171 |
A mutant with apetalous flowers in oilseed rape (Brassica napus): Mode of inheritance and influence on crop physiology and sclerotinia infection / Untersuchungen an einer bluetenblattlosen Mutante bei Raps (Brassica napus): Vererbungsweise und Einfluss auf Ertragsphysiologie und KrankheitsanfaelligkeitJiang, Lixi 15 February 2001 (has links)
No description available.
|
172 |
Delineating the role of stress granules in senescent cells exposed to external assaultsLian, Xian Jin, 1968- January 2008 (has links)
As we age, our ability to cope with a variety of stresses significantly decreases. One of the features of an ageing organism is the dramatic increase in the number of cells arrested in the G1 phase, a process known as senescence. It is well established that the senescence phenotype leads to a change in the way cells respond to stress. However, the molecular mechanisms by which these cells cope and/or respond to a variety of environmental challenges remain unknown. In general, cells respond to stress by engaging a variety of mechanisms; one of them is the assembly of cytoplasmic foci known as stress granules (SGs). These entities are considered as part of the survival pathways that are activated at the beginning of any stress to protect key cellular elements which allow a quick recovery if the stress is rapidly removed. However, we do not know whether SGs formation is activated during senescence. In this study, we investigated the formation and the role of SGs in senescent cells exposed to various stresses. We demonstrated that while SGs can assemble in response to oxidative stress (OS) during all the steps leading to senescence activation, their number significantly increases at late stage of senescence. This increase correlates with a rapid decrease in the expression of the cyclin kinase inhibitor p21, one of the main players in the activation of the senescence phenotype. Although the OS-induced recruitment of p21 mRNA to SGs correlates with a significant increase in its half-life, this translocation interferes with p21 translation only at late senescence. This translation inhibition could be explained by the co-recruitment of CUGBP1, a known translation activator during senescence of p21, and p21 mRNA to SGs. Therefore, our data suggest that SGs formation and the reduction in p21 protein levels represent two main events through which senescent cells respond to stress conditions.
|
173 |
Regulation of nuclear tRNA export in response to nutrient stress is not evolutionarily conserved and requires the TORC1 and PKA signaling pathways in Saccharomyces cerevisiaePierce, Jacqueline 18 January 2013 (has links)
Saccharomyces cerevisiae are unicellular organisms that are highly adaptable to acute changes in nutrient availability. The two main signaling pathways that allow S. cerevisiae to sense and respond to changes in glucose availability in the environment are the conserved cAMP/PKA and AMPK/Snf1 kinase-dependent pathways. The conserved TORC1 pathway is primarily responsible for allowing cells to respond to the availability of nitrogen. Studies have shown that S. cerevisiae, but not mammalian and plant cells, regulate nuclear tRNA trafficking in response to nutrient stress. Here, we show that the yeast species of the Saccharomyces genus, but not Schizosaccharomyces pombe and Kluyveromyces lactis specifically regulate nuclear tRNA export in response to nutrient stress, providing further evidence that regulation of nuclear tRNA export in response to nutrient availability is not evolutionarily conserved. We also established that amino acid and nitrogen starvation affects nuclear export of a subset of tRNAs in S. cerevisiae. Inhibition of TORC1 signaling by rapamycin treatment, which simulates nitrogen starvation, also affects nuclear export of the same subset of tRNAs, suggesting that the TORC1 signaling pathway plays a role in regulating nuclear export of the tRNAs in response to nitrogen level. Regulation of nuclear export of these tRNAs by nitrogen deprivation is most likely due to an effect on the function of the nuclear tRNA export receptors, as overexpression of the tRNA export receptor, Los1p, restores export of the tRNAs during nitrogen starvation. These findings suggest that the TORC1 signaling pathway may, in part, regulate nuclear export of the tRNAs by affecting the function of the tRNA export receptors.
In contrast to amino acid and nitrogen starvation, glucose depletion affects nuclear export of all tRNA species in S. cerevisiae. Evidence obtained suggests that nuclear retention of tRNA in cells deprived of glucose is due to a block in nuclear re-import of the nuclear tRNA export receptors. Retention of the receptors in the cytoplasm is not caused by activation of Snf1p, but by the inactivation of PKA during glucose deprivation. Furthermore, regulation of nuclear re-import of the receptors is not due to phosphorylation of the tRNA export receptors by PKA. However, PKA phosphorylates known components of the tRNA export machinery. A model that is consistent with the data is that PKA and an unknown mechanism regulate the activity of these components or an unidentified protein(s) to control nuclear re-import of the receptors in response to glucose availability.
|
174 |
Differential circadian regulation of Bmal1 transcription by orphan nuclear receptorsRuan, Xuan, 1974- January 2008 (has links)
In mammals, circadian rhythms are generated by transcriptional-translational feedback loops consisting of a set of clock genes and their protein products. Among them, Bmal1 is a critical clock gene in generating and maintaining circadian rhythms. Moreover, orphan nuclear receptors REV-ERBs and RORs were known to respectively repress and activate Bmal1 transcription. In our study, we further demonstrated that: (1) REV-ERBalpha might be the main regulator in maintaining Bmal1 oscillation in thymus. (2) Rorgamma mRNA is constant in muscle and testis, and rhythmic in liver, while Rorgammat mRNA is only expressed in thymus, at constant levels. Moreover, the expressions of these two Rorgamma isoforms are affected in Clock mutant mice in a distinct way. (3) RORgamma and RORgammat can activate Bmal1 transcription at a similar level. (4) Rorgamma is a clock-controlled gene. Altogether, our results suggest that the crucial role of REV-ERBs and RORs in peripheral clocks. Furthermore, our work highlights functional differences among mammalian peripheral clocks, which provides important insights into the complexity of the circadian system.
|
175 |
The Role and Regulation of p53-associated, Parkin-like Cytoplasmic Protein (PARC) in p53 Subcellular Trafficking and Chemosensitivity in Human Ovarian Cancer CellsWoo, Michael G. 26 March 2012 (has links)
Resistance to cisplatin (CDDP)-based therapy is a major hurdle to the successful treatment of human ovarian cancer (OVCA) and the chemoresistant phenotype in OVCA cells is associated with Akt-attenuated, p53-mediated apoptosis. Pro-apoptotic functions of p53 involve both transcription-dependent and -independent signaling pathways and dysfunctional localization and/or inactivation of p53 contribute to the development of chemoresistance. PARC is a cytoplasmic protein regulating p53 subcellular localization and subsequent function. Little is known about the molecular mechanisms regulating PARC. Although PARC contains putative caspase-3 cleavage sites, and CDDP is known to induce the activation of caspases and calpains and induce proteasomal degradation of anti-apoptotic proteins, if and how PARC is regulated by CDDP in OVCA is unknown. Here we present evidence that CDDP promotes calpain-mediated PARC down-regulation, mitochondrial and nuclear p53 accumulation and apoptosis in chemosensitive but not resistant OVCA cells. Inhibition of Akt is required to sensitize chemoresistant cells to CDDP in a p53-dependent manner, an effect enhanced by PARC down-regulation. CDDP-induced PARC down-regulation is reversible by inhibitor of calpain but not of caspase-3 or the 26S proteasome. Furthermore, in vitro experiments confirm the ability of calpain in mediating Ca2+-dependent PARC down-regulation. The role of Ca2+ in PARC down-regulation was further confirmed as ionomycin induced PARC down-regulation in both chemosensitive and chemoresistant ovarian cancer cells. The data presented here implicates the regulation of p53 subcellular localization and apoptosis by PARC as a contributing factor in CDDP resistance in OVCA cells and Ca2+/calpain in PARC post-translational processing and chemosensitivity.
|
176 |
Hybridization and Evolution in the Genus PinusWang, Baosheng January 2013 (has links)
Gene flow and hybridization are pervasive in nature, and can lead to different evolutionary outcomes. They can either accelerate divergence and promote speciation or reverse differentiation. The process of divergence and speciation are strongly influenced by both neutral and selective forces. Disentangling the interplay between these processes in natural systems is important for understanding the general importance of interspecific gene flow in generating novel biodiversity in plants. This thesis first examines the importance of introgressive hybridization in the evolution of the genus Pinus as a whole, and then focusing on specific pine species, investigates the role of geographical, environmental and demographical factors in driving divergence and adaptation. By examining the distribution of cytoplasmic DNA variation across the wide biogeographic range of the genus Pinus, I revealed historical introgression and mtDNA capture events in several groups of different pine species. This finding suggests that introgressive hybridization was common during past species’ range contractions and expansions and thus has played an important role in the evolution of the genus. To understand the cause and process of hybrid speciation, I focused on the significant case of hybrid speciation in Pinus densata. I established the hybridization, colonization and differentiation processes that defined the origin of this species. I found P. densata originated via multiple hybridization events in the late Miocene. The direction and intensity of introgression with two parental species varied among geographic regions of this species. During the colonization on Tibetan Plateau from the ancestral hybrid zone, consecutive bottlenecks and surfing of rare alleles caused a significant reduction in genetic diversity and strong population differentiation. Divergence within P. densata started from the late Pliocene onwards, induced by regional topographic changes and Pleistocene glaciations. To address the role of neutral and selective forces on genetic divergence, I examined the association of ecological and geographical distance with genetic distance in Pinus yunnanensis populations. I found both neutral and selective forces have contributed to population structure and differentiation in P. yunnanensis, but their relative contributions varied across the complex landscape. Finally, I evaluated genetic diversity in the Vietnamese endemic Pinus krempfii. I found extremely low genetic diversity in this species, which is explained by a small ancestral population, short-term population expansion and recent population decline and habitat fragmentation. These findings highlight the role of hybridization in generating novel genetic diversity and the different mechanisms driving divergence and adaptation in the genus Pinus.
|
177 |
Nuclear receptor corepressor N-CoR : role in transcriptional repression /Loinder, Kristina, January 2004 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2004. / Härtill 4 uppsatser.
|
178 |
Cloning and Characterization of Dynamitin, the 50 kDa Subunit of Dynactin: A Study of Dynactin and Cytoplasmic Dynein Function in VertebratesEcheverri, Christophe de Jesus 30 January 1998 (has links)
Dynactin is a multi-subunit complex which was initially identified in 1991 as an activator of cytoplasmic dynein-driven microtubule-based organelle motility in vitro. Although genetic studies also supported the involvement of both complexes in the same functional pathways in yeast, filamentous fungi, and Drosophila, none of these findings yielded significant insights into dynactin's mechanism of action. The full range of cytoplasmic dynein functions in vertebrate cells has also remained poorly understood, due, in large part, to the lack of a specific method of inhibition. The present thesis work was designed to investigate these issues through a study of the 50 kDa subunit of dynactin.
As a first step (Chapter 1), I cloned mammalian p50 and characterized its expression at the tissue and subcellular levels. Rat and human cDNA clones revealed p50 to be a novel α-helix-rich protein containing several highly-conserved structural features including one predicted coiled-coil domain. Immunofluorescence staining of p50, as well as other dynactin and cytoplasmic dynein components in cultured vertebrate cells showed that both complexes are recruited to kinetochores during prometaphase and concentrate near spindle poles thereafter. These findings represented the first evidence for dynactin and cytoplasmic dynein co-localization within cells, and for the presence of dynactin at kinetochores.
The second major phase of the thesis (Chapter 2) was focused on investigating dynactin and cytoplasmic dynein function in cultured cells in vivo using a dominant negative inhibition approach based on transient transfections of p50 constructs. Overexpression of wild type human p50 in cultured cells resulted in a dramatic fragmentation and dispersal of the Golgi apparatus. Time-lapse fluorescence microscopy analysis of p50-overexpressing cells revealed that microtubule-based vesicle transport from the endoplasmic reticulum to the Golgi was inhibited. Also, the interphase microtubule organizing center was found to be less well-focused in some but not all transfected cells. Overexpression of p50 also disrupted mitosis, causing cells to accumulate in a prometaphase-like state. Chromosomes were condensed but unaligned, and spindles, while still generally bipolar, were dramatically distorted. Sedimentation analysis revealed the dynactin complex to be dissociated in the transfected cultures. Furthermore, both dynactin and cytoplasmic dynein staining at prometaphase kinetochores was markedly diminished in cells expressing high levels of p50. These findings provided the first in vivoevidence for the role of dynactin in cytoplasmic dynein function, i.e. mediating the motor's binding to at least one "cargo" organelle, the kinetochore, and probably also to others such as vesicles destined for the Golgi complex. These data also strongly implicated both dynactin and dynein in Golgi organization during interphase, and chromosome alignment and spindle organization during mitosis. Based on the remarkable disruptive phenotypic effects associated with overexpressing of p50, the name of dynamitin was proposed for this polypeptide.
In the third and last phase of the thesis (Chapter 3), two issues were addressed: first, the dynamitin-induced mitotic arrest phenotype was studied in greater detail to better understand the exact sites of dynactin and cytoplasmic dynein activity throughout mitosis. Second, a domain analysis of dynamitin was performed to gain insight into its function within the dynactin complex. A time-lapse fluorescence microscopy study of mitosis in living dynamitin-overexpressing COS-7 cells strongly suggested specific defects in interactions of astral microtubules with the cell cortex, and in both spindle pole assembly and maintenance. Analysis of the mitotic arrest phenotype in a second cell line revealed a second arrest point at metaphase, and a clear effect of dynamitin overexpression on spindle axis orientation, again consistent with defects in interactions between microtubules and the cell cortex. Refined analyses of kinetochore and spindle pole components also confirmed specific defects in kinetochore function and spindle pole organization. Taken together, these findings support three main sites of dynactin and cytoplasmic dynein activity during vertebrate mitosis: prometaphase kinetochores, spindle poles, and the cell cortex. Finally, the domain analysis revealed dynamitin to be capable of self-association through at least two separate interaction domains, consistent with models of the mechanism underlying dynamitin-induced dynactin dissociation, and therefore, yielding important new insights into dynactin assembly. This study also indicated that a third region within dynamitin, residues 105 to 154, is essential for dynamitin and dynactin function. An independent study confirmed this finding, implicating this region in binding to ZW10, an upstream kinetochore protein. Dynamitin has therefore been revealed to be the kinetochore-targeting subunit of dynactin, and indirectly, cytoplasmic dynein. Through the body of this thesis work, dynamitin has also emerged as a powerful new tool for studying vertebrate dynactin and cytoplasmic dynein function in vivo and in vitro.
|
179 |
Utilisation des bactéries Wolbachia pour lutter contre une espèce invasive et ravageur de cultures, Drosophila suzukii / Use of the Wolbachia bacteria to fight against an invasive species and pest of crops, Drosophila suzukiiCattel, Julien 16 December 2016 (has links)
Depuis sa récente invasion dans les continents européen et américain, la drosophile à aile tachetées, Drosophila suzukii est devenue un ravageur majeur des cultures de fruits rouges. Contrairement aux autres espèces de drosophiles, D. suzukii, est capable de pondre ses œufs dans des fruits sains avant la récolte, à l'aide de son ovipositeur sclérotinisé. Les pertes économiques liées à la présence de D. suzukii s'élèvent annuellement à plusieurs millions de dollars. Le contrôle des populations se fait principalement par l'utilisation de pesticides. Ici, nous avons testé si la bactérie Wolbachia pouvait être efficace pour lutter contre cette espèce. Ce symbiote est présent chez de nombreuses espèces d'insectes et induit souvent de l'incompatibilité cytoplasmique (IC) : les descendants des mâles infectés meurent, exceptés si l'œuf est sauvé par la même infection, héritée de la mère et qui va protéger l'embryon contre cette toxine encore non identifiée. La Technique de l'Insecte Incompatible (TII) repose sur l'utilisation de l'IC pour contrôler les populations d'insecte par des lâchers de mâles infectés. Nous avons montré que D. suzukii est naturellement infecté par une souche de Wolbachia, nommée wSuz, avec des prévalences intermédiaire et qui n'induit pas un taux d'IC élevé. Pour le développement de la TII chez D. suzukii, nous avons réalisé des transferts de souches de Wolbachia entre D. simulans et D. suzukii pour identifier des souches qui peuvent stériliser les femelles D. suzukii, en dépit de la présence de wSuz. Nous avons identifié deux souches de Wolbachia comme candidates pour le développement de la TII. Ces souches induisent des taux d'IC très élevés chez ce ravageur, qui n'est pas atténué par la présence de wSuz chez les femelles. Les mâles stérilisants ont une compétitivité sexuelle similaire comparés à celle des mâles infectés ou non par wSuz, et sont capable d'induire des taux d'IC élevés tout au long de leurs vie. Finalement nous avons montré que, dans de grandes cages à population, la TII pouvait être très efficace pour limiter l'augmentation de la taille des populations de D. suzukii. L'ensemble des résultats confirment que la TII est une approche prometteuse pour contrôler les populations de D. suzukii et mérite de dépasser le stade du laboratoire. Associé à une technique de sexage efficace, la TII peut être un outil puissant, spécifique et respectueux de l'environnement / Since its recent invasion of the European and American continents, the spotted wing Drosophila, D. suzukii has become a major burden of the fruit industry. Armed with a highly sclerotized ovipositor, females can lay eggs in a wide variety of ripening and healthy fruits, in contrast to other Drosophila species. Economic losses due to D. suzukii reach millions of dollars annually and methods to control natural populations in the field mainly rely on the use of chemical pesticides. Here we test if Wolbachia bacteria can represent a potential ally to control this pest species. These symbionts are naturally present in many insects and often induce a form of conditional sterility called Cytoplasmic Incompatibility (CI): the offspring of infected males die, unless the eggs are rescued by the same infection inherited from the mother which protects the embryo against a yet unidentified toxin. As long recognized, a strategy called the Incompatible Insect Technique (IIT) makes use of the CI phenotype to control insect populations through the mass release of infected males. D. suzukii is naturally infected by a single Wolbachia strain, named wSuz, which has an intermediate prevalence in field populations and which does not induce a high level of CI. To implement IIT in D. suzukii, we used back and forth Wolbachia transfers between D. suzukii and D. simulans to identify Wolbachia strains that can fully sterilize D. suzukii females despite the presence of wSuz. We identified two potential candidates, both induce a very high level of CI in this pest which is not attenuated by the presence of wSuz in females. The transinfected males showed a similar competitiveness compared naturally infected and uninfected males and are able to induce a high level of CI during all their life. Finally we demonstrated that, in large population cage, the IIT can be very efficient to limit the D. suzukii population size. All the results confirmed that the IIT is a promising approach to control D. suzukii population and merit to go out the laboratory. Associate with a perfect sexing technique, IIT can be a powerful tool to fight against D. suzukii, which is not polluting and species specific
|
180 |
Análise da participação da oligopeptidase B e triparedoxina peroxidase citoplasmática na virulência de Leishmania (Leishmania) amazonensis. / Analysis of the participation of Oligopeptidase B and Cytoplasmic Tryparedoxin Peroxidase in virulence of Leishmania (Leishmania) amazonensis.Karoline Mathias Leite 15 December 2015 (has links)
A capacidade de sobrevivência da Leishmânia no interior de células especializadas na destruição de patógenos deve-se à capacidade do parasito de burlar a propriedade microbicida pela produção de moléculas denominadas fatores de virulência. Dentre as proteínas diferencialmente expressas em um estudo prévio de nosso laboratório, encontramos isoformas da OPB, uma serino peptidase e da CPX, proteína antioxidante. De fato, promastigotas de L. (L.) major deficientes em OPB apresentaram significante redução na infecção e sobrevivência em macrófagos in vitro e lesões de evolução mais lenta no modelo murino de infecção na pata. De forma análoga, promastigotas de L. (L.) donovani superexpressoras de CPX apresentaram maior carga parasitária em macrófagos in vitro. Considerando essas informações e a importância da L. (L.) amazonensis na epidemiologia da leishmaniose no Brasil, nosso objetivo é analisar a importância da OPB e CPX na virulência desta espécie utilizando parasitas superexpressores e proteínas solúveis em modelos murinos de infecção in vitro e in vivo. / The survivability of Leishmania within specialized cells in the destruction of pathogens due to the parasite\'s ability to circumvent the microbicidal property for the production of molecules called virulence factors. Among the proteins differentially expressed in a previous study from our laboratory, we found isoforms of OPB, a peptidase serine and CPX, antioxidant protein. Indeed, promastigotes of L. (L.) Major disabled in OPB showed a significant reduction in infection and survival in macrophages in vitro and slower evolution of lesions in a murine model of infection in the leg. Similarly, promastigotes of L. (L.) Donovani overexpressors CPX showed higher parasite load in macrophages in vitro. Given this information and the importance of L. (L.) amazonensis in the epidemiology of leishmaniasis in Brazil, our goal is to analyze the importance of OPB and CPX virulence of this species using overexpressors parasites and soluble proteins in murine models of infection in vitro and in alive.
|
Page generated in 0.0546 seconds