• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 18
  • 3
  • 2
  • Tagged with
  • 59
  • 34
  • 23
  • 21
  • 20
  • 14
  • 14
  • 12
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Étude du cycle cellulaire chez Lingulodinium polyedrum

Benribague, Siham 09 1900 (has links)
Les Dinoflagellés sont des eucaryotes unicellulaires photosynthétiques qui participent à une production importante du phytoplancton et sont donc à la base de la chaîne alimentaire. Bien qu’ils soient des eucaryotes, leur organisation génétique présente plusieurs particularités qui leur sont singulières. Contrairement à tous les eucaryotes chez qui les chromosomes ne se condensent qu'au moment de la mitose, les chromosomes des dinoflagellés restent condensés pendant tout le cycle cellulaire. La mitose des dinoflagellés est distinguée de la mitose ordinaire des cellules eucaryotes. Le noyau de Lingulodinium polyedrum reste intact et son enveloppe nucléaire ne se brise pas pendant la mitose. Les microtubules devraient ainsi se coller à la membrane nucléaire du côté du cytoplasme pour tenter de s'accrocher aux chromosomes qui eux sont attachés à la surface interne de la membrane, le fuseau mitotique traverse donc le noyau par une ou plusieurs invaginations nucléaires ou canaux. Lingulodinium polyedrum est considéré un organisme modèle pour étudier les rythmes circadiens. Cette étude illustre les changements morphologiques des chromosomes durant les différents stades de la mitose, en utilisant le microscope électronique à transmission et microscope à fluorescence. Le transcriptôme de Lingulodinium polyedrum a été utilisé pour recenser les composants régulateurs conservés contrôlant l’entrée en phase S ou en phase M, telles que des cyclines ou des Cdks. Mots-clés : Lingulodinium polyedrum, dinoflagellé, cycle cellulaire, rythme circadien, mitose, phase S, phase M, cycline, CDK, transcriptome / Dinoflagellates are unicellular photosynthetic eukaryotes comprising a major part of the phytoplankton and thus, represent the foundation of the food chain. Although dinoflagellates are eukaryotes, their genetic organization has several features which are unique to them. Unlike all eukaryotes in which the chromosomes condense only at the moment of mitosis, dinoflagellates chromosomes stay condensed throughout the cell cycle. Furthermore, the mitosis of dinoflagellates is distinguished from the ordinary mitosis of eukaryotic cells. The nucleus of Lingulodinium polyedrum remains intact and its nuclear envelope does not break down during mitosis. Microtubules stick to the nuclear membrane on the side of the cytoplasm and link to the chromosomes that are attached to the inner surface of the membrane by transmembrane proteins. The mitotic spindle therefore passes through the nucleus by one or more nuclear invaginations or channels. Lingulodinium polyedrum is considered as model organism for studying circadian rhythms among which is featured the cell cycle. This study illustrates the morphological changes of chromosomes during the various stages of mitosis, by transmission electron microscope and a fluorescence microscope. The transcriptome of Lingulodinium polyedrum was used to identify conserved regulatory components controlling entry into S-phase or M phase, such as cyclins or Cdks.
52

Rôle du ribosome dans la sénescence

Del Toro Del Toro, Neylen 12 1900 (has links)
La sénescence est considérée comme un mécanisme de suppression tumorale puisque les cellules potentiellement dangereuses, activent leurs protéines de sauvegarde pour arrêter leur prolifération. Les protéines de sauvegarde telles que RB et p53 sont activées suite à différents stress comme des dommages à l’ADN, le raccourcissement des télomères ou l’induction oncogénique. Les cellules sénescentes restent métaboliquement actives, subissent des modifications dans leur expression génique, et sécrètent des cytokines et des chimiokines qui ont des effets paracrines pro-oncogéniques, mais peuvent également contribuer à la stabilité de l’arrêt du cycle cellulaire dans la sénescence de façon autocrine. Une des particularités du phénotype sénescent est la dégradation sélective des protéines dépendante de l’ubiquitination et du protéasome. Parmi les cibles de dégradation se trouvent des protéines impliquées dans la biogenèse du ribosome, ainsi que celles d’autres voies cellulaires requises pour la croissance de cellules cancéreuses. Ceci est lié à un stress nucléolaire qui affecte la biogenèse du ribosome, menant à l’accumulation, dans le nucléoplasme ou le nucléole, de protéines ribosomiques. Ce comportement suggère que les ribosomes des cellules sénescentes seraient structurellement différents. Par conséquent, ceci pourrait entrainer des effets sur leurs capacités à réguler l’initiation, l’élongation et/ou la terminaison de la traduction des ARN messagers (ARNm). Par ailleurs, la déplétion de certaines protéines impliquées dans la ribogenèse, ainsi que la surexpression de protéines ribosomiques telles que RPS14/uS11 amènent à la sénescence. Malgré le stress nucléolaire et les défauts de ribogenèse associés à la sénescence, les cellules sénescentes présentent des niveaux de translecture du codon d’arrêt très diminué, suggérant l’existence de défauts de production de protéines allongées en C-terminal. Nous émettons l’hypothèse que les défauts de la ribogenèse affecteraient la fonction des protéines ribosomiques et des ribosomes. Cette perturbation aurait un impact sur le rôle de suppresseur tumoral de la sénescence. Le premier objectif de cette thèse consiste à démontrer le rôle de RPL22/eL22 en tant que régulateur du cycle cellulaire et inducteur de la sénescence. Le deuxième but est de démontrer que, malgré la perturbation nucléolaire, les ribosomes des fibroblastes sénescents reconnaissent les codons d’arrêt de façon plus efficace que les ribosomes des cellules transformées, ou des cellules normales en prolifération. Nous avons démontré que le phénotype de sénescence peut être induit quand l’expression de RPL22/eL22 est augmentée. RPL22/eL22 s’accumule principalement dans le nucléole, de manière différente de RPS14/uS11, dont l’accumulation est nucléoplasmique. En effectuant des essais kinases in vitro, nous avons montré que RPL22/eL22, tout comme RPS14/uS11, peuvent interagir et inhiber le complexe CDK4-Cycline D1 afin d’activer la voie de RB et établir l’arrêt du cycle cellulaire et la sénescence. Afin de démontrer la fidélité de la terminaison de la traduction dans les cellules sénescentes, nous avons utilisé un système de rapporteurs de luciférases, pour détecter les erreurs de translecture ainsi que pour avoir un contrôle interne du système. L’inactivation de la voie du suppresseur tumoral RB par surexpression de CDK4 ou de l’oncoprotéine virale E7, nous a permis d’observer l’augmentation de la translecture dans les cellules sénescentes. Tandis que l’activation de la voie de suppression tumorale RB, à l’aide du suppresseur de tumeur PML, de la surexpression de RPL22/eL22 et de RPS14/uS11, ainsi que de l’utilisation de Palbociclib (PD-0332991), un inhibiteur des kinases CDK4/6, a montré une réduction des erreurs de translecture. Ces résultats indiquent une nouvelle fonction des protéines du ribosome en tant que suppresseurs de tumeur, permettant d’inhiber les erreurs de translecture du codon d’arrêt de façon dépendante de la voie de RB. Ces travaux suggèrent que de petites molécules ou peptides pourraient simuler les fonctions inhibitrices de ces protéines ribosomiques afin de traiter certains cancers où la voie de RB est activable. / Senescence is considered a mechanism for tumor suppression since potentially dangerous cells activate their protective proteins to stop their proliferation. Safeguard proteins such as RB and p53 are activated as a result of stress such as DNA damage, telomere shortening or oncogenic induction. Senescent cells are metabolically active, they undergo changes in their gene expression and secrete cytokines and chemokines with pro-oncogenic paracrine effects, but which can also contribute to the stability of the senescent cell cycle arrest in an autocrine way. One of the peculiarities of the senescent phenotype is the selective ubiquitination and proteasome dependent-degradation of proteins involved in ribosome biogenesis and other cellular pathways required for cancer cell growth, leading to the accumulation, in the nucleoplasm or nucleolus, of ribosomal proteins. This behavior suggests that the ribosomes of senescent cells are structurally different. Therefore, this could have effects on their ability to regulate the initiation, elongation and/or translation termination of messenger RNAs (mRNAs). Moreover, the depletion of some proteins involved in ribogenesis, as well as the overexpression of ribosomal proteins such as RPS14/uS11 lead to senescence. Despite nucleolar stress and ribogenesis defects associated to senescence, global translation does not seem to be affected in senescence. Strikingly, senescent cells have reduced translational readthrough suggesting that they have defects in the production of C-terminal extended proteins. We hypothesize that defects in ribogenesis would affect the function of ribosomal proteins and ribosomes influencing the tumor suppressor role of senescence. The first aim of this thesis is to demonstrate the role of RPL22/eL22 as a regulator of the cell cycle and senescence inducer. The second aim of this thesis is to demonstrate that, despite the nucleolar disruption, the ribosomes of senescent fibroblasts recognize stop codons more efficiently than ribosomes from transformed cells, but also than ribosomes from proliferating normal cells. We found that the senescent phenotype can be induced by enhancing the expression of RPL22/eL22. RPL22/eL22 accumulates mainly in the nucleolus, unlike RPS14/uS11, whose accumulation is nucleoplasmic. By performing an in vitro kinase assay, we showed that RPL22/eL22, just like RPS14/uS11, can interact and inhibit the CDK4-Cyclin D1 complex in order to activate the RB pathway and establish cellular arrest and senescence. To assess translation termination accuracy in senescent cells, we used a system of luciferase reporters to measure the fidelity of translation termination. Inactivation of the RB tumor suppressor pathway using CDK4 or the viral oncoprotein E7 also increased readthrough in senescent cells while overexpression of PML, a tumor suppressor that activates the RB pathway, overexpression of RPL22/eL22 and RPS14/uS11, as well as the use of Palbociclib (PD-0332991), a CDK4/6 inhibitor, reduce readthrough errors. These results indicate a novel function of ribosomal proteins as tumor suppressors, making it possible to inhibit translational readthrough errors, in a RB-dependent pathway. This work suggests that small molecules or peptides could mimic the inhibitory functions of these ribosomal proteins in order to treat cancers where the RB pathway is activatable.
53

Régulation de la division asymétrique chez C. elegans

Rabilotta, Alexia 07 1900 (has links)
No description available.
54

Mécanismes de régulation post-traductionnelle de la sénescence cellulaire et leurs impacts sur la suppression tumorale

Fernandez Ruiz, Ana 07 1900 (has links)
La sénescence est un processus caractérisé par un arrêt stable du cycle cellulaire. Ce mécanisme peut être induit en réponse à de nombreux stress, comme l’activation d’un oncogène, le raccourcissement des télomères ou bien le traitement avec des composés génotoxiques. Cette réponse cellulaire est considérée comme une barrière antitumorale limitant la prolifération des cellules exposées au risque de transformation. La mise en place de la sénescence dépend de profonds changements au niveau moléculaire, dont l’activation d’un programme de dégradation sélective des protéines. Cette dégradation de protéines associée à la sénescence (SAPD) peut expliquer plusieurs caractéristiques des cellules sénescentes, notamment la présence de défauts dans la voie de synthèse des ribosomes (SARD). Ces derniers sont liés à un stress nucléolaire qui mène à l’accumulation de certaines protéines ribosomiques dans le noyau, où elles peuvent effectuer des fonctions indépendantes de leur rôle structurale dans les ribosomes. Parmi ces protéines ribosomiques, RPS14/uS11 peut s’accumuler dans le nucléoplasme et réguler le cycle cellulaire en inhibant CDK4. Ces mécanismes de régulation post-traductionnelle -le SAPD ainsi que les conséquences des SARD- contribuent de manière importante au phénotype sénescent. Nous avons émis l’hypothèse que la caractérisation des effecteurs dans ces voies pourrait mener à l’identification de nouvelles protéines importantes pour la sénescence et la suppression tumorale. Dans un premier temps, nous avons évalué le rôle de la protéine ribosomique RPL22/eL22 dans le cycle cellulaire et la sénescence. Tout comme RPS14, RPL22 a été identifié dans l’analyse de l’interactome de CDK4 lors de la sénescence induite par la perte du facteur de la ribogenèse RSL1D1. Nous avons pensé que RPL22 pourrait agir de manière similaire à RPS14 et ainsi effectuer des fonctions extra-ribosomiques impliquées dans la régulation du cycle cellulaire. Dans le premier article présenté dans cette thèse, nous montrons que la surexpression de RPL22 dans des fibroblastes humains induit un phénotype sénescent et que RPL22 peut lier et inhiber CDK4 afin d’activer la voie de RB. Ensemble, ces données indiquent un rôle suppressif de RPL22 dans le cycle cellulaire. En second lieu, nous nous sommes penchés sur la caractérisation des effecteurs du programme de dégradation sélective de protéines associé à la sénescence. Ce programme est mené à terme par le système ubiquitine-protéasome, un mécanisme finement régulé par différents types de protéines. Parmi celles-ci, les E3 ubiquitine ligases définissent la spécificité de ce système en interagissant avec les substrats à dégrader. Nous avons donc pensé que certaines E3 ubiquitine ligases spécifiques pourraient être importantes pour le mécanisme de dégradation protéique associé à la sénescence. Afin d’identifier celles-ci, nous avons effectué un criblage de shARN ciblant des gènes d’E3 ubiquitine ligases dans le contexte de la sénescence induite par les oncogènes. Ceci a mené à l’identification d’ASB14 comme un acteur important de la sénescence. Dans le deuxième article de cette thèse, nous montrons que la perte d’ASB14 produit un contournement de la sénescence induite par l’oncogène RAS dans plusieurs modèles cellulaires. ASB14 est une protéine peu caractérisée et nous avons généré des anticorps afin d’analyser son expression. Nous montrons ensuite qu’ASB14 s’exprime fortement dans le pancréas sain, tandis que ses niveaux diminuent dans les tumeurs pancréatiques. Enfin, nous avons identifié les partenaires d’interaction d’ASB14 dans le contexte de la sénescence induite par l’oncogène RAS. Globalement, les travaux présentés dans cette thèse nous ont permis d’identifier deux nouvelles protéines impliquées dans la sénescence cellulaire : la protéine ribosomique RPL22 et l’E3 ubiquitine ligase ASB14. Ces deux protéines contribuent à la régulation post-traductionnelle du phénotype sénescent. D’un côté, RPL22 peut inhiber l’activité de CDK4 afin d’activer la voie de RB et ainsi réguler le cycle cellulaire. D’une autre part, ASB14 est importante pour le maintien du phénotype sénescent et semble avoir un rôle dans la suppression tumorale du pancréas. Nos résultats suggèrent que RPL22 et ASB14 sont importants pour la sénescence et la suppression tumorale. / Cellular senescence is characterized by a stable cell cycle arrest. This process can be induced by a variety of cellular stresses, including oncogene activation, telomere shortening and genotoxic treatments. In fact, senescence is considered an antitumor barrier that prevents cellular transformation. Senescence is associated with widespread molecular changes, including the activation of a selective protein degradation program. This senescence-associated protein degradation (SAPD) could regulate some senescence-associated phenotypes, including the senescence-associated ribosome biogenesis defects (SARD). Senescence-associated ribosome biogenesis defects are linked to a nuclear accumulation of some ribosomal proteins such as RPS14/uS11 capable of carrying out extra-ribosomal functions. In particular, RPS14 can inhibit CDK4 and mediate senescence. Thus, we hypothesize that the proteins implicated in these pathways -SAPD and SARD- could be important for senescence and tumor suppression. First, we evaluated the ability of the ribosomal protein L22 (RPL22/eL22) to regulate cellular senescence and cell cycle progression. RPL22, as RPS14, was identified as a binding partner for CDK4 in senescent cells induced by depleting the ribosome biogenesis factor RSL1D1. Hence, we though that RPL22 could act in a manner similar to RPS14. In chapter two, we show that RPL22 overexpression induces a senescent phenotype in human fibroblasts. In addition, we show that RPL22 can interact with CDK4 inhibiting its activity and stimulating the RB tumor suppressor pathway. Taken together, these results indicate a suppressive role of RPL22 in cell cycle progression. Next, we focused on the characterization of SAPD effectors. This mechanism is mediated by the ubiquitin-proteasome system which is tightly regulated by E3 ubiquitin ligases. Thus, we thought that specific E3 ubiquitin ligases could be important for SAPD and for senescence. In order to discover E3 ubiquitin ligases that contribute to senescence, we performed an unbiased screening using shRNA libraries in Ras-induced senescent cells. This led to the identification of ASB14 as an important mediator of senescence. In chapter three, we show that ASB14 depletion leads to a bypass of Ras-induced senescence. ASB14 is a poorly characterized E3 ligase, and we generated antibodies in order to analyze its expression levels. We show that ASB14 is highly expressed in the normal pancreas whereas its expression is reduced in pancreatic cancer tissues. Finally, we uncovered the interactome of ASB14 in Ras-induced senescent cells. Overall, we have discovered two new senescence mediators: ribosomal protein L22 and E3 ubiquitin ligase ASB14. These proteins are implicated in the post-translational regulation of the senescent phenotype. RPL22 acts as a CDK4 inhibitor to activate RB pathway and regulate cell cycle arrest and ASB14 is an important mediator of senescence maintenance. Taken together, our results suggest that RPL22 and ASB14 are important for cellular senescence and tumor suppression.
55

Synthèse et évaluation biologique de nouveaux inhibiteurs de kinases : identification d‘inhibiteurs de kinases parasitaires / Synthesis and biological evaluation of new kinase inhibitors : identification of inhibitors of several parasite protein kinases

Bendjeddou, Lyamin 14 October 2014 (has links)
La phosphorylation des protéines par les kinases est l’une plus importantes modification post-traductionnelle dans les processus cellulaires tels que la division, la différenciation, la prolifération et l’apoptose. Due à leur rôle clef, un dérèglement des protéines kinases peut entrainer de nombreuses pathologies proliférative telles que le cancer et non prolifératives telles que les maladies neurodégénératives. Le travail de thèse s’est construit autour de 2 séries d’inhibiteurs de protéine kinases comportant les noyaux imidazo[1,2-b]pyridazine et imidazo[4,5-b]pyridine. L’objectif est d’inhiber sélectivement les protéines kinases choisies, pour leurs implications dans les pathologies visées au laboratoire. Les imidazo[1,2-b]pyridazines ont été préparées pour identifier des inhibiteurs de CLK1 et DYRK1A, cibles potentielles dans la maladie d’Alzheimer. Parmi les imidazo[1,2-b]pyridazines synthétisées, plusieurs molécules se sont révélées particulièrement sélectives de DYRKs et CLKs, avec des IC50 < 100 nM. Une relation structure-activité basée sur la synthèse de 70 molécules, a permis de dégager des éléments structuraux de la sélectivité des molécules. L’évaluation des produits a également été portée sur les kinases de parasites. Il a ainsi été possible d’identifier quelques inhibiteurs actifs sur PfCLK1. La seconde partie de cette thèse avait pour objectif l’optimisation du protocole de synthèse imidazo[4,5-b]pyridines, analogue de la roscovitine. Des dérivés s’étaient révélés capables d’inhiber la formation de kystes, dans un modèle cellulaire de polykystose rénale. Une synthèse en sept étapes a conduit à plusieurs grammes d’imidazo[4,5-b]pyridine 3,5,7 trisubstitués, qui sont ainsi disponibles pour l’évaluation in vivo. / Phosphorylation by protein kinases is one of the most important post-translational modification in cellular processes such as division, differentiation, proliferation and apoptosis. Kinase deregulation is associated with numerous diseases such as cancer or neurodegenerative diseases. Imidazo[1,2-b]pyridazine and imidazo[4,5-b]pyridine were prepared to inhibit protein kinases involved in diseases targeted in the laboratory. The imidazo[1,2-b]pyridazines were synthesized to identify inhibitors of CLK1 and DYRK1A, potential targets in Alzheimer's disease. Among the imidazo[1,2-b]pyridazines synthesized, several molecules were found selective of DYRKs and CLKs, with IC50 < 100 nM. A structure-activity relationship based on the synthesis of 70 molecules, led to the identification of the structural bases of the selectivity. Products were also evaluated against parasite kinases. It was possible to identify some highly potent inhibitors on PfCLK1. The aim of second part of this thesis was to optimize the synthetic process to obtain imidazo[4,5-b]pyridines, which are close analogues of roscovitine. Derivatives had proved capable of inhibiting the formation of cysts in a cellular model of polycystic kidney disease. A seven-step synthesis has led to several grams of 3,5,7-trisubstituted imidazo[4,5-b]pyridine which is now available for evaluation in vivo.
56

Physiopathologie du lymphome à cellules du manteau : de la mécanistique aux modèles précliniques / Physiopathology of mantle cell lymphoma from mechanistic to preclinical models

Body, Simon 29 November 2017 (has links)
Le lymphome à cellules du manteau (LCM) est une hémopathie maligne B mature, appartenant à la famille des lymphomes non hodgkiniens. Le LCM est caractérisé par la translocation t(11;14)(q13;q32) qui provoque une expression aberrante de cycline D1. C’est une pathologie rare mais à haut risque de rechute, et qui reste le plus souvent incurable suite à l’apparition de clones chimiorésistants. L’acquisition de résistance est intimement liée aux interactions entre les cellules tumorales et leur microenvironnement. Afin de mimer de la manière la plus pertinente possible ces interactions, nous avons mis en place un modèle murin de xénogreffe en utilisant les lignées cellulaires de LCM JeKo1, REC1, Z138 et Granta-519 que nous avons modifiées afin qu’elles expriment un fluorophore (GFP ou m-cherry) et/ou le gène codant pour la luciférase. Après injection aux souris du substrat de la luciférase, la luciférine, nous sommes en mesure de suivre au cours du temps la progression tumorale. Nous pouvons également évaluer le degré d’infiltration tumorale dans la moelle osseuse, la rate, le cerveau et le sang après euthanasie des animaux, par des techniques de cytométrie en flux et d’immunocytochimie. Ce modèle nous a permis de montrer l’intérêt thérapeutique d’un inhibiteur de l’exportine 1 (XPO1) : le KPT 330 (ou selinexor) qui est capable de contenir cycline D1 uniquement au niveau nucléaire. Nous avons montré que la localisation subcellulaire de cycline D1, est retrouvée majoritairement cytoplasmique dans certaines lignées cellulaires de LCM (2/7) et chez un certain nombre de patients (6/42, 14%), et est associée à un fort potentiel d’invasion, de migration et à un phénotype agressif. Par ailleurs, grâce à ce modèle, nous avons pu objectiver le manque d’efficacité in vivo d’agonistes aux récepteurs aux œstrogènes de type β (ER β). Ces récepteurs, présents sur les lymphocytes B étaient supposés inhiber la prolifération cellulaire et provoquer la mort des cellules par apoptose. L’utilisation de deux agonistes des ER β, le diarylpropionitrile (DPN) et l’ERB-041 a montré une absence d’effet de ces molécules, lorsque les cellules tumorales sont au contact de leur microenvironnement. D’autre part, afin de mieux comprendre les mécanismes de résistance aux chimiothérapies, nous avons étudié la résistance de la lignée cellulaire REC-1 traitée par des agents génotoxiques. Nous avons montré que cette lignée présentait une anomalie de dégradation de cycline D1 associée à une activité diminuée du protéasome 26S. Enfin, nous avons montré dans des travaux préliminaires que la protéine fused in sarcoma (FUS) pourrait, lorsqu’elle est associée à cycline D1, être capable de réguler les voies de réparation des dommages à l’ADN. Des anomalies de ces voies induisent une grande instabilité génétique responsable de l’échappement des tumeurs aux traitements, le ciblage de FUS pourrait par conséquent présenter un intérêt thérapeutique.Pris dans leur ensemble, ces résultats permettent de renforcer ou d’infirmer l’intérêt de certaines cibles thérapeutiques dans l’espoir de pouvoir continuer à améliorer la prise en charge des patients. Ils fournissent également un outil pour l’évaluation de nouvelles molécules dans un modèle murin prenant en compte les interactions entre la cellule tumorale et son microenvironnement. / Mantle cell lymphoma (MCL) is a mature malignant hemopathy, belonging to the non-Hodgkin's lymphoma family. The MCL is characterized by the translocation t(11;14)(q13;q32) which causes an aberrant expression of cyclin D1. It is a rare disease but at high risk of relapse, and it is most often incurable due to the appearance of chemoresistant clones. The acquisition of resistance is intimately linked to the interactions between the tumor cells and their microenvironment. In order to mimic, in the most relevant way, these interactions, we have implemented a mouse xenograft model using the MCL cell lines JeKo1, REC1, Z138 and Granta-519 which we have modified so that they express a fluorophore (GFP or m-cherry) and / or the gene encoding the luciferase. After injection to the mice of the luciferase substrate, luciferin, we are able to follow over time the tumor progression. We can also assess the degree of tumor infiltration in bone marrow, spleen, brain and blood after euthanasia of animals, by flow cytometry and immunocytochemistry. This model allowed us to show the therapeutic interest of an inhibitor of exportin 1 (XPO1): the KPT 330 (or selinexor) which is able to contain cyclin D1 only on the nuclear level. We have shown that the subcellular localization of cyclin D1 is mainly cytoplasmic in some LCM (2/7) cell lines and in a number of patients (6/42, 14%), and is associated with a high potential Invasion, migration and an aggressive phenotype. Moreover, thanks to this model, we have been able to objectify the in vivo lack of efficacy of agonists to β-type estrogen receptors (ER β). These receptors, present on B lymphocytes, were thought to inhibit cell proliferation and cause cell death by apoptosis. The use of two ER β agonists, diarylpropionitrile (DPN) and ERB-041 showed an absence of effect of these molecules, when the tumor cells are in contact with their microenvironment. On the other hand, in order to better understand the mechanisms of resistance to chemotherapies, we studied the resistance of the REC-1 cell line treated with genotoxic agents. We have shown that this line has an abnormality of cyclin D1 degradation associated with decreased activity of the 26S proteasome. Finally, we have shown in preliminary work that the fused in sarcoma protein (FUS) could, when associated with cyclin D1, be able to regulate the repair pathways of DNA damage. Abnormalities of these pathways induce a great genetic instability responsible for the escape of tumors to treatments, the targeting of FUS could therefore be of therapeutic interest.Taken as a whole, these results reinforce or invalidate the interest of certain therapeutic targets in the hope of continuing to improve the management of patients. They also provide a tool for evaluating new molecules in a murine model that takes into account the interactions between the tumor cell and its microenvironment.
57

Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”

Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle. In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays. I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6. Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.
58

Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”

Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle. In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays. I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6. Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.
59

Beyond hairballs: depicting complexity of a kinase-phosphatase network in the budding yeast

Abd-Rabbo, Diala 01 1900 (has links)
No description available.

Page generated in 0.0531 seconds