• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 25
  • 17
  • 14
  • 12
  • 11
  • 11
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Investigation of crystalline silicon solar cells at the nano-scale using scanning probe microscopy techniques / Etude de cellules solaires en silicium cristallin à l'échelle nanométrique à l'aide de techniques de microscopie à sonde locale

Narchi, Paul 12 December 2016 (has links)
Cette thèse s’intéresse à l’analyse de cellules silicium cristallin à l’échelle nanométrique, à l’aide de techniques de microscopie à sonde locale (SPM). En particulier, nous avons choisi d’analyser les propriétés électriques à l’échelle locale, grâce à deux techniques SPM : la microcopie à sonde de Kelvin (KPFM) et la microscopie à force atomique à sonde conductrice (CP-AFM).Tout d’abord, nous présentons les forces et faiblesses de ces deux techniques, comparées à la microscopie électronique, qui permet également d’analyser les propriétés électrique à l’échelle nanométrique. Cette comparaison approfondie nous permet d’identifier des mesures où le KPFM et le CP-AFM sont particulièrement adéquat et peuvent apporter de la valeur. Ces mesures sont divisées en deux catégories : les analyses matériaux et les analyses dispositifs.Ensuite, nous nous focalisons sur les analyses matériaux à l’échelle nanométrique. Nous présentons d’abord des mesures de dopage à l’échelle nanométrique, à l’aide d’une technique avancée de CP-AFM, appelée Resiscope. Nous montrons que cette technique peut détecter des changements de dopage dans la gamme 1015 à 1020 atomes.cm-3, avec une résolution nanométrique et un bon ratio signal/bruit. Puis, nous présentons des mesures de durée de décroissance sur des wafers silicium cristallin passivés. Les mesures sont réalisées sur la tranche non-passivée des échantillons. Nous montrons que, même si la tranche n’est pas passivée, les durées de décroissance obtenue par KPFM ont une bonne corrélation avec les temps de vie des wafers mesurées par décroissance de la photoconductivité détectée par micro-ondes.Par la suite, nous nous concentrons sur les analyses dispositif. A l’aide du KPFM, nous analysons deux types de cellules solaires silicium cristallin : les cellules solaires silicium épitaxié (epi-Si) et les cellules solaires hétérojonctions à contact arrière (IBC). En particulier, nous nous focalisons sur l’analyse de dispositifs en condition d’opération. Nous étudions d’abord l’influence de la tension électrique appliquée et nous montrons que les effets de résistance et de diode peuvent être détectés à l’échelle nanométrique. Les mesures de KPFM sont comparées aux mesures de microscopie électronique à balayage (SEM) dans les mêmes conditions, puisque le SEM est aussi sensible au potentiel de surface. Nous montrons que les mesures KPFM sur la tranche de cellules solaires epi-Si peuvent permettre d’étudier les changements de champ électrique avec la tension électrique appliquée. De plus, si la tension électrique est modulée en fréquence, nous montrons que des mesures de temps de vie peuvent être effectuées à l’échelle locale sur la tranche de cellules solaires epi-Si, ce qui peut permettre de détecter les interfaces limitantes. Puis, nous étudions l’influence de l’illumination sur les mesures KPFM et CP-AFM. Nous effectuons des mesures sur la tranche de cellules epi-Si sous différentes valeurs d’intensité et longueurs d’onde d’illumination. Nous montrons une bonne sensibilité des mesures KPFM à l’illumination. Cependant, nous montrons que pour différentes longueurs d’onde, à tension de circuit ouvert fixé, nos mesures ne sont pas corrélées avec les mesures de rendement quantique interne, comme nous le pensions.Enfin, nous résumons notre travail dans un tableau qui représente les forces et faiblesses des techniques pour les différentes mesures d’intérêt exposées précédemment. A partir de ce tableau, nous imaginons un setup de microscopie « idéal » qui permette d’analyser les cellules solaires de manière fiable, versatile et précise. Pour finir, nous proposons des mesures d’intérêt qui pourraient être réalisées avec ce setup « idéal ». / This thesis focuses on the investigation of crystalline silicon solar cells at the nano-scale using scanning probe microscopy (SPM) techniques. In particular, we chose to investigate electrical properties at the nano-scale using two SPM techniques: Kelvin Probe Force Microscopy (KPFM) and Conducting Probe Atomic Force Microscopy (CP-AFM).First, we highlight the strengths and weaknesses of both these techniques compared to electron microscopy techniques, which can also help investigate electrical properties at the nano-scale. This comprehensive comparison enables to identify measurements where KPFM and CP-AFM are particularly adequate. These measurements are divided in two categories: material investigation and devices investigation.Then, we focus on materials investigation at the nano-scale using SPM techniques. We first present doping measurements at the nano-scale using an advanced CP-AFM technique called Resiscope. We prove that this technique could detect doping changes in the range 1015 and 1020 atoms.cm-3 with a nano-scale resolution and a high signal/noise ratio. Then, we highlight decay time measurements on passivated crystalline silicon wafers using KPFM. Measurements are performed on the unpassivated cross-section. We show that, even though the cross-section is not passivated, decay times measurements obtained with KPFM are in good agreement with lifetimes measured by microwave photoconductivity decay.Subsequently, we focus on device measurements. Using KPFM, we investigate two different crystalline silicon solar cell architectures: epitaxial silicon (epi-Si) solar cells and interdigitated back contact (IBC) heterojunction solar cells. In particular, we focus on measurements on devices under operating conditions. We first study the influence of the applied electrical bias. We study the sensitivity of surface potential to electrical bias and we show that diode and resistance effects can be detected at the nano-scale. KPFM measurements are compared to scanning electron microscopy (SEM) measurements in the same conditions since SEM is also sensitive to surface potential. We show that KPFM measurements on the cross-section of epi-Si solar cells can help detect electric field changes with electrical bias. Besides, if the electrical bias is frequency modulated, we show that lifetime measurements can be performed on the cross-section of epi-Si solar cells and can help detect limiting interfaces and layers. Then, we study the influence of illumination on KPFM and CP-AFM measurements. We perform photovoltage and photocurrent measurements on the cross-section of epi-Si solar under different values of illumination intensity and illumination wavelength. We show a good sensitivity of KPFM measurements to illumination. However, we show that measurements for different wavelengths at a given open circuit voltage, are not correlated with the internal quantum efficiency, as we could have expected.Finally, we summarize our work in a table showing the impact of strengths and weaknesses of the techniques for the different measurements highlighted. From this table, we imagine an “ideal” microscopy setup to investigate crystalline silicon solar cells in a reliable, versatile and accurate way. We propose investigations of interest that could be carried out using this “ideal” setup.
42

Compensation engineering for silicon solar cells / Ingénierie de compensation pour cellules solaires en silicium

Forster, Maxime 17 December 2012 (has links)
Cette thèse s’intéresse aux effets de la compensation des dopants sur les propriétés électriques du silicium cristallin. Nous montrons que le contrôle du dopage net, qui est indispensable à la réalisation de cellules solaires à haut rendement, s’avère difficile dans les lingots cristallisés à partir de silicium contenant à la fois du bore et du phosphore. Cette difficulté s’explique par la forte ségrégation du phosphore durant la cristallisation, qui donne lieu à d’importantes variations de dopage net le long des lingots de silicium solidifés de façon directionelle. Pour résoudre ce problème, nous proposons le co-dopage au gallium pendant la cristallisation et prouvons l’efficacité de cette technique pour contrôler le dopage net le long de lingots de type p ou n fabriqués à partir d’une charge de silicium contenant du bore et du phosphore. Nous identifions les spécificités du matériau fortement compensé ainsi obtenu comme étant: une forte sensibilité de la densité de porteurs majoritaires à l’ionisation incomplète des dopants, une réduction importante de la mobilité comparée aux modèles théoriques et une durée de vie des porteurs qui est déterminée par la densité de porteurs majoritaires et dominée après éclairement prolongé par les centres de recombinaison liés aux complexes de bore et d’oxygène. Pour permettre la modélisation de cellules solaires à base de silicium purifié par voie métallurgique, nous proposons une paramétrisation des propriétés fondamentales du silicium compensé mentionnées ci dessus. Nous étudions également la dégradation de la durée de vie des porteurs sous éclairement dans des échantillons de silicium de type p et n présentant une large gamme de niveaux de dopage et de compensation. Nous montrons que le défaut bore-oxygène est issu d’un complexe formé à partir de bore substitutionnel pendant la fabrication des lingots et activé sous injection de porteurs par une reconfiguration du défaut assistée par des charges positives. Finalement, nous appliquons le co-dopage au gallium pour la cristallisation de silicium UMG et démontrons que cette technique permet d’augmenter sensiblement la tolérance au phosphore sans compromettre le rendement matière de l’étape de cristallisation ou la performance des cellules solaires avant dégradation sous éclairement. / This thesis focuses on the effects of dopant compensation on the electrical properties of crystalline silicon relevant to the operation of solar cells. We show that the control of the net dopant density, which is essential to the fabrication of high-efficiency solar cells, is very challenging in ingots crystallized with silicon feedstock containing both boron and phosphorus such as upgraded metallurgical-grade silicon. This is because of the strong segregation of phosphorus which induces large net dopant density variations along directionally solidified silicon crystals. To overcome this issue, we propose to use gallium co-doping during crystallization, and demonstrate its potential to control the net dopant density along p-type and n-type silicon ingots grown with silicon containing boron and phosphorus. The characteristics of the resulting highly-compensated material are identified to be: a strong impact of incomplete ionization of dopants on the majority carrier density, an important reduction of the mobility compared to theoretical models and a recombination lifetime which is determined by the net dopant density and dominated after long-term illumination by the boron-oxygen recombination centre. To allow accurate modelling of upgraded-metallurgical silicon solar cells, we propose a parameterization of these fundamental properties of compensated silicon. We study the light-induced lifetime degradation in p-type and n-type Si with a wide range of dopant concentrations and compensation levels and show that the boron-oxygen defect is a grown-in complex involving substitutional boron and is rendered electrically active upon injection of carriers through a charge-driven reconfiguration of the defect. Finally, we apply gallium co-doping to the crystallization of upgraded-metallurgical silicon and demonstrate that it allows to significantly increase the tolerance to phosphorus without compromising neither the ingot yield nor the solar cells performance before light-induced degradation.
43

ラジカル制御を用いた表面反応過程及び薄膜形成に関する研究

後藤, 俊夫, 河野, 明廣, 堀, 勝, 伊藤, 昌文 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(A)(2) 課題番号:08405005 研究代表者:後藤 俊夫 研究期間:1996-1998年度

Page generated in 0.0936 seconds