrite and contain subordinate amounts of silver. Three types of fluid inclusions are hosted in quartz veins and veinlets. Type 1 is the least abundant and is composed of one- (CO2vapor) and two-phases (CO2liq-CO2vapor) inclusions; Type 2 comprises two- (H2Oliq-CO2liq) and three-phases (H2Oliq-CO2liq-CO2vapor) inclusions; Type 3 is the most abundant type and consists of two-phases (H2Oliq-H2Ovapor) inclusions. CO2 is the volatile phase in CO2-bearing inclusions (types 1 and 2) and these inclusions were produced by phase separation of an aqueous-carbonic fluid. The density of this fluid is low to moderate (0,33 - 0,80 g/cm³), as is the salinity (11.15 - 2.42 wt.% NaCl equiv.). The homogenization temperatures show a peak at 340ºC. Type 3 inclusions have NaCl as the main salt component, the global density varies from 0.65 to 1.11 g/cm³, and the salinity ranges from 1.16 to 13.3 wt.% NaCl equiv. The homogenization temperature shows bimodal distribution, with peaks at 120-140ºC and 180ºC. Fluid inclusion and mineral (quartz, chlorite, calcite) isotopic compositions show δ18O and δD values of +7.8 to +13.6 ‰ and -15 a -35 ‰, respectively. Pyrite shows δ34S values of +0.5 to +4.0 ‰ and δ13C values ranging from -18 to -3.7 ‰ were obtained in calcite and CO2 inclusion fluids. The fluid δ18OH2O and δDH2O values plot in the field of metamorphic waters with a weak shift towards the meteoric water line. However, considering the absence of known metamorphic event at the time of mineralization at Central, the fluids are interpreted as belonging to a magmatic-hydrothermal system. Accordingly, the aqueous-carbonic fluids were exsolved from felsic magmas related to the latest phases of evolution of the Parauari Intrusive Suite and the carbonic and aqueouscarbonic fluid inclusions were trapped in this phase, predominantly at 340°C. The continuous exsolution lead to progressive decrease in the CO2 contents of the magmas and to increasing predominance of aqueous fluids. At this time, the fluids might have interacted with meteoric waters and most of the low-temperature aqueous inclusions were trapped. It is possible that part of the aqueous fluid inclusions (those with the highest trapping temperatures) represent local mixing of the different fluid sources. These observations allow to interpret Central as a magmatic-hydrothermal gold deposit related to the final stages of evolution of the Parauari Intrusive Suite.
58

Geologia e petrogênese do “Greenstone Belt” identidade: implicações sobre a evolução geodinâmica do terreno granito - “Greenstone” de Rio Maria, SE do Pará

SOUZA, Zorano Sérgio de Souza 07 October 1994 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-14T12:12:11Z No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaPetrogeneseGreenstone_V1.pdf: 71676863 bytes, checksum: 533a6c11ec5056e6d7d5e3c25ec0a9fc (MD5) Tese_GeologiaPetrogeneseGreenstone_V2.pdf: 25031034 bytes, checksum: a1f5f43677654e5f560b4c78f08e5e4f (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-14T12:28:05Z (GMT) No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaPetrogeneseGreenstone_V1.pdf: 71676863 bytes, checksum: 533a6c11ec5056e6d7d5e3c25ec0a9fc (MD5) Tese_GeologiaPetrogeneseGreenstone_V2.pdf: 25031034 bytes, checksum: a1f5f43677654e5f560b4c78f08e5e4f (MD5) / Made available in DSpace on 2017-02-14T12:28:05Z (GMT). No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaPetrogeneseGreenstone_V1.pdf: 71676863 bytes, checksum: 533a6c11ec5056e6d7d5e3c25ec0a9fc (MD5) Tese_GeologiaPetrogeneseGreenstone_V2.pdf: 25031034 bytes, checksum: a1f5f43677654e5f560b4c78f08e5e4f (MD5) Previous issue date: 1994-10-07 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / FINEP - Financiadora de Estudos e Projetos / Este trabalho trata da geologia e petrogênese do "greenstone belt" Identidade, situado entre as cidades de Xinguara e Rio Maria, SE do Estado do Pará. Os dados obtidos permitiram discutir a evolução geodinâmica do terreno granito - "greenstone" da região de Rio Maria, inserindo-a no contexto da Província Mineral de Carajás (PMC), SE do cráton Amazônico. O "greenstone" em lide compõe um cinturão "sinformal" direcionado WNW-ESE, correspondendo a um pacote metavulcãnico, com xistos ultramáficos (UM), basaltos (BAS) e gabros (GB) na base, e, no topo, rochas hipabissais dacíticas (DAC - ca. 2,94 Ga, Pb/Pb). O conjunto foi intrudido por metaplutônicas Mesoarqueanas, os tipos mais precoces sendo quartzo dioríticos, seguidos sucessivamente por granodioritos (com enclaves máficos), trondhjemitos / tonalitos e leucogranitos. O embasamento gnáissico (GN - aflorante a norte e reconhecido por conter uma fábrica mais antiga Sn-1/D1), o "greenstone" e os metagranitóides foram intrudidos no final do Paleoproterozôico por enxames de diques riolíticos (ca. 1,60 Ga, Rb/Sr) e diabásicos. O "greenstone" apresenta estruturas e texturas ígneas reconhecíveis, porém obliteradas em regiões de contato com metagranitóides e em zonas de cisalhamento. As ultramáficas ocorrem como tremolititos, tremolita - talco xistos e talco xistos; o anfibólio é bastante alongado e fino, comumente em arranjos paralelos, interpretados como fantasmas de texturas "spinifex". Os basaltos são maciços ou almofadados, freqüentemente variolíticos. Mostram diferentes graus de recristalização, sendo identificados restos de texturas hialofiticas, pilotaxíticas e traquitóides. Clinoanfibólio (hornblenda actinolítica), epídotos e plagioclásio (albita - andesina) são os minerais mais abundantes. Os gabros são maciços a porfiriticos, distinguindo-se relíquias de texturas subofiticas e granofiricas. Os dacitos são porfiríticos, com fenocristais de quartzo e plagioclásio (oligoclásio), além de hornblenda e nódulos máficos (biotita, clorita, opacos, epidotos, titanita, apatita) nas variedades menos evoluídas. Dentre os metagranitóides, os leucogranitos e trondhjemitos contêm biotita cloritizada, enquanto granodioritos e parte dos tonalitos portam biotita ou biotita + hornblenda (também em quartzo dioritos). O "greenstone" e os metagranitóides foram afetados por uma deformação dúctil, heterogênea, que evoluiu para zonas miloníticas. A estruturação da área é marcada por uma fábrica planar (Sn//Sm/D2) direcionada WNW-ESE a E-W, de mergulhos divergentes. Lineações de estiramento E-W, WNW-ESE ou NW-SE, meso e microestruturas assimétricas S-C, peixes de micas e de clinoanfibólios, e rotações de porfiroclastos a e 15 indicaram uma megaestrutura resultante de um binário com encurtamento NW-SE. A geometria atual do "greenstone" seria derivada de transpressão dextrógira, com o "greenstone" compondo uma estrutura em flor positiva. O regime transpressivo favoreceu a criação de regiões transtrativas, onde se alojaram plútons graníticos no NW, além de clivagens de crenulação extensional (Sn+i/D2) no SW. A quantificação da deformação revelou encurtamento da ordem de 60%, extensão subhorizontal, paralela ao "trend" do "greenstone", de 68 a 500%, e extensão vertical de 101 a 280%. O elipsóide de deformação variou de oblato a prolato, com mudanças de densidade e rotação do eixo de estiramento máximo (X) nas zonas miloníticas. A inversão da deformação permitiu reconstruir a forma original do "greenstone", que seria também alongada WNW-ESE, embora de excentricidade menor que a atual. Estes dados, juntamente com a petrofábrica do eixo c do quartzo, sugeriram que a deformação progressiva envolveu mecanismos de cisalhamento puro e simples, sendo o arcabouço final resultante deste último. Falhas e fraturas rúpteis diversas, afetando também diques riolíticos e diabásicos, marcaram o último evento (D3). As paragêneses minerais do metamorfismo principal (Mn/M2) originaram-se de recristalização estática, pré-tectônica, que modificou parte das texturas e quase totalmente a mineralogia das rochas do "greenstone". Formaram-se anfibólio verde azulado (hornblenda actinolítica), epídotos (pistacita predominante), titanita e quartzo em BAS e GB; tremolita, talco e clorita em UM. Saussuritização e sericitização de plagioclásio, biotitização de anfibólio, cloritização de biotita e transformação de hornblenda em titanita verificaram-se nos metagranitóides. A coexistência de hornblenda + plagioclásio (An> 17) e/ou hornblenda actinolítica + epidotos + clorita em rochas metabásicas mostrou que o evento supra foi de pressão baixa e temperaturas transicionais entre as fácies xisto verde e anfibolito. Este episódio essencialmente térmico refletiu o aquecimento crustal produzido pelo plutonismo do final do Mesoarqueano, tendo obliterado as associações prévias do metamorfismo de fundo oceânico. Ligeiramente concomitante a francamente subseqüente, houve um evento de recristalização dinâmica extensiva (Mm/M2) na fácies xisto verde, particularmente em zonas de cisalhamento e contatos litológicos. Em tais locais, existem evidências de aporte de fluidos (blastomilonitos xistosos e abundantes veios de quartzo) e remobilização da maioria dos elementos químicos (Al, Fe, Ca, K, Na, Rb, Sr, Zr). Em condições PT ainda menores, deu-se finalmente a ação de um evento discreto, relacionado com crenulações e formando clorita, epídotos e quartzo (Mn+1/M2). O evento M2, bem como aquele detectado somente em GN (M1 em fácies anfibolito), foram de natureza dúctil, o que os distinguiu nitidamente do último episódio (D3/M3). Este foi posicionado no final do Paleoproterozóico, tendo caráter hidrotermal e associado á feições rúpteis de alto nível crustal. A evolução progressiva do metamorfismo M2, com pico térmico precoce ao pico da deformação, sugeriu uma trajetória P-T-t anti-horária, correspondente á evolução metamórfica de bacias marginais fanerozóicas. Algumas análises químicas de rochas metavulcânicas permitiram a definição de séries magmáticas e discussão de modelos petrogenéticos. Reconheceram-se três séries geoquímicas, a saber, da mais antiga para a mais nova, komatiítica (UM), toleitica (BAS e GB) e cálcio-alcalina (DAC). A primeira corresponde a komatiitos peridotíticos, com MgO>18% em peso (base anidra), com um "trend" de enriquecimento em Al, tal como em Geluk e Munro, e menos cálcico do que Barberton. Os padrões de terras raras leves são irregulares, com razões (La/Sm)N entre 0,42 e 4,2 e anomalias negativas de Eu. Os terras raras pesadas pareceram menos afetados por processos pós-eruptivos, sendo planos ou ligeiramente fracionados (1,0<(Gd1Yb)N<2,3). Modelos quantitativos foram de dificil execução em virtude da remobilização de vários elementos, porém, em termos qualitativos, foi possível estimar cumulados ricos em olivina e ortopiroxênio. Dentre os toleítos, BAS e GB apresentaram padrões geoquímicos muito similares entre si. Ambos são toleítos de baixo potássio, comparáveis a toleítos arqueanos empobrecidos. Os elementos terras raras são quase planos, com valores 10X o condrito, e anomalias fracas ou inexistentes de Eu. Modelos preliminares sugeriram cumulados semelhantes para BAS e GB, compostos essencialmente de clinopiroxênio e plagioclásio. De acordo com alguns cálculos geoquímicos, a fonte dos magmas que originaram os komatiitos e toleítos seria o lherzolito a granada. Os DAC apresentaram características geoquímicas afins à metavulcânicas e metaplutônicas cálcio-alcalinas tanto modernas quanto arqueanas, seguindo o "trend" trondhjemítico. A diferenciação magmática teria decorrido por fracionamento de plagioclásio>quartzo>hornblenda>K-feldspato, com quantidades accessórias de biotita, magnetita, titanita, alanita e zircão. A fonte do magma dacítico seria crustal do tipo toleíto metamorfisado em fácies granada anfibolito e ligeiramente enriquecido em terras raras leves. No modelo geodinâmico proposto, já existia um embasamento gnáissico antes de 2,96 Ga. Entre 2,96 e 2,90 Ga, a conjugação de alto gradiente geotérmico com extensão litosférica provocou o rifteamento continental, formando bacias marginais, onde se daria a extrusão de komatiitos e toleítos. Em torno de 2,94(?)-2,90 Ga, geraram-se os DAC através de fusão de crosta oceânica em zonas de subducção, evoluindo por fracionamento a baixas pressões. Os mesmos mecanismos geradores dos DAC também seriam responsáveis pelo plutonismo cálcio-alcalino, culminando com a inversão estrutural do "greenstone", espessamento crustal e forma final do terreno granito - "greenstone" (transpressão dextrógira ca. 2,88-2,86 Ga). A região sofreu ainda um episódio de (rea)quecimento, detectado a nível de minerais, sem deformação e metamorfismo correlatos, ao final do Eoarqueano (2,69-2,50 Ga), e intrusão de enxames de diques riolíticos (1,60 Ga, Rb/Sr) e diabásicos ao final do Paleoproterozóico. A correlação com o conhecimento atual da PMC permitiu admitir que o terreno granito - "greenstone" de Rio Maria já estava configurado quando da implantação do Supergrupo Itacaiúnas (ca. 2,76 Ga) e da granitogênse alcalina na Serra dos Carajás. Assim, a transpressão sinistrógira que inverteu aquele supergrupo corresponderia a um evento posterior e bem distinto da transpressão dextrógira da região de Rio Maria. / This thesis deals to the geology and petrogenesis of the Identidade greenstone belt, located between Xinguara and Rio Maria towns, SE of Pará state. The data of this area permitted the discussion of the tectonic evolution of the gravite greenstone terrain of the Rio Maria region in the context of the Província Mineral de Carajás, SE of the Amazonian craton. The greenstone studied compose a synformal belt in the WNW-ESE direction, corresponding to one metavolcanic pile, formed predominantly by ultramafic schists (UM), basalts (BAS) and gabbros (GB) at the base, and hypabyssal dacitic rocks (DAC - ca. 2.94 Ga, Pb/Pb) at the top. The whole was intruded by metaplutonic rocks of Mesoarchean ages, the older one being quartz diorites, followed successively by granodiorites, trondhjemites / tonalites and leucogranites. The gneissic basement (GN - outcroping toward north and recognized for having an older fabric Sn-1/D1), the greenstone and the metagranitoids were intruded by hypabyssal rhyolitic (ca. 1.60 Ga, Rb/Sr) and basic dykes at the end of the Paleoproterozoic. The greenstone presents igneous structures and textures still recognized, although obliterated near the contacts with the metagranitoids and shear zones. The ultramafics occur as tremolitites, tremolite - talc schists and talc schists; the amphibole is very elongated and thin, commonly in parallel arrays, interpreted as ghosts of spinifex textures. The basalts are massive or pillowed and frequently variolitic. They show different degrees of recrystallization, with some relicts of hyalophitic, pilotaxitic and traquitoid textures. Clinoamphibole (actinolitic hornblende), epidotes and plagioclase (albite - andesine) are the most abundant minerais. The gabbros may be massives to porphyritics (plagioclase phenocrysts), still with some relicts of subophitic and granophyric textures. The dacites are porphyritic, with phenocrysts of quartz and plagioclase (oligoclase), besides hornblende and mafic clots (biotite, chlorite, opaque minerais, epidotes, sphene, apatite) in the less evolved samples. Concerning the metagranitoids, the leucogranites and trondhjemites have chloritized biotite, whereas the granodiorites and some tonalites comprise biotite or biotite + hornblende (also in quartz diorites). The greenstone and the metagranitoids were affected by one event of heterogeneous, ductile deformation, that evolved to mylonitic zones. The structural framework of the area is marked by a planar fabric (Sn//Sm/D2) in the WNW-ESE to E-W direction, with moderate to strong dips in a divergent fan. E-W, WNW-ESE or NW-SE stretching lineations, meso and asymmetric S-C microstructures, mica and clinoamphibole fishes, and rotation of o and i porphyroclasts indicated one megastructure resulting from a binary system with NW-SE shortening direction. The actual geometry of the greenstone would be derived from a dextral transpression, with the greenstone forming a positive flower structure. The transpressional regime favored the grow of transtensional cites and subsequent emplacement of granitic plutons on the NW contact, and extensional crenulation cleavage (Sn+1/D2) on the SW of the greenstone. Strain measurements displayed a ca. 60% shortening, subhorizontal extension of ca. 60 to 500% parallel to the greenstone trend, and vertical extension of ca. 101 to 280%. The strain ellipsoid may be oblate to prolate, with changes in density and rotation of the axis of maximum stretching (X) toward the mylonitic zones. The inversion of the deformation permitted the reconstruction of the original shape of the greenstone, that would be also elongated WNW-ESE, but with lesser eccentricity than today. These data, together with the quartz petrofabric, suggested that the deformation has been accommodated by pure and simple shear mechanisms, the final framework resulting essentially from the later. The last event (D3) are represented by faults and fractures which also affected the felsic and basic dykes. The paragenesis of the main metamorphic event (Mn/M2) is represented by static recrystallization, which modified some textures and almost ali minerais within the greenstone. The minerais formed phases were bluish green amphibole (actinolitic hornblende), epidotes, sphene and quartz in BAS and GB; tremolite, talc and chlorite in UM. The metagranitoids show transformations of plagioclase (saussurite, fine white mica), amphibole (to biotite and/or sphene) and biotite (to chlorite). The coexistence of hornblende + plagioclase (An>17) and/or actinolitic hornblende + chlorite in metabasic rocks shows that this event was of low pressures and temperatures in the transitional field of the greenschist and amphibolite facies. This episode should reflect a regional crustal heating produced by the plutonism at the end of the Mesoarchean, that obliterated the previous associations of ocean floor metamorphism. Slightly coeval to subsequently, it occurred one event of extensive dynamic recrystallization (Mm/M2) in the greenschist facies, specially within shear zones and lithological contacts. In these places, there are evidences of fluid incoming (schistose blastomylonites and abundant quartz veins) and remobilization of chemical elements (Al, Fe, Ca, K, Na, Rb, Sr, Zr). Finally, under lower PT conditions, it occurred a less expressive event related to crenulation cleavages and forming chlorite, epidotes and quartz (Mn+1/M2). The M2 event, as well as the one detected only in GN (M1 under amphibolite facies), was of ductile nature and cleary distinguished from the last one (D3/M3). The later was placed at the end of the Paleoproterozoic, being of hydrothermal character and associated to high crustal structures. The progressive evolution of the M2 metamorphism with its thermal peak predating the deformation suggested a counterclockwise P-T-t path, corresponding to the metamorphic evolution of Phanerozoic marginal basins. Some chemical analysis of the metavolcanic rocks permitted the definition of magmatic series and a discussion of petrogenetical modeling. It was possible to recognize three geochemical series, that is, from the older to the younger, komatiitic (UM), tholeiitic (BAS and GB) and calc-alkaline (DAC). The first one corresponds to peridotitic komatiites with MgO>18 weight % (volatile-free basis), with an enrichment trend in Al, such as in Geluk and Munro, and less calcic than the Barberton one. The light rare earth element patterns are irregular with (La/Sm)N ratios between 0.42 and 4.2 and negative Eu anomalies. The heavy rare earth elements seem less affected by post-eruptive processes, being plate or slightly fractionated (1.0<(Gd/Yb)N<2.3). The quantitative models were of hard execution due to the remobilization of several elements. It was possible estimate cumulates rich in olivine and orthopyroxene. With regarding to tholeiites, the BAS and GB showed very similar geochemical signatures, both being low potassium tholeiites comparable to depleted Archean tholeiites. The rare earth elements are almost plate, with values 10X the chondrite, and slight or no Eu anomaly. Preliminary modeling suggested similar cumulates for BAS and GB, composed essentially by clinopyroxene and plagioclase. The magma sources that originated the komatiites and tholeiites would be a garnet lherzolite. The DAC presented geochemical characteristics of modern and Archean metavolcanics and metaplutonics of trondhjemitic nature. The magmatic differentiation would be achieved by fractionation of plagioclase>quartz>hornblende>K-feldspar, with subordinated amount of biotite, magnetite, sphene, allanite and zircon. The source of the dacitic magma would be a tholeiite metamorphosed to the garnet amphibolite facies and somewhat enriched in light rare earth elements. The geodynamical model proposed admit the existence of a gneissic basement prior to 2.96 Ga. Between 2.96 and 2.90 Ga, the interplay of high geothermal gradients and lithospheric extension was responsible for extensive rifting, forming marginal basin systems, where extruded the komatiitic and tholeiitic rocks. At 2.94(?)-2.90 Ga, the DAC were generated from partia' melting of oceanic crust in subduction zone settings, and evolved by low pressure fractional crystallization. The same mechanisms that generated the DAC are extended also to the calc-alkaline plutonism, this one being responsible for the structural inversion of the greenstone, crustal thickening and final shape of the granite - greenstone terrain (dextral transpression ca. 2.88-2.86 Ga). The region still suffered a late episode (end of Eoarchean, 2.69-2.50 Ga) of (re)heating, registered only in sorne mineral, without any evidente of deformation and/or metamorphism. Finally, it occurred the intrusion of felsic (1.60 Ga, Rb/r) and basic dykes at the end of the Paleoproterozoic. The correlation with the actual understanding of the Província Mineral de Carajás permitted envisage that the Rio Maria granite - greenstone terrain was then configured at the moment of implantation of the Itacaiúnas Supergroup (ca. 2.76 Ga) and alkaline granitic plutonism at the Serra dos Carajás. So the sinistrai transpression that inverted that supergroup would correspond to a newer event, very distinct as regards as the dextral transpression of the Rio Maria region.
59

Geologia, geoquímica e geocronologia do magmatismo paleoproterozóico da região de Vila Riozinho, Província Aurífera do Tapajós, Cráton Amazônico

LAMARÃO, Cláudio Nery 27 September 2001 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-12T13:30:19Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaGeoquimicaGeocronologia.pdf: 70010912 bytes, checksum: 246141d661634494d43810aa22911925 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-12T16:20:58Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaGeoquimicaGeocronologia.pdf: 70010912 bytes, checksum: 246141d661634494d43810aa22911925 (MD5) / Made available in DSpace on 2017-04-12T16:20:58Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaGeoquimicaGeocronologia.pdf: 70010912 bytes, checksum: 246141d661634494d43810aa22911925 (MD5) Previous issue date: 2001-09-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / A Província Aurífera do Tapajós (PAT), situada na porção centro-meridional do Cráton Amazônico, é caracterizada pela ocorrência de extensas suítes de rochas plutônicas e vulcânicas. Muitas destas estão representadas na região de Vila Riozinho, localizada na porção nordeste da PAT, próxima ao contato entre as províncias Ventuari-Tapajós ou Tapajós-Parima e Amazônia Central. O magmatismo da porção sul da região de Vila Riozinho é representado pelas rochas vulcânicas da Formação Vila Riozinho e pelo maciço São Jorge, no qual foram individualizados os granitos São Jorge Antigo e São Jorge Jovem, além de pequenas ocorrências de granitos pórfiros. A Formação Vila Riozinho é constituída por andesitos basálticos, traquiandesitos basálticos, traquitos, riolitos, tufos e brechas com assinatura geoquímica cálcico-alcalina alto-K a shoshonítica. Datações Pb-Pb em zircão em traquitos desta unidade revelaram idades de 2004±4 Ma e 1998±3 Ma. O Granito São Jorge Antigo corresponde a maior parte do pluton São Jorge. Este é composicionalmente zonado, sendo formado por uma série expandida à base de monzodioritos a quartzo-monzodioritos nas bordas nordeste, norte e leste, monzogranitos a quartzo-monzonitos nas porções intermediária-central e leucomonzogranitos a sienogranitos no centro, correspondendo às rochas mais evoluídas do corpo. Apresenta composição metaluminosa a fracamente peraluminosa, afinidade cálcico-alcalina alto-K e características geoquímicas de granitos gerados em ambiente de arco vulcânico. Datações Pb-Pb em zircão em rochas monzograníticas forneceram idades de 1981±2 Ma e 1983±8 Ma, interpretadas como idades de cristalização do corpo. O Granito São Jorge Jovem foi identificado inicialmente em testemunhos de sondagens na área de garimpo São Jorge, sendo o hospedeiro da mineralização aurífera primária. É mineralógica e petrograficamente similar ao Granito São Jorge Antigo, porém apresenta feições geoquímicas contrastantes e idade de cristalização de 1891±3 Ma. A porção norte da região de Vila Riozinho é dominada por rochas vulcânicas efusivas e piroclásticas félsicas pertencentes à Formação Moraes Almeida, associadas ao Granito Maloquinha. A Formação Moraes Almeida é constituída predominantemente por ignimbritos com riolitos e traquitos subordinados. Os ignimbritos forneceram idade Pb-Pb em zircão de 1875±4 Ma, enquanto riolitos e traquitos de 1890±6 Ma e 1881+4 Ma, respectivamente. O Granito Maloquinha, com idade Pb-Pb em zircão de 1880±9 Ma, é formado por leuco-sienogranitos com leucomonzogranitos subordinados. Os estudos realizados mostraram que as rochas pertencentes a essas duas unidades possuem fortes similaridades petrográficas e assinaturas geoquímicas semelhantes a de granitos do tipo-A aluminosos. Tais fatos evidenciam uma ligação genética entre o Granito Maloquinha e a Formação Moraes Almeida. Além desses, foi estudado, ainda que de modo preliminar, o Granito Jardim do Ouro situado na extremidade noroeste da área. Corresponde a um anfibólio-biotita-monzogranito com idade de 1880 +3 Ma similar a do Granito Maloquinha, porém com feições mineralógicas e geoquímicas distintas deste. Os escassos dados disponíveis indicam que o Granito Jardim do Ouro diverge igualmente dos granitos São Jorge Antigo e São Jorge Jovem, por ser comparativamente mais alcalino e formado em condições menos oxidantes. Pelo menos dois tipos de granitos pórfiros foram identificados na região de Vila Riozinho. O primeiro, provavelmente mais velho, associa-se espacialmente e mostra muitas similaridades geoquímicas com a fácies anfibólio-biotita-monzogranito a quartzo-monzonito do Granito São Jorge Antigo. O segundo, ocorre no contato entre os ignimbritos da Formação Moraes Almeida e o Granito Maloquinha. Mostra uma assinatura geoquímica similar à do Granito Jardim do Ouro e à do traquito da Formação Vila Riozinho. Dois importantes períodos de intensa atividade magmática foram identificados na região de Vila Riozinho no final do Paleoproterozóico. No primeiro, compreendido entre 2010 e 1970 Ma, foram gerados a Formação Vila Riozinho e o Granito São Jorge Antigo. No segundo, situado entre 1900 e 1870 Ma, foram originados a Formação Moraes Almeida e os granitos São Jorge Jovem, Maloquinha e Jardim do Ouro. Admite-se que o magmatismo cálcico-alcalino alto potássio formado no período de 2010 a 1970 Ma teve sua origem relacionada a processos de subducção. As manifestações magmáticas que ocorreram em torno de 1,88 Ga poderiam representar uma fase tardia, ainda vinculada aos processos de subducção ou corresponder às primeiras manifestações de processos de tafrogênese que afetaram globalmente o Cráton Amazônico a partir de 1,88 Ga e se estenderam durante o Mesoproterozóico. A segunda hipótese implica admitir fontes crustais para o magmatismo e é adotada neste trabalho. / Several Paleoproteroic granitoids and two volcanic sequences were studied in the Vila Riozinho region. This region is located in the eastern area of the Tapajós Gold Province, near the border between the Tapajós and Central Amazonian tectonic provinces in the south-central part of the Amazonian craton. In the southern part of the region, it was identified the Vila Riozinho volcanic sequence composed of basaltic andesite, basaltic trachyandesite, trachyte and rhyolite, with a high-K calc-alkaline to shoshonitic geochemical signature. Pb-Pb zircon dating indicate ages of 2000 + 4 Ma and 1998 + 3 Ma for this sequence. The São Jorge granite pluton is spatially associated with this volcanic sequence. Two granitoids were distinguished in the pluton, the Old São Jorge granite, with Pb-Pb zircon ages of 1981 + 2 Ma and 1983 + 8 Ma, and the Younger São Jorge granite with an age of 1891 + 3 Ma. The Older São Jorge granite, largely dominant in the pluton, is composed of an expanded magmatic series including biotite-amphibole monzodiorite/quartz monzodiorite, amphibole-biotite monzogranite/quartz monzonite, biotite leucomonzogranite/syenogranite and granite porphyry. It has a metaluminous to mildly peraluminous character, and high-K cale-alkaline signature, similar to that of volcanic arc granitoids. The Younger São Jorge granite was initially identified in drill cores obtained in the gold mineralized area of the pluton. In that area, it corresponds to a hornblende-biotite monzogranite, but biotite leucogranites occur in the southern part of the pluton. This granite also has a high-K calc-alkaline signature, but it differs from the Older São Jorge granite in some geochemical and mineralogical aspects and it is comparatively younger. In the northern part of the Vila Riozinho region, it was identified the Moraes Almeida volcanic sequence, the Maloquinha and Jardim do Ouro granites and a granite porphyry distinct from that associated with the Older São Jorge granite. The Moraes Almeida Formation is composed of ignimbrite and rhyolite with subordinate trachyte, with Pb-Pb zircon ages of 1875 + 4 Ma, 1890 + 6 Ma and 1881 + 4 Ma, respectively. The 1880 + 9 Ma old Maloquinha granite is composed of leucosyenogranite and subordinate leucomonzogranite. This granite and the rhyolite and ignimbrite of the Moraes Almeida Formation show affinities with aluminous, A-type series. The strong petrographic and geochemical similarities between these rocks suggest that they are cogenetic. An age of 1880 + 3 Ma, similar to that of the Maloquinha grafite, was obtained for the Jardim do Ouro hornblende-biotite monzogranite. However, preliminary data indicate that it differs from the former, as well as from the Older São Jorge and Younger São Jorge granites, in petrographic and geochemical aspects. Geochemical and mineralogical data allow the distinction of two different types of grafite porphyries. The first one is spatially associated and similar to the Older São Jorge granite. The second occurs along the contact between the Maloquinha granite and the ignimbrite of the Moraes Almeida Formation and is geochemically similar to the Jardim do Ouro granite and trachyte of the Moraes Almeida Formation. The magmatic activity in the Vila Riozinho region is concentrated into two distinct periods, near the end of the Paleoproterozoic. The Vila Riozinho Formation and the Older São Jorge granite formed during the first period between 2010 and 1970 Ma. At the second period, between 1900 and 1870 Ma, the Moraes Almeida Formation, Maloquinha, Younger São Jorge and Jardim do Ouro granites were formed. The high-K calc-alkaline magmatism that was formed during the first period is probably related to subduction processes. Two hypotheses are considered to explain the diversified magmatic activity registered during the second period: (1) the different magmas could result from late tectonic activity related to the subduction processes; (2) these magmas are related to taphrogenetic processes that affected the Amazonian craton at 1.88 Ga and lasted the entire Mesoproterozoic. It implies to admit a crustal source for the magmas originated during the second period. The second hypothesis is assumed as the more plausible at this stage, but the need for additional isotopic information is emphasized.
60

Evolução geológica das seqüências do embasamento na porção sul do Cinturão Araguaia - Região de Paraíso do Tocantins

ARCANJO, Silvia Helena de Souza 12 September 2002 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-17T13:13:47Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_EvolucaoGeologicaSequencias.pdf: 13246701 bytes, checksum: 03019e18343f52273b123eb40b406f07 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-17T16:28:00Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_EvolucaoGeologicaSequencias.pdf: 13246701 bytes, checksum: 03019e18343f52273b123eb40b406f07 (MD5) / Made available in DSpace on 2017-04-17T16:28:00Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_EvolucaoGeologicaSequencias.pdf: 13246701 bytes, checksum: 03019e18343f52273b123eb40b406f07 (MD5) Previous issue date: 2002-09-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As unidades litoestratigráficas do embasamento do segmento sul do Cinturão Araguaia, em função dos restritos registros geocronológicos, foram inicialmente consideradas como de idade arqueana. Este posicionamento estratigráfico começou a ser modificado após as primeiras investigações geocronológicas sistemáticas que surgiam, a partir da segunda metade da última década, revelaram um predomínio de processos geológicos do Paleoproterozóico, contrastando com as idades arqueanas encontradas em ortognaisses do embasamento do segmento setentrional do cinturão. Um estudo isotópico foi realizado nas rochas que constituem as seqüências do embasamento no segmento sul do Cinturão Araguaia, arredores de Paraíso do Tocantins e os resultados do mesmo, apresentados neste trabalho, tiveram como base as metodologias de evaporação de Pb em monocristais de zircão (Pb-Pb em zircão) e Sm-Nd (rocha total). Estes foram empregados com intuito de aperfeiçoar o quadro estratigráfico e reconstituir a evolução geológica desse segmento crustal, onde ocorrem o Grupo Rio do Coco, o Complexo Rio dos Mangues e o Granito Serrote, bem como à Suíte Monte Santo, que também aparece nesse contexto. Os processos geológicos identificados para a região aconteceram a partir do Arqueano e estenderam-se até o Neoproterozóico. Os primeiros indícios de fontes arqueanas foram obtidos em alguns restritos corpos ortoderivados no setor leste da área mapeada, cujas idades TDM situaram-se entre 3,25 e 2,78 Ga. De maneira clara, o Arqueano, ocorre na porção noroeste da área estudada, sendo representado por uma rocha metabásica pertencente ao Grupo Rio do Coco (seqüência greenstone belt), com idade de 2.618 ± 14 Ma, que é interpretada como a idade de extrusão do protólito vulcânico. Representariam assim dois segmentos crustais pretéritos individualizados na região. No Paleoproterozóico foi constituído o Complexo Rio dos Mangues, a unidade de maior expressão no embasamento, cujos registros das idades (Pb-Pb em zircão) encontrados nos ortognaisses que o compõem variaram desde 2.054 ± 4 Ma até 2.086 ± 16 Ma, formados a partir de fonte mantélica, juvenil, com uma menor contribuição crustal e idades TDM entre 2,35 e 2,21 Ga. Os processos geológicos que marcaram este período, de maneira geral, envolveram encurtamento crustal, com a participação de colisões e cavalgamentos que facilitaram a fusão parcial de compartimentos crustais, espessados, resultando na geração de alguns corpos ígneos (1,85 e 1,82 Ga) e do Granito Serrote (1,86 Ga). O Granito Serrote, apesar de ter se colocado ao final do Paleoproterozóico, foi gerado a partir de fontes ainda mais antigas que aquelas do Complexo Rio dos Mangues, situadas entre 2,50 e 2,43 Ga. O segmento crustal continental então estabelecido, com rochas de idades e origens diversas, pode ser projetado para leste, muito além da área aqui enfocada, no contexto da arquitetura do Supercontinente Atlântica, consolidado de forma definitiva no final do Paleoproterozóico. Ao término de um longo período durante o qual não se registraram eventos tectônicos significativos, no final do Mesoproterozóico, sobreveio na região, uma nova fase de instabilidade marcada por processos tafrogenéticos, cujas evidências seriam o aparecimento de magmatismo alcalino e máfico, além de bacias deposicionais que assinalam um contexto distensivo por toda a área. Em uma dessas bacias tem destaque a que acolheu os sedimentos que originaram as supracrustais do Cinturão Araguaia, a qual, durante o seu processo evolutivo, alcançou o estágio de proto-rifte. Mais distalmente, ao norte do Maciço de Goiás, este processo de quebramento aparentemente permitiu a constituição de um domínio oceânico, que por evolução e reciclagem, teria gerado as rochas que compõem o Arco Magmático de Goiás. Na região trabalhada este terreno de arco seria apenas prenunciado pelo aparecimento de um gnaisse tonal ítico com idade de 840 Ma e idade modelo TDM de 1,83 Ga. Os efeitos dos processos dessa tafrogênese, dos quais os principais vestígios são os gnaisses sieníticos encontrados na Suíte Monte Santo, com idade de 1.051 ± 17 Ma, correlacionam-se aos processos de fissão ocorridos mundialmente e que levaram à fragmentação do Supercontinente Rodinha. Os protólitos desta suíte também foram gerados durante o Mesoproterozóico, conforme atestam as idades modelo TDM entre 1,49 e 1,70 Ga. Finalmente, passando ao Neoproterozóico, através da inversão nas condições geodinâmicas, seguir-se-iam na região processos de encurtamento horizontal e de espessamento crustal, além de fusões, espacial e volumetricamente distintas, que teriam gerado o Granito Matança e o Granito Santa Luzia, encontrado no domínio do Cinturão Araguaia. Este cinturão foi edificado a partir dessa movimentação tectônica, guardando registros de feições estruturais pretéritas, também presentes nos conjuntos litoestruturais mais antigos. O transporte de massas tectônicas no sentido do Cráton Amazônico teria ocorrido, resultando na atual arquitetura em que se encontram, na forma de lascas imbricadas. / The basement rocks in the south segment of the Araguaia Belt, due to the scarcity of geochronological information, were firstly considered as of Archean age. This interpretation began to be reviewed after the geochronological investigations were carried out during the last decade, which showed an important contribution of geological processes of the Paleoproterozoic in the formation of those basement rocks. In this work an isotopic study was carried out on the basement sequences of the southern segments of the Araguaia Belt and its results were based on the single zircon Pb-evaporation technique (Pb-Pb in zircon) and the Sm-Nd (whole rock) systematic. These techniques were used in order to improve and reconstruct the geological evolution of this crustal segment where Rio do Coco Group, Rio dos Mangues Complex, and Serrote Granite occur, as well as Monte Santo Suite that also appear in this context. The geological processes identified for the region took place from the Archean through the Neoproterozoic Era. The first evidences from the archean source were obtained in some restricted orthoderivated bodies in the east sector of the mapped area in which the TDM ages varied between 3.25 and 2.78 Ga. In a clear way, the Archean occurs in the northwest portion of the studied area being represented by a metabasic rock belonged to the Rio do Coco Group (greenstone belt sequence), with 2.618 ± 14 Ma. This age is interpreted as the age of the extrusion of the volcanic protolith. They would represent the two crustal preterit segments found in the region. During the Paleoproterozoic the Rio dos Mangues Complex was constituted, representing the most expressive unit of the basement. Ortogneisses of the Rio dos Mangues Complex were dated and their Pb-Pb in zircon ages varied between 2.054 ± 4 Ma and 2.086 ± 16 Ma. They were formed from a mantelic and juvenile source, with a small crustal contribution and their TDM ages are between 2.35 e 2.21 Ga. The geological processes that marked this period, involved crustal shortening with the participation of collision and thrusting that induced partial fusion of some parts of the thickened crust. The results were the generation of some igneous bodies (1.85 and 1.82 Ga) and of the Serrote Granite (1.86 Ga). Although the emplacement of the Serrote Granite took place at the end of the Paleoproterozoic, it was developed from older sources (2.50 e 2.43 Ga) than those of the Rio dos Mangues Complex. So, The continental crust established, with rocks from different ages and sources may be projected to the east, far from the studied area, inside the context of the architecture from the Atlantic Super Continent, formed definitively at the end of the Paleoproterozoic. At the end of a period without tectonic registers (end of Mesoproterozoic) a new phase took place in the region marked by tafrogenetic processes as the appearing of alkaline and basic magmatism as well as depositional basins that show an extensive context along the whole area. One of these basins received the sediments that originated the Araguaia Belt Supracrustals, which, during its evaluative process, reach the proto-rifte stage. Far from here, at the north portion of Goiás Massif, this rifting process seemed to permit the constitution of an oceanic domain, that, by evolution and recycling, may have be formed the rocks of the Magmatic Arc of Goiás. At the worked area, this arc terrain could be only be predicted by the appearing of one tonalitic gneiss with the age of 840 Ma and TDM model ages of 1.83 Ga. The effects of this tafrogenetic processes, from which the most important evidences are sienitic gneisses, found at Monte Santo Suit, with 1.051 ± 17 Ma, are related to the fission processes in the whole world which made the break up of the Rodinia Super Continent possible. The protolith of this suit were also been formed during the Mesoproterozoic as they can be seen in the TDM model age between 1.49 e 1.70 Ga. Finally, passing to the Neoproterozoic, through the inversion in the geodinamic conditions, processes of horizontal shortening again took place in the region, with the participation of crustal thickening as well as distinct volumetric and spatial fusions that may have generated the Matança and Santa Luzia Granites. The last one found inside the domain of Araguaia Belt. The Araguaia Belt was built from this tectonic motion, and has registers of past structural formations, also present in the older litostructural groups. The mass tectonic transport in the Amazonian Craton way might have occurred, resulting in the actual architecture found nowadays in the form of imbricated slices.

Page generated in 0.0573 seconds