• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 38
  • 25
  • 14
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

MPSA Effects on Copper Electrodeposition: Understanding Molecular Behavior at the Electrochemical Interface

Guymon, Clint Gordon 21 November 2005 (has links) (PDF)
In this work the structure of the electrochemical metal-liquid interface is determined through use of quantum mechanics, molecular simulation, and experiment. Herein are profiled the molecular dynamics details and results of solid-liquid interfaces at flat non-specific solid surfaces and copper metal electrodes. Ab initio quantum-mechanical calculations are reported and define the interatomic potentials in the simulations. Some of the quantum-mechanical calculations involve small copper clusters interacting with 3-mercaptopropanesulfonic acid (MPSA), sodium, chloride, bisulfate and cuprous ions. In connection with these I develop the electrode charge dynamics (ECD) routine to treat the charge mobility in a metal. ECD bridges the gap between small-scale metal-cluster ab initio calculations and large-scale simulations of metal surfaces of arbitrary geometry. As water is the most abundant surface species in aqueous systems, water determines much of the interfacial dynamics. In contrast to prior simulation work, simulations in this work show the presence of a dense 2D ice-like rhombus structure of water on the surface that is relatively impervious to perturbation by typical electrode charges. I also find that chloride ions are adsorbed at both positive and negative electrode potentials, in agreement with experimental findings. Including internal modes of vibration in the water model enhances the ion contact adsorption at the solid surface. In superconformal filling of copper chip interconnects, organic additives are used to bottom-up fill high-aspect ratio trenches or vias. I use molecular dynamics and rotating-disk-electrode experiments to provide insight into the function of MPSA, one such additive. It is concluded that the thiol head group of MPSA inhibits copper deposition by preferentially occupying the active surface sites. The sulfonate head group participates in binding the copper ions and facilitating their transfer to the surface. Chloride ions reduce the work function of the copper electrode, reduce the binding energy of MPSA to the copper surface, and attenuate the binding of copper ions to the sulfonate head group of MPSA.
32

Interaction of Acid/Base Probe Molecules with Specific Features on Well-Defined Metal Oxide Single-Crystal Surfaces

Abee, Mark Winfield 24 September 2001 (has links)
Acid/Base characterizations of metal oxide surfaces are often used to explain their catalytic behavior. However, the vast majority of these studies have been performed on powders or supported oxides, and there is very little information available in the literature on the interaction of acid/base probe molecules with well-defined oxide surfaces of known coordination geometry and oxidation state. The well-defined, single crystal surfaces of Cu₂O (111), SnO₂ (110), and Cr₂O₃ (101̲2) were investigated for their acid/base properties by the interactions between the probe molecules and the well-defined surface features. The adsorption of NH₃ at cation sites was used to characterize the Lewis acidity of SnO₂ (110) and Cu₂O (111) surfaces. The adsorption of CO₂, a standard acidic probe molecule, was used to characterize the Lewis basicity of the oxygen anions on SnO₂ (110), Cu₂O (111) , and Cr₂O₃ (101̲2) surfaces. BF₃, while not a standard probe molecule, has been tested as a probe of the Lewis basicity of the oxygen anions on SnO₂ (110) and Cr₂O₃ (101̲2). By studying probe molecules on well-defined metal oxide surfaces with known coordination geometry and oxidation state, an overall evaluation of NH₃, CO₂, and BF₃ as probe molecules can be made using the surfaces studied. NH₃ probed differences in Lewis acidity of Sn cations on SnO₂ (110), which had differences in coordination environments and oxidation states. But, NH₃ adsorption failed to provide any direct information on differences in Lewis acidity of Cu cations in different local coordination geometries on Cu₂O (111). CO₂ is a poor probe of the Lewis basicity of oxygen anions on the metal oxide surfaces studied here. CO₂ does not strongly adsorb to either SnO₂ (110) or Cu₂O (111). On Cr₂O₃ (101̲2), CO₂ does interact with oxygen sites but in two different coordinations, which vary with surface condition, making a comparison of basicity difficult. In the cases studied here, CO₂ either does not adsorb, or it does not provide a clear set of results that can be related simply to Lewis basicity. BF₃ seems to be a much better probe of the Lewis basicity than CO₂ for the well-defined metal oxide surfaces studied here. On SnO₂ (110) and Cr₂O₃ (101̲2), the boron atom of BF₃ directly interacts with oxygen sites by accepting their electrons. BF₃ thermal desorption seems to provide a direct measure of the Lewis basicity of different surface oxygen species as long as they are thermally-stable in vacuum. / Ph. D.
33

Non-classical growth mechanisms of functional inorganic crystals

Self, Katherine January 2016 (has links)
This project relates to the non-classical growth of inorganic crystals with interesting morphologies that are highly desirable in industry. All crystals were synthesized via hydrothermal or solvothermal methods and their growth was studied by stopping each reaction at a range of different times, extracting the particles and analysing them using a variety of characterisation techniques. The main techniques used were scanning electron microscopy and transmission electron microscopy but other techniques, such as powder X-ray diffraction and thermal gravimetric analysis, were also employed. Decorated ZnO microstadiums were studied where ZnO nanocones coat the inner and outer columnar walls of ZnO microstadiums. It was revealed that the polymer in the synthetic solution enhanced the aggregation of nanocrystallites of precursor ions on the microstadium surfaces, which then underwent recrystallization, forming ZnO nanocones. The presence of organic agents was also found to be crucial in the non-classical growth mechanisms of CaCO₃ and RHO-ZIF crystals as the presence of charged groups on the organic molecules led to the aggregation of precursor molecules/ions, preventing classical growth. The disordered aggregates underwent surface recrystallization, forming ‘core-shell' structures where a thin layer of single crystal encased a disordered core. Over time the crystallisation extended from the surface inwards, towards the core, until true single crystals were formed. Organic molecules were also shown to play a role in the non-classical growth of 8-branched Cu₂O structures. In this case, however, studies of the electronic configuration of the main terminating facets of Cu₂O crystals revealed another key factor in their non-classical growth. Terminating hydroxyl groups on the Cu₂O surfaces could have different charges depending on the number of Cu⁺ ions they were coordinated to. The terminating {111} faces were the only ones to be coated with negatively charged hydroxyl groups, which explained the rapid growth on these surfaces as they were able to attract the positively charged metal/polymer precursor clusters. This new phenomenon was also found to be the main driving force in the rapid growth of branches in snowflake-like Fe₂O₃ crystals despite no organic agent being used. In this case, the {11-20} faces of the seed crystals had positively charged hydroxyl groups that were able to rapidly attract the negatively charged [Fe(CN) ₆]³⁻ ions in the aqueous solution.
34

Quantitative equilibrium calculations on systems with relevance to copper smelting and converting

Björkman, Bo January 1984 (has links)
The present thesis gives a summary of results obtained through theoretical and experimental studies of systems with relevance to copper smelting and converting. Many chemical elements are involved in the copper production pro­cesses and a detailed experimental study would be very time- consuming and expensive. A complicating fact is also the corrosivity of the liquid phases towards container material. A powerful alternative is equilibrium calculations, in which models for the liquid phases as well as reliable basic thermodynamic data are needed. In the present thesis, a generalized structure based model for liquid silicates was developed and used in assessments of the sys­tems PbO-SiO2, Fe-O-SiO2, CuO0.5-SÌO2 and Cu-Fe-O-SiO2. In the model, the non-ideal silicate melt is treated as an ideal solu­tion but containing a few complexes. The PbO-Si02 melt could be described by introducing the complexes Pb3Si207, Pb4Si4010 and Pb13Si12O37 in addition to the components PbO and Pb2Si04. The species considered in the Fe-O-SiO2 melt were FeO, FeO1.5, Fe2Si04, Fe3Si207, Fe3Si6O15 and in the CUO0.5-SiO2 melt CuO0.5 ana CU4SiO4. Trie calculated phase diagrams, the activities of me­tal oxides and the oxygen partial pressures were all in good agreement with the published data. Two of the papers in this thesis concern the determination of Gibbs free energies for Cu2S(s,l) and Ca2Fe2O5(s) through emf measurements utilizing a solid electrolyte. Activities and termi­nal solubilities in the solid solution [Fet,Ca]0 were also deter­mined. The results obtained from the quantitative equilibrium calcula­tions for conventional copper smelting and converting were used to outline the overall reactions taking place and the outcome of changes in process parameters. Comparison with observed values, however, showed that the copper and magnetite contents in slag were calculated too low. These discrepancies could be completely explained by using a non-equilibrium approach in which the con­verter was assumed to consist of several segments with concentra­tion gradients between the segments. / digitalisering@umu.se
35

Thermal Oxidation Strategies for the Synthesis of Binary Oxides and their Applications

Shinde, Satish Laxman January 2014 (has links) (PDF)
Binary oxides constitute an outstanding class of functional materials with potential applications in many fields such as catalysis, gas sensing, field emission, solar cells, photodetection, etc. Due to the difference in their physical/chemical properties, different oxides have been explored for different applications. For examples, SnO2, Cr2O3 and ZnO are being explored for gas sensing due to their high adsorption capacity for volatile gases, ZnO, Cu2O etc. are being explored in solar cells because of high adsorption coefficient in UV/visible region and so on. Various techniques are available for synthesis of binary oxides and tuning their properties. Most of the physical or chemical synthesis techniques are expensive, need high cost instruments and produces hazardous chemical waste. We need a simple, cost effective and ecofriendly techniques for the synthesis of binary oxides. In present work, a simple and facile thermal oxidation strategy has been employed for the synthesis of various binary oxides (Cu2O, GeO2 and ZnO). For example, CuO nanorods are obtained when Cu is heated around ~ 500 oC, which then heated in Ar atmosphere to obtain a film of porous Cu2O. Similarly, GeO2 with different morphologies and green-luminescent ZnO are obtained by controlling the reaction parameters. These oxides have then been explored for various applications including white light phosphors, catalysis for the degradation of dyes and non-contact thermometry. Overall, we present a thermal oxidation strategy for the synthesis of various binary oxides and explore potential applications in various fields.
36

In-situ XPS Investigation of ALD Cu2O and Cu Thin Films after Successive Reduction

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Moeckel, Stefan, Lang, Heinrich, Gessner, Thomas 07 July 2014 (has links)
This talk was presented in the 14th International Conference on Atomic Layer Deposition (ALD 2014) in Kyoto, Japan on 18th June 2014. Abstract Atomic Layer Deposition (ALD) is emerging as a ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate [(nBu3P)2Cu(acac)] (1) used as Cu precursor, has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. It was found that the subsequent gas-phase reduction of the Cu2O films can be aided by introducing catalytic amounts of a Ru precursor into the Cu precursor, so that metallic copper films could potentially obtained also on non-catalytic substrates [3, 4]. In this work, in situ X-ray photoelectron spectroscopy (XPS) investigation of the surface chemistry during Cu2O ALD from the mixture of 99 mol % of 1 and 1 mol % of [Ru(η5 C5H4SiMe3)(η5-C7H11)] (2) as ruthenium precursor, and the reduction of Cu2O to metallic Cu by formic acid carried out on SiO2 substrate are demonstrated. Oxidation states of the Cu in the film are identified by comparing the Cu Auger parameter (α) [5] with literature data. α calculated after ALD equals 362.2 eV and after reduction equals 363.8 eV, comparable to the Cu2O and metallic Cu in thin-films [6] respectively. In addition, <10 % of Cu(I), Cu(II), and Cu(OH)2 species are identified from the Cu 2p3/2 and Cu L3VV Auger spectrum after reduction. Consequently, the ALD Cu2O is successfully reduced to metallic copper by in-situ thermal reduction using formic acid. [1] T. Waechtler et al., J. Electrochem. Soc., 156 (6), H453 (2009). [2] T. Waechtler et al., Microelectron. Eng., 88, 684 (2011). [3] S. Mueller et al., Conference Proceedings SCD 2011, Semiconductor Conference Dresden, pp. 1-4. [4] T. Waechtler et al., US Patent Application Publication, US 2013/0062768. [5] C. D. Wagner, Faraday Discuss. Chem. Soc., 60, 291 (1975). [6] J. P. Espinós et al., J. Phys. Chem. B, 106, 6921 (2002).
37

Growth Monitoring of Ultrathin Copper and Copper Oxide Films Deposited by Atomic Layer Deposition / Untersuchungen zum Wachstum ultradünner Kupfer- und Kupferoxid Schichten mittels Atomlagenabscheidung

Dhakal, Dileep 25 October 2017 (has links) (PDF)
Atomic layer deposition (ALD) of copper films is getting enormous interest. Ultrathin Cu films are applied as the seed layer for electrochemical deposition (ECD) of copper in interconnect circuits and as the non-magnetic material for the realization of giant magnetoresistance (GMR) sensors. Particularly, Co/Cu multi-layered structures require sub 4.0 nm copper film thickness for obtaining strong GMR effects. The physical vapor deposition process for the deposition of the copper seed layers are prone to non-conformal coating and poor step coverage on side-walls and bottoms of trenches and vias, and presence of overhanging structures. This may cause failure of interconnections due to formation of voids after copper ECD. ALD is the most suitable technology for the deposition of conformal seed layers for the subsequent ECD in very high aspect ratio structures, also for the technology nodes below 20 nm. Surface chemistry during the ALD of oxides is quite well studied. However, surface chemistry during the ALD of pure metal is rather immature. This knowledge is necessary to optimize the process parameters, synthesize better precursors systems, and enhance the knowledge of existing metal ALD processes. The major goal of this work is to understand the surface chemistry of the used precursor and study the growth of ultrathin copper films using in-situ X-ray photoelectron spectroscopy (XPS). Copper films are deposited by ALD using the precursor mixture consisting of 99 mol% [(nBu3P)2Cu(acac)], as copper precursor and 1 mol% of Ru(η5 C7H11)(η5 C5H4SiMe3), as ruthenium precursor. The purpose in having catalytic amount of ruthenium precursor is to obtain the Ru doped Cu2O layers for subsequent reduction with formic acid at temperatures below 150 °C on arbitrary substrates. Two different approaches for the growth of ultrathin copper films have been studied in this dissertation. In the first approach, direct thermal ALD of copper has been studied by using H2 as co-reactant on Co as catalytic substrate. In the second approach, Ru-doped Cu2O is deposited by ALD using wet-O2 as co-reactant on SiO2 as non-catalytic substrate. The Ru-doped Cu2O is successfully reduced by using either formic acid or carbon-monoxide on SiO2. / Atomlagenabscheidung (ALD) von Kupfer steht im Fokus der ALD Gemeinschaft. Ultradünne Kupferschichten können als Keimschicht für die elektrochemische Abscheidung (ECD) von Kupfer in der Verbindungstechnologie eingesetzt werden. Sie können ebenfalls für Sensoren, welche auf den Effekt des Riesenmagnetowiderstandes (GMR) basieren, als nicht-ferromagnetische Zwischenschicht verwendet werden. Insbesondere Multischichtstrukturen aus ferromagnetische Kobalt und Kupfer erfordern Schichtdicken von weniger als 4,0 nm, um einen starken GMR-Effekt zu gewährleisten. Das derzeit verwendete physikalische Dampfabscheidungsverfahren für ultradünne Kupferschichten, ist besonders anfällig für eine nicht-konforme Abscheidung an den Seitenwänden und Böden von Strukturen mit hohem Aspektverhältnis. Des Weiteren kann es zur Bildung von Löchern und überhängenden Strukturen kommen, welche bei der anschließenden Kupfer ECD zu Kontaktlücken (Voids) führen können. Für die Abscheidung einer Kupfer-Keimschicht ist die ALD besonders gut geeignet, da sie es ermöglicht, ultradünne konforme Schichten auf strukturierten Oberflächen mit hohem Aspektverhältnis abzuscheiden. Dies macht sie zu einer der Schlüsseltechnologien für Struckturgrößen unter 20 nm. Im Gegensatz zur Oberflächenchemie rein metallischer ALD sind die Oberflächenreaktionen für oxidische ALD Schichten sehr gut untersucht. Die Kenntnis der Oberflächenchemie während eines ALD Prozesses ist essenziel für die Bestimmung von wichtigen Prozessparametern als auch für die Verbesserung der Präkursorsynthese ansich. Diese Arbeit beschäftigt sich mit der Untersuchung der Oberflächenchemie und Charakterisierung des Wachstums von ultradünnen Metall-Cu-Schichten mittels In-situ XPS, welche eines indirekten (Oxid) bzw. direkten Metall-ALD Prozesses abgeschieden werden, wobei die Kupfer-Oxidschichten im Anschluss einem Reduktionsprozess unterworfen werden. Hierfür wird eine Präkursormischung bestehend aus 99 mol% [(nBu3P)2Cu(acac)] und 1 mol% [Ru(η5 C7H11)(η5-C5H4SiMe3)] verwendet. Die katalytische Menge an Ru, welche in der entstehenden Cu2O Schicht verbleibt, erhöht den Effekt der Reduktion der Cu2O Schicht auf beliebigen Substraten mit Ameinsäure bei Wafertemperaturen unter 150 °C. In einem ersten Schritt wird ein direkter thermisches Kupfer ALD-Prozess, unter Verwendung von molekularem Wasserstoff als Coreaktant, auf einem Kobalt-Substrat untersucht. In einem zweiten Schritt wird ein indirekter thermischer Cu2O-ALD-Prozess, unter gleichzeitiger Verwendung von Sauerstoff und Wasserdampf als Coreaktant, mit anschließender Reduktion durch Ameinsäure oder Kohlenstoffmonoxid zu Kupfer auf den gleichen Substraten betrachtet. Die vorliegende Arbeit beschreibt das Wachstum von ultradünnen und kontinuierlichen Kupfer-Schichten mittels thermischer ALD auf inerten- SiO2 und reaktiven Kobalt-Substraten.
38

Growth Monitoring of Ultrathin Copper and Copper Oxide Films Deposited by Atomic Layer Deposition

Dhakal, Dileep 16 December 2016 (has links)
Atomic layer deposition (ALD) of copper films is getting enormous interest. Ultrathin Cu films are applied as the seed layer for electrochemical deposition (ECD) of copper in interconnect circuits and as the non-magnetic material for the realization of giant magnetoresistance (GMR) sensors. Particularly, Co/Cu multi-layered structures require sub 4.0 nm copper film thickness for obtaining strong GMR effects. The physical vapor deposition process for the deposition of the copper seed layers are prone to non-conformal coating and poor step coverage on side-walls and bottoms of trenches and vias, and presence of overhanging structures. This may cause failure of interconnections due to formation of voids after copper ECD. ALD is the most suitable technology for the deposition of conformal seed layers for the subsequent ECD in very high aspect ratio structures, also for the technology nodes below 20 nm. Surface chemistry during the ALD of oxides is quite well studied. However, surface chemistry during the ALD of pure metal is rather immature. This knowledge is necessary to optimize the process parameters, synthesize better precursors systems, and enhance the knowledge of existing metal ALD processes. The major goal of this work is to understand the surface chemistry of the used precursor and study the growth of ultrathin copper films using in-situ X-ray photoelectron spectroscopy (XPS). Copper films are deposited by ALD using the precursor mixture consisting of 99 mol% [(nBu3P)2Cu(acac)], as copper precursor and 1 mol% of Ru(η5 C7H11)(η5 C5H4SiMe3), as ruthenium precursor. The purpose in having catalytic amount of ruthenium precursor is to obtain the Ru doped Cu2O layers for subsequent reduction with formic acid at temperatures below 150 °C on arbitrary substrates. Two different approaches for the growth of ultrathin copper films have been studied in this dissertation. In the first approach, direct thermal ALD of copper has been studied by using H2 as co-reactant on Co as catalytic substrate. In the second approach, Ru-doped Cu2O is deposited by ALD using wet-O2 as co-reactant on SiO2 as non-catalytic substrate. The Ru-doped Cu2O is successfully reduced by using either formic acid or carbon-monoxide on SiO2. / Atomlagenabscheidung (ALD) von Kupfer steht im Fokus der ALD Gemeinschaft. Ultradünne Kupferschichten können als Keimschicht für die elektrochemische Abscheidung (ECD) von Kupfer in der Verbindungstechnologie eingesetzt werden. Sie können ebenfalls für Sensoren, welche auf den Effekt des Riesenmagnetowiderstandes (GMR) basieren, als nicht-ferromagnetische Zwischenschicht verwendet werden. Insbesondere Multischichtstrukturen aus ferromagnetische Kobalt und Kupfer erfordern Schichtdicken von weniger als 4,0 nm, um einen starken GMR-Effekt zu gewährleisten. Das derzeit verwendete physikalische Dampfabscheidungsverfahren für ultradünne Kupferschichten, ist besonders anfällig für eine nicht-konforme Abscheidung an den Seitenwänden und Böden von Strukturen mit hohem Aspektverhältnis. Des Weiteren kann es zur Bildung von Löchern und überhängenden Strukturen kommen, welche bei der anschließenden Kupfer ECD zu Kontaktlücken (Voids) führen können. Für die Abscheidung einer Kupfer-Keimschicht ist die ALD besonders gut geeignet, da sie es ermöglicht, ultradünne konforme Schichten auf strukturierten Oberflächen mit hohem Aspektverhältnis abzuscheiden. Dies macht sie zu einer der Schlüsseltechnologien für Struckturgrößen unter 20 nm. Im Gegensatz zur Oberflächenchemie rein metallischer ALD sind die Oberflächenreaktionen für oxidische ALD Schichten sehr gut untersucht. Die Kenntnis der Oberflächenchemie während eines ALD Prozesses ist essenziel für die Bestimmung von wichtigen Prozessparametern als auch für die Verbesserung der Präkursorsynthese ansich. Diese Arbeit beschäftigt sich mit der Untersuchung der Oberflächenchemie und Charakterisierung des Wachstums von ultradünnen Metall-Cu-Schichten mittels In-situ XPS, welche eines indirekten (Oxid) bzw. direkten Metall-ALD Prozesses abgeschieden werden, wobei die Kupfer-Oxidschichten im Anschluss einem Reduktionsprozess unterworfen werden. Hierfür wird eine Präkursormischung bestehend aus 99 mol% [(nBu3P)2Cu(acac)] und 1 mol% [Ru(η5 C7H11)(η5-C5H4SiMe3)] verwendet. Die katalytische Menge an Ru, welche in der entstehenden Cu2O Schicht verbleibt, erhöht den Effekt der Reduktion der Cu2O Schicht auf beliebigen Substraten mit Ameinsäure bei Wafertemperaturen unter 150 °C. In einem ersten Schritt wird ein direkter thermisches Kupfer ALD-Prozess, unter Verwendung von molekularem Wasserstoff als Coreaktant, auf einem Kobalt-Substrat untersucht. In einem zweiten Schritt wird ein indirekter thermischer Cu2O-ALD-Prozess, unter gleichzeitiger Verwendung von Sauerstoff und Wasserdampf als Coreaktant, mit anschließender Reduktion durch Ameinsäure oder Kohlenstoffmonoxid zu Kupfer auf den gleichen Substraten betrachtet. Die vorliegende Arbeit beschreibt das Wachstum von ultradünnen und kontinuierlichen Kupfer-Schichten mittels thermischer ALD auf inerten- SiO2 und reaktiven Kobalt-Substraten.

Page generated in 0.0551 seconds